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We are interested in studying the stable difference schemes for the numerical solution of the
nonlocal boundary value problemwith the Dirichlet-Neumann condition for themultidimensional
elliptic equation. The first and second orders of accuracy difference schemes are presented. A
procedure of modified Gauss elimination method is used for solving these difference schemes
for the two-dimensional elliptic differential equation. The method is illustrated by numerical
examples.

1. Introduction

Methods of solution of the Bitsadze-Samarskii nonlocal boundary value problems for elliptic
differential equations have been studied extensively by many researchers (see [1–22] and the
references given therein).

Let Ω be the unit open cube in Rm (x = (x1, . . . , xm) : 0 < xk < 1, 1 ≤ k ≤ m) with
boundary S, Ω = Ω ∪ S. In [0, 1] × Ω, the Bitsadze-Samarskii-type nonlocal boundary value
problem for the multidimensional elliptic equation

−utt −
m∑

r=1

(ar(x)uxr )xr + ηu = f(t, x), 0 < t < 1, x = (x1, . . . , xm) ∈ Ω,

u(0, x) = ϕ(x), u(1, x) =
J∑

j=1

αju
(
λj , x

)
+ ψ(x), x ∈ Ω,
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J∑

j=1

∣∣αj
∣∣ ≤ 1, 0 < λ1 < · · · < λJ < 1,

u(t, x)|x∈S1 = 0,
∂u(t, x)
∂�n

∣∣∣∣
x∈S2

= 0, S1 ∪ S2 = S

(1.1)

is considered. Here ar(x), (x ∈ Ω), ψ(x), ϕ(x) (x ∈ Ω), and f(t, x) (t ∈ (0, 1), x ∈ Ω) are
given smooth functions, ar(x) ≥ a > 0, η is a positive number, and �n is the normal vector to
Ω. We are interested in studying the stable difference schemes for the numerical solution of
the nonlocal boundary value problem (1). The first and second orders of accuracy difference
schemes are presented. The stability and almost coercive stability of these difference schemes
are established. A procedure of modified Gauss elimination method is used for solving these
difference schemes in the case of two-dimensional elliptic partial differential equations.

2. Difference Schemes: The Stability and Coercive Stability Estimates

The discretization of problem (1) is carried out in two steps. In the first step, let us define the
grid sets

Ω̃h = {x = xm = (h1m1, . . . , hmmm), m = (m1, . . . , mm),

0 ≤ mr ≤Nr, hrNr = 1, r = 1, . . . , m},

Ωh = Ω̃h ∩Ω, Srh = Ω̃h ∩ Sr, r = 1, 2.

(2.1)

We introduce the Hilbert space L2h = L2(Ω̃h) andW2
2h =W2

2 (Ω̃h) of the grid functions ϕh(x) =
{ϕ(h1m1, . . . , hmmm)} defined on Ω̃h, equipped with the norms

∥∥∥ϕh
∥∥∥
W2

2h

=
∥∥∥ϕh

∥∥∥
L2h

+

⎛

⎝
∑

x∈Ωh

m∑

r=1

∣∣∣∣
(
ϕh
)

xr

∣∣∣∣
2

h1 · · ·hm
⎞

⎠
1/2

+

⎛

⎝
∑

x∈Ωh

m∑

r=1

∣∣∣∣
(
ϕh
)

xrxr ,mr

∣∣∣∣
2

h1 · · ·hm
⎞

⎠
1/2

,

∥∥∥ϕh
∥∥∥
L2(Ω̃h)

=

⎛

⎝
∑

x∈Ωh

∣∣∣ϕh(x)
∣∣∣
2
h1 · · ·hm

⎞

⎠
1/2

.

(2.2)

To the differential operatorA generated by problem (1), we assign the difference operatorAx
h

by the formula

Ax
hu

h = −
m∑

r=1

(
ar(x)uhxr

)

xr ,jr
+ ηuh(x), (2.3)
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acting in the space of grid functions uh(x), satisfying the conditions uh(x) = 0 for all x ∈ S1
h

andDhu
h(x) = 0 for all x ∈ S2

h
. Here,Dhu

h(x) is an approximation to ∂u/∂�n. It is known that
Ax
h
is a self-adjoint positive definite operator in L2(Ω̃h). With the help of Ax

h
, we arrive at the

nonlocal boundary value problem

−d
2uh(t, x)
dt2

+Ax
hu

h(t, x) = fh(t, x), 0 < t < 1, x ∈ Ωh,

uh(0, x) = ϕh(x), uh(1, x) =
J∑

j=1

αju
h(λj , x

)
+ ψh(x), x ∈ Ω̃h,

J∑

j=1

∣∣αj
∣∣ ≤ 1, 0 < λ1 < · · · < λJ < 1,

(2.4)

for an infinite system of ordinary differential equations. In the second step, we replace
problem (2.4) by the first and second orders of accuracy difference schemes

−u
h
k+1(x) − 2uhk(x) + u

h
k−1(x)

τ2
+Ax

hu
h
k(x) = f

h
k (x),

fhk (x) = fh(tk, x), tk = kτ, 1 ≤ k ≤N − 1, Nτ = 1, x ∈ Ωh,

uh0(x) = ϕh(x), x ∈ Ω̃h,

uhN(x) =
J∑

j=1

αju
h
[λj/τ]

(x) + ψh(x), x ∈ Ω̃h,

(2.5)

−u
h
k+1(x) − 2uh

k(x) + u
h
k−1(x)

τ2
+Ax

hu
h
k(x) = f

h
k (x), fhk (x) = f

h(tk, x),

tk = kτ, 1 ≤ k ≤N − 1, Nτ = 1, x ∈ Ωh,

uh0(x) = ϕ
h(x), x ∈ Ω̃h,

uhN(x) =
J∑

j=1

αj

(
uh[λj/τ](x) +

(
uh[λj/τ]+1(x) − u

h
[λj/τ]

(x)
)(λj

τ
−
[
λj

τ

]))
+ ψh(x), x ∈ Ω̃h.

(2.6)

To formulate our result on well-posedness, we will give definition of Cα
01([0, 1]τ ,H) and

C([0, 1]τ ,H). Let F([0, 1]τ ,H) be the linear space of mesh functions ϕτ = {ϕk}N−1
1 with values

in the Hilbert spaceH. We denote C([0, 1]τ ,H) normed space with the norm

∥∥ϕτ
∥∥
C([0,1]τ ,H) = max

1≤k≤N−1

∥∥ϕk
∥∥
H, (2.7)
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and Cα
01([0, 1]τ ,H) normed space with the norm

∥∥ϕτ
∥∥
Cα

01([0, 1]τ ,H) =
∥∥ϕτ

∥∥
C([0, 1]τ ,H) + sup

1≤k≤k+r≤N−1

((N − k)τ)α((k + r)τ)α

(rτ)α
∥∥ϕk+r − ϕk

∥∥
H. (2.8)

Theorem 2.1. Let τ and |h| be sufficiently small positive numbers. Then, the solutions of difference
schemes (2.5) and (2.6) satisfy the following stability and almost coercive stability estimates

∥∥∥∥
{
uhk

}N−1

1

∥∥∥∥
C([0, 1]τ , L2h)

≤M1

[∥∥∥ϕh
∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
L2h

+
∥∥∥∥
{
fhk

}N−1

1

∥∥∥∥
C([0, 1]τ , L2h)

]
,

∥∥∥∥∥∥

{
uh
k+1 − 2uhk + u

h
k−1

τ2

}N−1

1

∥∥∥∥∥∥
C([0, 1]τ ,L2h)

+
∥∥∥∥
{
uhk

}N−1

1

∥∥∥∥
C([0, 1]τ , W

2
2h)

≤M2

[∥∥∥ϕh
∥∥∥
W2

2h

+
∥∥∥ψh

∥∥∥
W2

2h

+ ln
1

τ + |h|
∥∥∥∥
{
fhk

}N−1

1

∥∥∥∥
C([0, 1]τ , L2h)

]
.

(2.9)

Here,M1 andM2 do not depend on τ, h, ψh(x), ϕh(x), and fhk (x), 1 ≤ k ≤N − 1.

Theorem 2.2. Let τ and |h| be sufficiently small positive numbers. Then, the solution of difference
schemes (2.5) and (2.6) satisfies the following coercive stability estimate:

∥∥∥∥∥∥

{
uh
k+1 − 2uh

k
+ uh

k−1
τ2

}N−1

1

∥∥∥∥∥∥
Cα

01([0, 1]τ , L2h)

+
∥∥∥∥
{
uhk

}N−1

1

∥∥∥∥
Cα

01([0, 1]τ , W
2
2h)

≤M3

[∥∥∥ϕh
∥∥∥
W2

2h

+
∥∥∥ψh

∥∥∥
W2

2h

+
1

α(1 − α)
∥∥∥∥
{
fhk

}N−1

1

∥∥∥∥
Cα

01([0, 1]τ , L2h)

]
.

(2.10)

M3 is independent of τ, h, ψh(x), ϕh(x), and fhk (x), 1 ≤ k ≤N − 1.
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Proofs of Theorems 2.1 and 2.2 are based on the symmetry properties of operator Ax
h

defined by formula (2.3) and on the following formulas:

uhk(x) =
(
I − R2N

)−1

×
{(

Rk − R2N−k
)
ϕh(x)+

(
RN−k − RN+k

)
uhN(x)−

(
RN−k − RN+k

)

×(I + τB)(2I + τB)−1B−1
N−1∑

i=1

(
RN−i − RN+i

)
fhi (x)τ

}

+ (I + τB)(2I + τB)−1B−1
N−1∑

i=1

(
R|k−i| − Rk+i

)
fhi (x)τ,

uhN(x) = D−1
(

J∑

k=1

αk
(
I − R2N

)−1

×
{(

R[λk/τ]−R2N−[λk/τ]
)
ϕh(x)−

(
RN−[λk/τ]−RN+[λk/τ]

)
(I+τB)(2I+τB)−1B−1

×
N−1∑

i=1

(
RN−i − RN+i

)
fhi (x)τ

}
+ (I + τB)(2I + τB)−1B−1

×
⎛

⎝
[λk/τ]∑

i=1

R[λk/τ]−ifhi (x)τ +
N−1∑

i=[λk/τ]+1

Ri−[λk/τ]fhi (x)τ

−
N−1∑

i=1

R[λk/τ]+ifhi (x)τ

)
+ ψh(x)

)
,

(2.11)

for difference scheme (2.5), and

uhN(x) = D−1
(

J∑

k=1

αk
(
I − R2N

)−1

×
{(

R[λk/τ]−R2N−[λk/τ]
)
ϕh(x)−

(
RN−[λk/τ]−RN+[λk/τ]

)
(I+τB)(2I+τB)−1

×B−1
N−1∑

i=1

(
RN−i − RN+i

)
fhi (x)τ

}
+(I + τB)(2I + τB)−1B−1

×
⎛

⎝
[λk/τ]∑

i=1

R[λk/τ]−ifhi (x)τ+
N−1∑

i=[λk/τ]+1

Ri−[λk/τ]fhi (x)τ−
N−1∑

i=1

R[λk/τ]+ifhi (x)τ

⎞

⎠

+
(
λk
τ

−
[
λk
τ

])(
I − R2N

)−1
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×
{
τB
(
R

[λk/τ]+1 − R2N−[λk/τ]
)
ϕh(x) −

(
RN−[λk/τ]−1 − RN+[λk/τ]

)
(2I + τB)−1

×
N−1∑

i=1

(
RN−i − RN+i

)
fhi (x)τ

2

}

+ (2I + τB)−1
⎛

⎝
[λk/τ]∑

i=1

R[λk/τ]−ifhi (x)τ
2 +

N−1∑

i=[λk/τ]+1

Ri−[λk/τ]−1fhi (x)τ
2

−
N−1∑

i=1

R[λk/τ]+ifhi (x)τ
2

)
+ψh(x)

)
,

(2.12)

for difference scheme (2.6). Here,

R = (I + τB)−1,

B =
τA

2
+

√
τ2A2

4
+A, A = Ax

h,

D = I − R2N −
J∑

k=1

αk
(
R

N−[λk/τ] − R N+[λk/τ]
)
for (2.5),

D = I − R2N −
J∑

k=1

αk

(
R

N−[λk/τ] − R N+[λk/τ] − 1
τ

(
λk −

[
λk
τ

]
τ

)

×B
(
RN−[λk/τ]−RN+[λk/τ]+1

))
for (2.6),

(2.13)

and on the following theorem on the coercivity inequality for the solution of the elliptic
difference problem in L2h.

Theorem 2.3 (see [22]). For the solution of the elliptic difference problem

Ax
hu

h(x) = ωh(x), x ∈ Ω̃h,

uh(x)|x∈S1
h
= 0, Dhu

h(x)|x∈S2
h
= 0, S1

h ∪ S2
h = Sh,

(2.14)

the following coercivity inequality holds:

m∑

r=1

∥∥∥∥
(
uh
)

xrxr , jr

∥∥∥∥
L2h

≤M4

∥∥∥ωh
∥∥∥
L2h
, (2.15)

whereM4 does not depend on h and ωh(x).
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Note that we have not been able to obtain sharp estimate for the constants figuring in
the stability estimates. Hence, in the following section, we study difference schemes (2.5) and
(2.6) by numerical experiments.

3. Numerical Results

For the numerical result, we consider the nonlocal boundary value problem

−∂
2u(t, x)
∂t2

− ∂2u(t, x)
∂x2

+ u = 2 exp(−t)
(
x − 1

2
x2 +

t

2
− 1
)
,

0 < t < 1, 0 < x < 1,

u(0, x) = x2 − 2x,

u(1, x) = u
(
1
2
, x

)
+

(
x2

2
− x
)

exp(−1) −
(

3x2

4
− 3x

2

)
exp

(
−1
2

)
, 0 ≤ x ≤ 1,

u(t, 0) = ux(t, 1) = 0, 0 ≤ t ≤ 1,

(3.1)

for the elliptic equation. The exact solution of (3.1) is

u(t, x) =

(
tx − tx2

2
+ x2 − 2x

)
exp(−t). (3.2)

For the approximate solution of the nonlocal boundary Bitsadze-Samarskii problem (3.1), we
consider the set [0, 1]τ × [0, 1]h of a family of grid points depending on the small parameters
τ and h

[0, 1]τ × [0, 1]h = {(tk, xn) : tk = kτ, 1 ≤ k ≤N − 1,Nτ = 1

xn = nh, 1 ≤ n ≤M − 1,Mh = 1}.
(3.3)

Firstly, applying difference scheme (2.5), we present the first order of accuracy difference
scheme for the approximate solution of problem (3.1) is
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−u
k+1
n − 2ukn + u

k−1
n

τ2
− ukn+1 − 2ukn + u

k
n−1

h2
+ ukn = f(tk, xn),

1 ≤ k ≤N − 1, 1 ≤ n ≤M − 1,

u0n = ϕ(xn), 0 ≤ n ≤M,

uNn = u[N/2]n +

(
x2
n

2
− xn

)
exp(−1)

−
(

3x2
n

4
− 3xn

2

)
exp

(
−1
2

)
, 0 ≤ n ≤M,

uk0 =
ukM − ukM−1

h
= 0, 0 ≤ k ≤N,

f(tk, xn) = 2 exp(−tk)
(
xn −

x2
n

2
+
tk
2
− 1

)
,

ϕ(xn) = x2
n − 2xn.

(3.4)

Then, we have an (N + 1) × (M + 1) system of linear equations and we will write them in the
matrix form

AUn+1 + BUn + CUn−1 = Dϕn, 1 ≤ n ≤M − 1,

U0 = 0̃, UM −UM−1 = 0̃,
(3.5)

where

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · 0 · 0 0 0
0 a 0 · 0 · 0 0 0
· · · · · · · · ·
0 0 0 · 0 · 0 a 0
0 0 0 · 0 · 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

B =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · 0 · 0 0 0
c b c · 0 · 0 0 0
· · · · · · · · ·
0 0 0 · 0 · c b c
0 0 0 · −1 · 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

(3.6)

and C = A, D is an (N + 1) × (N + 1) identity matrix and
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Us =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0s

u1s

·
uN−1
s

uNs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×1

, (3.7)

where s = n − 1, n, n + 1,

ϕn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ0
n

ϕ1
n

·
ϕN−1
n

ϕNn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×1

. (3.8)

Here,

a = − 1
h2
, b =

2
τ2

+
2
h2

+ 1, c = − 1
τ2
,

ϕkn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
x2
n − 2xn

)
, k = 0,

f(tk, xn), 1 ≤ k ≤N − 1,(
x2
n

2
− xn

)
exp(−1) −

(
3x2

n

4
− 3xn

2

)
exp

(
−1
2

)
, k =N.

(3.9)

So, we have a second-order difference equation with respect to nmatrix coefficients. To solve
this difference equation, we have applied a procedure of modified Gauss elimination method
for difference equation with respect to nmatrix coefficients. Hence, we seek a solution of the
matrix equation in the following form:

Uj = αj+1Uj+1 + βj+1, j =M − 1, . . . , 1,

UM = (I − αM)−1βM,

αj+1 = −(B + Cαj
)−1

A,

βj+1 =
(
B + Cαj

)−1(
Dϕj − Cβj

)
, j = 1, . . . ,M − 1,

(3.10)

where αj (j = 1, . . . ,M) are (N+1)×(N+1) square matrix and βj (j = 1, . . . ,M) are (N+1)×1
column matrix and α1 is the (N + 1) × (N + 1) zero matrix and βj is the (N + 1) × 1 zero
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matrix. Secondly, applying difference scheme (2.6), we present the following second order of
accuracy difference scheme for the approximate solutions of problem (3.1):

−u
k+1
n − 2ukn + u

k−1
n

τ2
− ukn+1 − 2ukn + u

k
n−1

h2
+ ukn = f(tk, xn),

1 ≤ k ≤N − 1, 1 ≤ n ≤M − 1,

u0n = ϕ(xn), 0 ≤ n ≤M,

uNn = u[N/2]n +
(
u
[N/2]+1
n − u[N/2]n

)(N
2

−
[
N

2

])
+

(
x2
n

2
− xn

)
exp(−1)

−
(

3x2
n

4
− 3xn

2

)
exp

(
−1
2

)
, 0 ≤ n ≤M,

uk0 = 0, ukM−2 − 4ukM−1 + 3ukM = 0, 0 ≤ k ≤N,

f(tk, xn) = 2 exp(−tk)
(
xn −

x2
n

2
+
tk
2
− 1

)
,

ϕ(xn) = x2
n − 2xn.

(3.11)

So, we have again an (N + 1) × (M + 1) system of linear equations and we will write in the
matrix form

AUn+1 + BUn + CUn−1 = Rϕn, 1 ≤ n ≤M − 1,

U0 = 0̃, UM−2 − 4UM−1 + 3UM = 0̃,
(3.12)

where

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · 0 0 · 0 0 0
0 a 0 · 0 0 · 0 0 0
· · · · · · · · · ·
0 0 0 · 0 0 · 0 a 0
0 0 0 · 0 0 · 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

B =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · 0 0 · 0 0 0
c b c · 0 0 · 0 0 0
· · · · · · · · · ·
0 0 0 · 0 0 · c b c
0 0 0 · d e · 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,



Abstract and Applied Analysis 11

C = A, R = D,

Us =

⎡
⎢⎢⎢⎢⎢⎣

u0s
u1s
·

uN−1
s

uNs

⎤
⎥⎥⎥⎥⎥⎦

(N+1)×1

,

(3.13)

where s = n − 1, n, n + 1 and ϕn =

⎡
⎢⎣

ϕ0
n

ϕ1
n·

ϕN−1
n

ϕNn

⎤
⎥⎦

(N+1)×1

.

Here,

a = − 1
h2
, b =

2
h2

+
2
τ2

+ 1, c = − 1
τ2
, d =

[
N

2

]
− N

2
, e = −1 − d,

ϕkn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
x2
n − 2xn

)
, k = 0,

f(tk, xn), 1 ≤ k ≤N − 1,(
x2
n

2
− xn

)
exp(−1) −

(
3x2

n

4
− 3xn

2

)
exp

(
−1
2

)
, k =N.

(3.14)

Thus, we have a second-order difference equation with respect to n matrix coefficients.
To solve this difference equation, we have applied the same procedure of modified Gauss
elimination method (3.10) for difference equation with respect to nmatrix coefficients with

UM = (3I + αMαM−1 − 4αM)−1
(−βMαM−1 − βM−1 + 4βM

)
. (3.15)

Now, we will give the results of the numerical analysis. The errors computed by

ENM = max
1≤k≤N−1

(
M−1∑

n=1

∣∣∣u(tk, xn) − ukn
∣∣∣
2
h

)1/2

(3.16)

of the numerical solutions for different values of M and N, where u(tk, xn) represents the
exact solution and ukn represents the numerical solution at (tk, xn). Table 1 gives the error
analysis between the exact solution and solutions derived by difference schemes for N =
M = 20, 40, and 60, respectively.

4. Conclusion

In this work, the first and second orders of accuracy difference schemes for the approximate
solution of the Bitsadze-Samarskii nonlocal boundary value problem for elliptic equations
are presented. Theorems on the stability estimates, almost coercive stability estimates, and
coercive stability estimates for the solution of difference schemes for elliptic equations are
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Table 1: Error analysis.

Difference schemes N =M = 20 N =M = 40 N =M = 60
Difference scheme (2.5) 0.0049 0.0025 0.0012
Difference scheme (2.6) 3.7155e − 005 9.4107e − 006 2.3679e − 006

proved. The theoretical statements for the solution of these difference schemes are supported
by the results of numerical examples. The second order of accuracy difference scheme is more
accurate comparing with the first order of accuracy difference scheme. As a future work, high
orders of accuracy difference schemes for the approximate solutions of this problem could
be established. Theorems on the stability estimates, almost coercive stability estimates, and
coercive stability estimates for the solution of difference schemes for elliptic equations could
be proved.
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