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We consider the multigenerator system {EmblTnalϕl,m,n ∈ Z, l = 0, . . . , r −1} for ϕ0, . . . , ϕr−1 ∈ L2(S)
and a0, b0, . . . , ar−1, br−1 > 0, where the parameters b0, . . . , br−1 > 0 are not necessary the same. With
the help of frame theory, we provide some sufficient or necessary conditions for the system to be
a frame for L2(S). Moreover, we present some characterizations for this system to be a Parseval
frame.

1. Introduction

For a, b ∈ R, consider the translation operator (Tag)(x) = g(x − a) and the modulation
operator (Ebg)(x) = e2πibxg(x), both acting on g ∈ L2(R). We say that the system
{EmbTnag,m, n ∈ Z} is a Gabor frame for L2(R) if there exist two constants A,B > 0 such
that

A
∥
∥f
∥
∥
2 �

∑

m,n∈Z

∣
∣
〈

f, EmbTnag
〉∣
∣
2 � B

∥
∥f
∥
∥
2

(1.1)

holds for every f ∈ L2(R).
Gabor analysis is a pervasive signal processing method for decomposing and recon-

structing signals from their time-frequency (TF) projections, and Gabor representation is
used in many applications ranging from speech processing and texture segmentation to
pattern and object recognition, among others. However, as it is widely recognized, a single-
windowed Gabor expansion is not enough to analyze the dynamic TF contents of signals
that contain a wide range of spatial and frequency components, the resolution of which is
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normally very poor. Therefore, if one could incorporate a set of multiple windows of various
TF localizations in a frame system, the representation of signals of multiple and/or time-
varying frequencies would have their corresponding windowing templates and resolutions
to relate to. To this purpose, one of the best choices may be the multigenerator Gabor system.

Multigenerator Gabor system is firstly presented by Zibulski and Zeevi in [1]. Utiliz-
ing the piecewise Zak transform (PZT), they [2] discussed the frame operator associated with
the multigenerator Gabor frame. They pointed out that the so-called Balian-Low theorem for
multigenerator Gabor frame is generalized to consideration of a scheme of multigenerator
which makes it possible to overcome in a way the constraint imposed by the original
theorem in the case of a single window. Since then, researchers are interested in the study of
both theory and application aspects of multigenerator Gabor frame; for detail, see [2–7].
Multigenerator Gabor systems may be both interesting and useful since they can increase
the degree of freedom by incorporating windows of various types and widths.

Note that aZ-periodic set in R can be used to model a signal that appears periodically
but intermittently. Recently, some authors concerned Gabor analysis in L2(S), where S is an
aZ-periodic set in R. Although classical Gabor analysis tools in L2(S) can be adjusted to treat
such a scenario by padding with zeros outside the set S, Gabor systems that fit exactly such
a scenario might have been more efficient. Gabardo and Li [8] obtained density results for
Gabor systems associated with periodic subsets of the real line. Lian and Li [9] studied the
Gabor frame sets for subspaces. They pointed out that only periodic S in R is suitable for
Gabor analysis.

Motivated by [7–9], we address the issue about the multigenerator Gabor frame in
this paper. With the help of frame theory, we provide some sufficient or necessary conditions
for the multigenerator Gabor frame system to be a frame for L2(S), and we obtain the
characterization for the multigenerator Gabor system to be a Parseval frame.

2. Notations

In this section, we present some notations and lemmas, which will be needed in the rest of
the paper. Let S be aZ-periodic subset of R. Then, S is aqZ-periodic subset of R for any given
q ∈ Z. Denote S0 = [0, a)

⋂
S and

Li(S) :=
{

f ∈ Li(R) | supp(f) ⊂ S

}

, (2.1)

where supp(f) = {t ∈ R : f(t)/= 0} and i = 1, 2. Given a measurable set F in R and a constant
c > 0. Define.

Fc,x =
{

y ∈ F : y = x + cj for some j ∈ Z
}

, x ∈ R. (2.2)

Consider the relation R between x, y in F: xRy if and only if

card(Fc,x) = card
(

Fc,y

)

, (2.3)
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where card(E) denotes the cardinality of E for a set E. Then, it is easy to check that F has an
equivalence relation R. Moreover, define

F(c, k) := {x ∈ F : card(Fc,x) = k}, k ∈ N ∪ {+∞}. (2.4)

Note that {F(c, k)}k∈N∪{+∞} is an equivalence class under the relation R or a partition of F.
Thus

F(c, k)
⋂

F
(

c, k′
)

= ∅ (2.5)

for k, k′ ∈ N ∪ {+∞} and k /= k′. Obviously, F
⋂
(F(c, k′) + cj) ⊂ F(c, k′) for given j ∈ Z \ {0}. It

follows that

F(c, k)
⋂(

F
(

c, k′
)

+ cj
)

= ∅ (2.6)

for j ∈ Z \ {0}, k, k′ ∈ N ∪ {+∞} and k /= k′.

Example 2.1. Define Fn = (n − 1/2|n|+2, n + 1/2|n|+2) ⊂ R for n ∈ Z. Consider F =
⋃

n∈Z
Fn. Then

μ(F) =
∑

n∈Z

μ(Fn) = 2
∑

n∈N

μ(Fn) − 1
2
=
∑

n∈N

1
2n

− 1
2
=

3
2
<∞. (2.7)

However, it is easy to check that F(c,∞) = Z, which means F(c,∞)/= ∅.

Remark 2.2. Note that F(c, k) is the subset as defined in (2.2) of [9]. We point out that
Proposition 2.1 (v) in [9] is incorrect.

Definition 2.3. Let gn ∈ L2(S) for n ∈ Z. We say that the system {gn, n ∈ Z} is a frame for L2(S)
if there exist two constants A,B > 0 such that

A
∥
∥f
∥
∥
2 �

∑

n∈Z

∣
∣
〈

f, gn
〉∣
∣
2 � B

∥
∥f
∥
∥
2

(2.8)

holds for every f ∈ L2(S); moreover, we say the frame {gn, n ∈ Z} for L2(S) is tight if A = B.
In particular, the frame {gn, n ∈ Z} for L2(S) is Parseval if A = B = 1.

Given a frame {gn ∈ L2(S), n ∈ Z} for L2(S), a dual frame of {gn ∈ L2(S), n ∈ Z} for
L2(S) is a frame {hn ∈ L2(S), n ∈ Z} for L2(S) which satisfies the reconstruction property

f =
∑

n∈Z

〈

f, gn
〉

hn, ∀f ∈ L2(S). (2.9)

For fixed positive integer r, let ϕ0, ψ0, . . . , ϕr−1, ψr−1 ∈ L2(S). For given a0, b0, . . .,
ar−1, br−1 ∈ R, we say that the system {EmblTnalϕl,m,n ∈ Z, l = 0, . . . , r − 1} is a multigenerator
Gabor frame for L2(S) if it is a frame for L2(S). Given a multigenerator Gabor frame



4 Abstract and Applied Analysis

{EmblTnalϕl,m, n ∈ Z, l = 0, . . . , r−1} for L2(S), a dualmultigenerator Gabor frame {EmblTnalψl,
m,n ∈ Z, l = 0, . . . , r − 1} for L2(S) is a multigenerator Gabor frame

f =
r−1∑

l=0

∑

m,n∈Z

〈

f, EmblTnalϕl
〉

EmblTnalψl (2.10)

for any f ∈ L2(S).
The following lemma follows from general characterizations of shift-invariant frames,

see [10, Corollary 1.6.2]. Alternatively, it can be proved similarly to [11, Theorem 8.4.4].

Lemma 2.4. Let gn ∈ L2(R), n ∈ Z, b > 0 and suppose that

B :=
1
b
sup
x∈R

∑

k∈Z

∣
∣
∣
∣
∣

∑

n∈Z

gn(x)gn
(

x − k

b

)
∣
∣
∣
∣
∣
<∞. (2.11)

Then {Embgn,m, n ∈ Z} is a Bessel sequences with upper frame bound B for L2(R). If also

A :=
1
b
inf
x∈R

⎛

⎝
∑

n∈Z

∣
∣gn(x)

∣
∣
2 −

∑

k /= 0

∣
∣
∣
∣
∣

∑

n∈Z

gn(x)gn
(

x − k

b

)
∣
∣
∣
∣
∣

⎞

⎠ > 0, (2.12)

then {Embgn,m, n ∈ Z} is a frame for L2(R) with bounds A and B.

3. Sufficient and Necessary Conditions

In this section, we provide some sufficient and necessary conditions for a class of the multi-
generator Gabor frame system to be a frame for L2(S).

Firstly, we obtain the following theorem for the multigenerator Gabor system with the
parameters a and b, which discloses the relationship between the Gabor system L2(R) and its
subspace L2(S).

Theorem 3.1. Let ϕ0, . . . , ϕr−1 ∈ L2(S) and a, b > 0. Then the following results hold.

(I) If the Gabor system {EmbTnaϕl,m,n ∈ Z, l = 0, . . . , r − 1} is a frame for L2(R), then it is
a frame for L2(S).

(II) If the Gabor system {EmbTnaϕl,m,n ∈ Z, l = 0, . . . , r − 1} is a Bessel sequence for L2(S)
with upper bound B, then it is a Bessel sequence for L2(R) with the same upper bound.

Proof. The part (I) follows from the fact that L2(S) ⊂ L2(R).
Next, we prove the second part. Suppose that the Gabor system {EmbTnaϕl,m,n ∈ Z, l =

0, . . . , r − 1} is a Bessel sequence for L2(S). Then there exists a constant B > 0 such that

r−1∑

l=0

∑

n∈Z

∣
∣
〈

f, EmbTnaϕl
〉∣
∣
2 � B

∥
∥f
∥
∥
2
, ∀f ∈ L2(S). (3.1)
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Observe that

〈

f, EmbTnaϕl
〉

=
∫

R

f(x)ϕl(x − na)e−2πmbxdx =
∫

S

f(x)ϕl(x − na)e−2πmbxdx, (3.2)

since fϕl ∈ L2(S), l = 0, . . . , r − 1, for all f ∈ L2(R). It follows that

〈

f, EmbTnaϕl
〉

=
〈

fχS, EmbTnaϕl
〉

. (3.3)

Therefore,

r−1∑

l=0

∑

n∈Z

∣
∣
〈

f, EmbTnaϕl
〉∣
∣
2 =

r−1∑

l=0

∑

n∈Z

∣
∣
〈

fχS, EmbTnaϕl
〉∣
∣
2 � B

∥
∥fχS

∥
∥
2 � B

∥
∥f
∥
∥
2 (3.4)

for all f ∈ L2(R). This implies that {EmbTnaϕl,m,n ∈ Z, l = 0, . . . , r − 1} is a Bessel sequence
for L2(R) with the same upper bound B.

Moreover, we have the following sufficient condition for themultigenerator Gabor sys-
tem with the parameters a and b.

Theorem 3.2. Let ϕ0, . . . , ϕr−1 ∈ L2(S) and a, b > 0. Moreover, suppose that

B :=
1
b

sup
x∈[0,1/b)

∑

k∈Z

∣
∣
∣
∣
∣

r−1∑

l=0

∑

n∈Z

Tnaϕl(x)Tnaϕl
(

x +
k

b

)
∣
∣
∣
∣
∣
<∞. (3.5)

Then {EmbTnaϕl,m, n ∈ Z, l = 0, . . . , r − 1} is a Bessel sequence for L2(S) with upper frame bound
B. If also

A :=
1
b

inf
x∈[0,1/b)

⎛

⎝
∑

n∈Z

∣
∣
∣
∣
∣

r−1∑

l=0

Tnaϕl(x)

∣
∣
∣
∣
∣

2

−
∑

k /= 0

∣
∣
∣
∣
∣

∑

n∈Z

r−1∑

l=0

Tnaϕl(x)Tnaϕl
(

x +
k

b

)
∣
∣
∣
∣
∣

⎞

⎠ > 0, (3.6)

then {EmbTnaϕl,m, n ∈ Z, l = 0, . . . , r − 1} is a frame for L2(S) with bounds A and B. That means
{EmbTnaϕl,m, n ∈ Z, l = 0, . . . , r − 1} is a multigenerator Gabor frame for L2(S).

Proof. Define

H1(x) :=
∑

k∈Z

∣
∣
∣
∣
∣

r−1∑

l=0

∑

n∈Z

Tnaϕl(x)Tnaϕl
(

x +
k

b

)
∣
∣
∣
∣
∣
,

H2(x) :=
∑

n∈Z

∣
∣
∣
∣
∣

r−1∑

l=0

Tnaϕl(x)

∣
∣
∣
∣
∣

2

−
∑

k /= 0

∣
∣
∣
∣
∣

∑

n∈Z

r−1∑

l=0

Tnaϕl(x)Tnaϕl
(

x +
k

b

)
∣
∣
∣
∣
∣
,

(3.7)
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thenH1 andH2 are 1/b-periodic functions. Thus

B =
1
b
sup
x∈R

∑

k∈Z

∣
∣
∣
∣
∣

r−1∑

l=0

∑

n∈Z

Tnaϕl(x)Tnaϕl
(

x +
k

b

)
∣
∣
∣
∣
∣
<∞,

A =
1
b
inf
x∈R

⎛

⎝
∑

n∈Z

∣
∣
∣
∣
∣

r−1∑

l=0

Tnaϕl(x)

∣
∣
∣
∣
∣

2

−
∑

k /= 0

∣
∣
∣
∣
∣

∑

n∈Z

r−1∑

l=0

Tnaϕl(x)Tnaϕl
(

x +
k

b

)
∣
∣
∣
∣
∣

⎞

⎠ > 0.

(3.8)

Define

gn(x) :=
(

Tkaϕl
)

(x), (3.9)

where n = l + rk and l = 0, . . . , r − 1. Then, one obtains from (3.8) that

B =
1
b
sup
x∈R

∑

k∈Z

∣
∣
∣
∣
∣

∑

n∈Z

gn(x)gn
(

x − k

b

)
∣
∣
∣
∣
∣
<∞,

A =
1
b
inf
x∈R

⎛

⎝
∑

n∈Z

∣
∣gn(x)

∣
∣
2 −

∑

k /= 0

∣
∣
∣
∣
∣

∑

n∈Z

gn(x)gn
(

x − k

b

)
∣
∣
∣
∣
∣

⎞

⎠ > 0,

(3.10)

respectively. Note that L2(S) ⊂ L2(R). By Lemma 2.4, one obtains the results.

Remark 3.3. Theorem 3.2 is similar to [11, Theorem 8.4.4]. Note that our result extends [11,
Theorem 8.4.4] to the multigenerator and the periodic subset cases.

The following theorem gives necessary condition for the system {EmblTnaϕl,m, n ∈
Z, l = 0, . . . , r − 1} to be a multigenerator Gabor frame for L2(S). It depends on the interplay
among the function ϕ0, . . . , ϕr−1, the corresponding translation parameters a, b0, . . ., br−1, and
the subset S.

Theorem 3.4. Let ϕ0, . . . , ϕr−1 ∈ L2(S) and a, b0, . . . , br−1 > 0. Assume that {EmblTnaϕl,m, n ∈
Z, l = 0, . . . , r − 1} is a multigenerator Gabor frame for L2(S) with bounds A and B. Then,

AχS(x) �
r−1∑

l=0

(

1
bl

∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

� BχS(x), a.e. R. (3.11)

Proof. Firstly, note that S is a aZ-periodic subset of R. Therefore, ϕl(· − na) ∈ L2(S) for all
n ∈ Z and l = 0, . . . , r − 1. Thus

r−1∑

l=0

(

1
bl

∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

= 0, a.e. R \ S. (3.12)
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The rest part of the proof is by contradiction. Assume that the upper condition in (3.11)
is violated on S. Then there exists a measurable set Δ ⊂ S with measure μ(Δ) > 0 such that

r−1∑

l=0

(

1
bl

∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

> B, a.e. Δ. (3.13)

Similar to the discussion in [11, Proposition 8.3.2], we can assume that

r−1∑

l=0

(

1
bl

∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

> B + ε, a.e. Δ (3.14)

for small ε > 0. Note that S is a aZ-periodic subset of R. We can assume further that Δ ⊂ S0.
Define

1
b0

:= min
{
1
bl
, l = 0, · · · , r − 1

}

,

Δk = Δ
⋂
[
k − 1
b0

,
k

b0

]

, k ∈ Z.

(3.15)

Then, there exists k0 ∈ Z such that μ(Δk0) > 0 and

r−1∑

l=0

(

1
bl

∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

> B + ε, a.e. Δk0 . (3.16)

If not, that is μ(Δk) = 0 for all k ∈ Z, then

μ(Δ) = μ

(
⋃

k∈Z

Δk

)

=
∑

k∈Z

μ(Δk) = 0. (3.17)

This contradicts to μ(Δ) > 0. Therefore, we can also assume that Δ is contained in an interval
of length 1/b0 and that Δ is a subset of S0.

Now consider the function f = χΔ and note that ‖f‖2 = μ(Δ). Then for any n ∈ Z, the
function fTnaϕl has support in Δ. Since the functions {

√

blEmbl ,m ∈ Z} constitute an ortho-
normal basis for L2(I) for every interval I of length 1/bl for fixed l = 0, . . . , r − 1, we have

∑

m∈Z

∣
∣
〈

f, EmblTnaϕl
〉∣
∣
2 =

∑

m∈Z

∣
∣
∣

〈

fTnaϕl, Embl

〉∣
∣
∣

2
=

1
bl

∫∞

−∞

∣
∣f(x)

∣
∣
2∣
∣ϕl(x − na)∣∣2dx. (3.18)

Thus,

∑

m,n∈Z

∣
∣
〈

f, EmblTnaϕl
〉∣
∣
2 =

∫∞

−∞

∣
∣f(x)

∣
∣
2

(

1
bl

∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

dx. (3.19)
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Therefore,

r−1∑

l=0

∑

m,n∈Z

∣
∣
〈

f, EmblTnaϕl
〉∣
∣
2 =

∫∞

−∞

∣
∣f(x)

∣
∣
2
r−1∑

l=0

(

1
bl

∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

dx

>

∫

Δ
(B + ε)dx = (B + ε)μ(Δ)

= (B + ε)
∥
∥f
∥
∥
2
> B

∥
∥f
∥
∥
2
.

(3.20)

This contradicts to the assumption that B is an upper frame bound for{EmblTnaϕl,m, n ∈
Z, l = 0, . . . , r − 1}. A similar proof shows that if the lower condition in (3.11) is violated,
then A cannot be a lower frame bound for {EmblTnaϕl,m, n ∈ Z, l = 0, . . . , r − 1}.

4. Parseval Multigenerater Gabor Frame

In applications of frames, it is inconvenient that the frame decomposition, stated in [12,
Theorem 5.1.7], requires inversion of the frame operator. As we have seen in the discussion
of general frame theory, one way of avoiding the problem is to consider tight frames. We will
characterize Parseval multigenerater Gabor frames in this section. Noting that L2(S) ⊂ L2(R),
we obtain from [11, Lemma 8.4.3] or [12, Lemma 9.1.4] the following lemma, which will be
used in the rest of the section.

Lemma 4.1. Let f be a bounded measure function with compact support and g ∈ L2(S). Then

∑

m,n∈Z

∣
∣
〈

f, EmbTnag
〉∣
∣
2 =

1
b

∫

R

∣
∣f(x)

∣
∣
2∑

n∈Z

∣
∣g(x − na)∣∣2dx

+
1
b

∑

k∈Z

∫

R

f(x)f
(

x − k

b

)
∑

n/= 0

g(x − na)g
(

x − na − k

b

)

dx

(4.1)

for given a, b > 0.

Theorem 4.2. Let ϕ0, . . . , ϕr−1 ∈ L2(S) and a, b0, . . . , br−1 > 0. Moreover, assume that {EmblTnaϕl,
m,n ∈ Z, l = 0, . . . , r − 1} is a tight frame for L2(S) with A = 1. Then,

r−1∑

l=0

1
bl

(
∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

= χS(x), a.e. R. (4.2)

Moreover, if b0 = · · · = br−1 and denote b0 by b, then
r−1∑

l=0

(
∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

= bχS(x), (4.3)

r−1∑

l=0

(
∑

n∈Z

ϕl(x − na)ϕl
(

x − na − k

b

))

= 0, for k /= 0 (4.4)

hold a.e. in R.
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Proof. Define

1
b0

:= min
{
1
bl
, l = 0, . . . , r − 1

}

. (4.5)

Consider

CL2(S) :=
{

f : f ∈ L2(S) and supp f ⊂
[

0,
1
b0

)

∩ S

}

. (4.6)

Note that {EmblTnaϕl,m, n ∈ Z, l = 0, . . . , r − 1} is a tight frame for L2(S)with A = 1. Then

r−1∑

l=0

∑

m,n∈Z

∣
∣
〈

f, EmblTnaϕl
〉∣
∣
2 =

∥
∥f
∥
∥
2
, ∀f ∈ CL2(S). (4.7)

Again, we obtain from Lemma 4.1 that

∑

m∈Z

∣
∣
〈

f, EmblTnaϕl
〉∣
∣
2 =

∑

m∈Z

∣
∣
∣
∣

∫

R

f(x)ϕl(x − na)e−2πmblxdx
∣
∣
∣
∣

2

=
1
bl

∫

R

∣
∣
∣f(x)ϕl(x − na)

∣
∣
∣

2
dx,

=
1
bl

∫1/b0

0

∣
∣f(x)ϕl(x − na)∣∣2dx, ∀f ∈ CL2(S)

(4.8)

for fixed l and n. Thus,

∫1/b0

0

∣
∣f(x)

∣
∣
2
dx =

∫1/b0

0

∣
∣f(x)

∣
∣
2

(
r−1∑

l=0

1
bl

∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

dx (4.9)

for any f ∈ CL2(S). This implies that

r−1∑

l=0

(

1
bl

∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

= 1, a.e.
[

0, 1/b0
)

∩ S. (4.10)

Note that

S =
⋃

k∈Z

([
k

b0
,
k + 1
b0

)

∩ S

)

, (4.11)

and we obtain the desired result (4.2) and its special case (4.3).
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Next, we prove (4.4). For fixed l = 0, . . . , r − 1, we obtain from Lemma 4.1 that

∑

m,n∈Z

∣
∣
〈

f, EmbTnaϕl
〉∣
∣
2 =

1
b

∫

R

∣
∣f(x)

∣
∣
2∑

n∈Z

∣
∣ϕl(x − na)∣∣2dx

+
1
b

∑

k /= 0

∫

R

f(x)f
(

x − k

b

)
∑

n∈Z

ϕl(x − na)ϕl
(

x − na − k

b

)

dx.

(4.12)

Then,

r−1∑

l=0

∑

m,n∈Z

∣
∣
〈

f, EmbTnaϕl
〉∣
∣
2 =

∫

R

∣
∣f(x)

∣
∣
2
r−1∑

l=0

1
b

∑

n∈Z

∣
∣ϕl(x − na)∣∣2dx

+
1
b

∑

k /= 0

∫

R

(

f(x)f
(

x− k
b

)r−1∑

l=0

∑

n∈Z

(

ϕl(x−na)ϕl
(

x−na− k
b

)))

dx.

(4.13)

This, together with (4.3), follows that

∑

k /= 0

∫

R

(

f(x)f
(

x − k

b

)
∑

n∈Z

(

ϕl(x − na)ϕl
(

x − na − k

b

)))

dx = 0. (4.14)

A change of variable shows that the contribution in the above sum arising from any value of
k is the complex conjugate of the contribution form the value −k. Therefore,

∞∑

k=1

Re
(∫

R

f(x)f
(

x − k

b

)

Gk(x)dx
)

= 0, (4.15)

where Gk(x) :=
∑r−1

l=0
∑

n∈Z
ϕl(x − na)ϕl(x − na − k/b) for k ∈ N. Now we divide three cases

to draw the result.
Case 1. x /∈ S. Note that S is a aZ-periodic set. Then x − na /∈ S for all n ∈ Z. Therefore,

ϕl(x − na) = 0, ∀n ∈ Z. (4.16)

Thus,

r−1∑

l=0

∑

n∈Z

ϕl(x − na)ϕl
(

x − na − k

b

)

= 0, ∀k /= 0. (4.17)

Case 2. x − k/b /∈ S for fixed k ∈ Z \ {0}. Then x − k/b − na /∈ S for all n ∈ Z. Therefore,

r−1∑

l=0

∑

n∈Z

ϕl(x − na)ϕl
(

x − na − k

b

)

= 0. (4.18)
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Case 3. x ∈ S and x − k/b ∈ S for fixed k ∈ Z \ {0}. Consider k � 1 and let I be any interval in
R of length at most 1/b. Denote I ∩ S by Δ0 and (I − k/b) ∩ S + k/b by Δ′. If μ(Δ0 ∩ Δ′) = 0,
then x /∈ Δ0 a.e. or x /∈ Δ′ − k/b a.e., thus

r−1∑

l=0

∑

n∈Z

ϕl(x − na)ϕl
(

x − na − k

b

)

= 0. (4.19)

Now consider μ(Δ0 ∩Δ′) > 0. Define a function f ∈ L2(S) by

f(x) :=

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

e− argGk0 (x), x ∈ Δ0 ∩Δ′

1, x ∈ Δ0 ∩Δ′ − k

b
,

0, otherwise.

(4.20)

Then, by (4.15),

0 =
∞∑

k=1

Re
(∫

R

f(x)f
(

x − k

b

)

Gk(x)dx
)

= Re
(∫

R

f(x)f
(

x − k0
b

)

Gk0(x)dx
)

=
∫

Δ0∩Δ′
|Gk0(x)|dx.

(4.21)

It follows that Gk0(x) = 0, a.e. onΔ0 ∩Δ′. Since I is an arbitrary interval of length at most 1/b,
we conclude that Gk0(x) = 0, a.e. in S. A direct computation shows that

G−k0(x) = Gk0

(

x +
k0
b

)

. (4.22)

Thus, we obtain the desired results.

To proceed further, we need use the following symbols. For b0, . . . , br−1 > 0, define

1
b0

:= min
{
1
bl
, l = 0, . . . , r − 1

}

,

1
b1

:= min
{
1
bl

: bl < b0, l = 1, . . . , r − 1
}

,

...

1
bq

:= min
{
1
bl

: bl < bq−1, l = 1, . . . , r − 1
}

,

I0 :=
{

l : bl = b0, l = 0, . . . , r − 1
}

,

I1 :=
{

l : bl = b1, l = 0, . . . , r − 1
}

,

...

Iq := {l : bl = bq, l = 0, . . . , r − 1}.

(4.23)
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Then there exists a unique nonnegative integer q0 such that

Iq /= ∅, for q = 0, . . . , q0,

Iq1
⋂

Iq2 = ∅, for q1 /= q2,

q0⋃

q=0

Iq = {0, . . . , r − 1}.
(4.24)

Theorem 4.3. Let q0 be the unique nonnegative integer satisfying (4.24). Assume that ϕ0, . . . , ϕr−1 ∈
L2(S) and a, b0, . . . , br−1 > 0 satisfy

r−1∑

l=0

1
bl

(
∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

= χS(x), (4.25)

∑

l∈Iq

(
∑

n∈Z

ϕl(x − na)ϕl
(

x − na − k

bl

))

= 0, for k /= 0, q = 0, . . . , q0 (4.26)

a.e. in R. Then {EmblTnaϕl,m, n ∈ Z, l = 0, . . . , r − 1} is a tight frame for L2(S) with A = 1.

Proof. For fixed l = 0, . . . , r − 1, we obtain from Lemma 4.1 that

∑

m,n∈Z

∣
∣
〈

f, EmblTnaϕl
〉∣
∣
2 =

1
bl

∫

R

∣
∣f(x)

∣
∣
2∑

n∈Z

∣
∣ϕl(x − na)∣∣2dx

+
1
bl

∑

k /= 0

∫

R

f(x)f
(

x − k

bl

)
∑

n∈Z

ϕl(x − na)ϕl
(

x − na − k

bl

)

dx.

(4.27)

Then,

r−1∑

l=0

∑

m,n∈Z

∣
∣
〈

f, EmblTnaϕl
〉∣
∣
2 =

∫

R

∣
∣f(x)

∣
∣
2
r−1∑

l=0

1
bl

∑

n∈Z

∣
∣ϕl(x − na)∣∣2dx + (∗), (4.28)

where

(∗) :=
∫

R

r−1∑

l=0

⎧

⎨

⎩

1
bl

∑

k /= 0

[

f(x)f
(

x − k

bl

)
∑

n∈Z

(

ϕl(x − na)ϕl
(

x − na − k

bl

))]
⎫

⎬

⎭
dx. (4.29)

This, together with (4.25), follows that

r−1∑

l=0

∑

m,n∈Z

∣
∣
〈

f, EmblTnaϕl
〉∣
∣
2 =

∫

R

∣
∣f(x)

∣
∣
2
dx + (∗). (4.30)
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Define

G
q

k(x) :=
∑

l∈Iq

(
∑

n∈Z

ϕl(x − na)ϕl
(

x − na − k

bl

))

, for q = 0, . . . , q0. (4.31)

Then, we obtain from (4.26) that

(∗) =
∑

k /= 0

⎛

⎝

∫

R

q0∑

q=0

1
bq
f(x)f

(

x − k

bq

)

G
q

k(x)dx

⎞

⎠ = 0. (4.32)

This, together with (4.30), follows that

r−1∑

l=0

∑

m,n∈Z

∣
∣
〈

f, EmblTnaϕl
〉∣
∣
2 =

∫

R

∣
∣f(x)

∣
∣
2
dx =

∥
∥f
∥
∥
2
, ∀f ∈ L2(S). (4.33)

Therefore, {EmblTnaϕl,m, n ∈ Z, l = 0, . . . , r − 1} is a tight frame for L2(S) with A = 1.

Note that q0 = 0 when b0 = b1 = · · · = br−1 = b. We obtain from Theorems 4.2 and 4.3
that following Theorem 4.4, which is a necessary and sufficient condition for multigenerater
Gabor Parseval frame.

Theorem 4.4. Let ϕ0, . . . , ϕr−1 ∈ L2(S) and a,b > 0. Then {EmbTnaϕl,m,n ∈ Z, l = 0, . . . , r − 1} is
a tight frame for L2(S) with A = 1 if and only if

r−1∑

l=0

(
∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

= bχS(x),

r−1∑

l=0

(
∑

n∈Z

ϕl(x − na)ϕl
(

x − na − k

b

))

= 0, for k /= 0

(4.34)

hold a.e. in R.

Remark 4.5. If S = R, then S is aZ-periodic set for any given a > 0. In this case,
{Em/aTnaϕl,m,n ∈ Z, l = 0, . . . , r − 1} is a tight frame for L2(S)with A = 1 if and only if

r−1∑

l=0

(
∑

n∈Z

∣
∣ϕl(x − na)∣∣2

)

=
1
a
χS(x),

r−1∑

l=0

(
∑

n∈Z

ϕl(x − na)ϕl(x − na − ka)
)

= 0, for k /= 0

(4.35)

hold a.e. in R.
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