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Using methods from the theory of commutative graded Banach algebras, we obtain a genera-
lization of the two-dimensional Borsuk-Ulam theorem as follows. Let φ : S2 → S2 be a home-
omorphism of order n, and let λ/= 1 be an nth root of the unity, then, for every complex valued
continuous function f on S2, the function

∑n−1
i=0 λif(φi(x)) must vanish at some point of S2. We

also discuss some noncommutative versions of the Borsuk-Ulam theorem.

“To my Children Tarannom and Pouya”

1. Introduction

The classical Borsuk-Ulam theorem states that for every continuous function g : Sn → R
n,

there always exist a point x ∈ Sn such that g(−x) = g(x). If we define f(x) = g(x)−g(−x), we
obtain an equivalent statement as follows. For every odd continuous function f : Sn → R

n,
there exists a point x ∈ Sn such that f(x) = 0.

We consider the case n = 2 and identify R
2 with the complex numbers C. LetA = C(S2)

be the Banach algebra of all continuous complex-valued functions on S2 with the Z2-graded
structure:

A = Aev

⊕
Aodd, (1.1)

where Aev is the space of all even functions and Aodd is the space of all odd functions, and
the decomposition is the standard decomposition of functions to even and odd functions.
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Then the two-dimensional Borsuk-Ulam theorem says that a homogenous element of Awith
nonzero degree, namely, an odd function, is not invertible.

In this paper we are mainly interested in invertible elements of a graded unital Banach
algebra which are homogenous of nontrivial degree. Some natural questions about such
elements are as follows. If any such element is invertible, can it be connected to the identity
in the space of invertible elements? What can be said about the relative position of their
spectrum with respect to the origin?

As we will see in the main theorem of this paper, for a commutative Banach algebra
without nontrivial idempotent, which is graded by a finite Abelian group, a nontrivial homo-
genous element cannot be connected to the identity. On the other hand, using an standard
lifting lemma in the theory of covering spaces, we conclude that an invertible element of
C(S2) has a logarithm, then it lies in the same connected component of the identity. This
shows that an odd element of C(S2) cannot be invertible, so it would give us a Banach
algebraic proof of the Borsuk-Ulam theorem, in dimension two. The purpose of this paper
is to translate the classical Borsuk-Ulam theorem into the language of noncommutative
geometry.

We also give a concrete example of an S3-graded structure for C∗
red(F2), the reduced C∗

algebra of the free group on two generators, such that a nontrivial homogenous element lies
in the same component of the identity. This would show that the commutativity of grading
group and graded algebra are necessary conditions in our main theorem. Finally we give
a question as a weak version of the Kaplansky-Kadison conjecture. This question naturally
arises from our main result; see Question 5 at the end of the paper.

2. Preliminaries

Let A be a unital complex Banach algebra, and let G be a finite group with neutral element e.
A G-graded structure for A is a decomposition

A =
⊕

g∈G
Ag, (2.1)

where each Ag is a Banach subspace of A and AgAh ⊆ Agh. An element a ∈ Ag, g ∈ G
is called a homogenous element; it is called nontrivial homogenous if a ∈ Ag where g /= e.
When G = Z2 and A = A0

⊕
A1, an element of A1 is called an odd element. A morphism

α : A → A is called a graded morphism provided that α(Ag) ⊆ Ag for all g ∈ G. Let A be
a G-graded Banach algebra, and let H be a normal subgroup of G. Then there is an induced
G/H-graded structure for A with

Ag/H =
⊕

h∈H
Agh. (2.2)

The following proposition is used in the proof of our main theorem.

Proposition 2.1. Let G be Abelian, and let a be a nontrivial homogenous element of a G-graded
Banach algebra, then for some positive integer n, there is a Zn-graded structure for A such that a is a
nontrivial homogenous element of A as a Zn-graded algebra.
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Proof. This can be proved by induction on order ofG as follows. The first step of the induction
is obvious since the only group of order 2 is Z2. Let G be a finite Abelian group and g ∈ G
where g /= e. If G is not a cyclic group, then there is a subgroup H which does not contain g,
so a is a nontrivial homogenous element of the induced G/H-graded structure for A. Now
the order of G/H is strictly less than the order of G. So an induction argument on order of G
completes the proof.

Note that the existence of a Zn-graded structure for a Banach algebra A is equivalent
to existence of a bounded multiplicative operator T : A → A with Tn = Id. For any such
operator, we choose a root of unity λ/= 1 and observe that the decomposition

A =
n−1⊕

i=0

ker
(
T − λi

)
(2.3)

is a Zn-graded structure. Conversely for the grading A =
⊕n−1

i=0 Ai, the following multi-
plicative operator T satisfies Tn = Id :

T

(
n−1∑

i=0

ai

)

=
n−1∑

i=0

λiai. (2.4)

Example 2.2. Let X be a compact topological space and φ be an ordernhomeomorphism of X,
that is φn = Id. Define T : C(X) → C(X) with T(f) = f ◦ φ, where C(X) is the space of all
continuous functions on X. Then T is a bounded multiplicative operator on Banach algebra
A = C(X) with Tn = Id, so we would have a Zn-graded structure for A. As a particular
example, the rotation of circle by 2π/n is an order n homeomorphism of circle. Then we
naturally obtain a Zn-graded structure for C(S1).

For a group G, a Zn-partition for G is a partition of G into disjoint subsets Gi,
i = 0, 1, . . . n − 1 such that GiGj ⊆ Gi+j ( mod n). This is equivalent to say that G0 is a normal
subgroup of G whose quotient is isomorphic to Zn. This is an obvious consequence of the
normal property for subgroups; see [1]. So every group G which has a normal subgroup
H such that G/H is isomorphic to Zn posses a Zn-graded structure. For example, for every
groupK, the groupG = K×Zn hasK×{0} as a normal subgroup, andG/K×{0} is isomorphic
to Zn. In this case the Zn partition for G is G =

∐
i∈Zn

K × {i}.
For a discrete group G, we denote by CG the group algebra of G with complex coef-

ficients, namely, the space of all linear combinations
∑

agg where ag ’s are complex numbers.
let l2(G) be the Hilbert space of all γ : G → C such that |γ |22 =

∑
g∈G |γ(g)|2 < ∞. G acts

on l2(G) with g · γ(h) = γ(g−1h). This action defines a unitary representation of G on l2(G).
We extend this action by linearity to CG. So each element of CG can be considered as an
element of B(l2(G)), the space of all bounded operators on l2(G), and every element of G can
be considered as a unitary operator on l2(G). The reduced C∗ algebra of G, C∗

red(G), is the
closure of CG, with respect to operator norm | · |op defined on B(l2(G)).

In Proposition 2.1, we shall prove that a Zn-partition for a Group G gives a Zn-graded
structure for C∗

red(G). For the proof of the Proposition 2.1, we need to the following technical
lemma.
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Lemma 2.3. Let (E, | · |) be a Banach space with a dense linear subspace F. Assume F =
⊕n

i=0Fi is a
direct sum of its linear subspaces Fi’s. Suppose that the original norm of F is equivalent to the direct
limit norm |∑ fi| =

∑ |fi|. Then E =
⊕n

i=0Fi.

Proof of Lemma. Let
∑n

i=0 f̃
i = 0 where f̃ i is in Fi, the closure of Fi. Then there are sequences

{fi
k}k∈N

of elements of Fi which converges to f̃ i. So limk→∞|
∑n

i=0 f
i
k| = 0. Since the original

norm of F is equivalent to the direct sum norm, we conclude that each sequence {fi
k
} con-

verges to zero. So f̃ i = 0 for all i. From continuity of norm, we have the equivalency of norm
and direct sum norm on the space

⊕n
i=0Fi. So this direct sum is a topological direct sum. let

x ∈ E be given, there is a sequence
∑n

i=0 f
k
i , k ∈ N, which converges to x. This shows that each

sequence {fk
i } is a cauchy sequence which converges to an element f̃i ∈ Fi. So x =

∑n
i=0 f̃i.

This completes the proof of lemma.

Proposition 2.4. A Zn-partition structure for a group G =
∐n−1

i=0 Gi gives a Zn-graded structure for
C∗

red(G) =
⊕

i∈Zn
C∗

red(Gi).

Proof. Assume that G =
∐

i∈Zn
Gi is a Zn-partition for G, then CG =

⊕
CGi and l2(G) =

⊕
l2(Gi)where

l2(Gi) =
{
γ ∈ l2(G) : γ |Gj

= 0, j /= i
}
. (2.5)

For xi ∈ CGi and γj ∈ l2(Gj), we have xi · γj belongs to l2(Gj+i ( mod n)). Assume x =
∑n−1

i=0 xi

and γ =
∑n−1

i=0 γi. Then

∣
∣x · γj

∣
∣2
2 =

n−1∑

i=0

∣
∣xi.γj

∣
∣2
2,

∣
∣xi · γ

∣
∣2
2 =

n−1∑

j=0

∣
∣xi · γj

∣
∣2
2. (2.6)

Let xi ∈ CGi and ε > 0 be given. We apply the definition of norm operator on operator xi,
then we conclude that there is a γ =

∑n−1
i=0 γi with |γ |22 =

∑n
i=0 |γi|22 = 1 such that

n−1∑

j=0

∣
∣xi · γj

∣
∣2
2 =

∣
∣xi · γ

∣
∣2
2 ≥

(
|xi|op − ε

)2
. (2.7)

This shows that there is a j ∈ Zn such that

(
|xi|op − ε

)2

n
≤ ∣
∣xi · γj

∣
∣2
2 ≤

∣
∣x · γj

∣
∣2 ≤ |x|2op.

(2.8)

Since |γj |2 ≤ 1, so |x|op ≥ |xi|op/
√
n, for i = 0, 1, . . . n − 1. We conclude that the operator

norm on CG is equivalent to direct sum norm |∑xi|op =
∑ |xi|op. Now if we put E = C∗

red(G),
F = CG, Fi = CGi and apply the above lemma to these spaces, the proof of the proposition
would be completed.
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Remark 2.5. Let G and H be two groups where H is finite. Similar to above we can define
an H-partition for G. It is a decomposition G =

∐
h∈HGh such that Gh1Gh2 ⊆ Gh1h2 .This is

equivalent to say that Ge is a normal subgroup of G whose quotient is isomorphic to H. In
the samemanner as above we can prove that anH-partition for a groupG, gives anH-graded
structure for C∗

red(G). Moreover it is clear from the definition that an element g ∈ G which
is not in Ge, can be considered as a nontrivial homogenous element of H-graded algebra
C∗

red(G).

A part of the philosophy of noncommutative geometry is to translate the classical facts
about compact topological spaces into language of (noncommutative) Banach or C∗ algebras;
see [2] or [3]. According to the Gelfand-Naimark theorem, there is a natural contravariant
functor from the category of compact Hausdorff topological space to the category of unital
complex C∗ algebras. This functor assigns to X the commutative C∗ algebra C(X) of all
complex-valued continuous functions on X. It also assigns to a continuous function f : X →
Y , the C∗ algebra morphism f∗ : C(Y ) → C(X) by f∗(φ) = φ ◦ f . Conversely every unital
commutative C∗ algebraA is isomorphic to C(X) for some compact topological space X, and
every morphism from C(Y ) to C(X) is equal to f∗ for some continuous function f : X → Y .
In particular constant maps from X to Y correspond to morphism from C(Y ) to C(X) with
one-dimensional range. Most of the statements about topological spaces have an algebraic
analogy in the world of C∗ algebras. For example it can be easily shown that a topological
space X is connected if and only if the algebra C(X) has no nontrivial idempotent, where
a nontrivial idempotent a in an algebra A is an element a ∈ A such that a2 = a and
a/= 0, 1. So nonexistence of nontrivial idempotent for a (noncommutative) Banach algebra
A is interpreted as “noncommutative connectedness.”

For a topological space X, considering the above functor, it is natural to identify C(I ×
X), with C(I, C(X)), where I is the unit interval. So in order to obtain a homotopy theory,
for a Banach algebra A, we define the Banach algebra AI as follows.

Definition 2.6. Let A be a Banach algebra, we denote by AI, the Banach algebra of all con-
tinuous γ : I → A with the standard operations and norm. We define πi;AI → A with
πi(γ) = γ(i), for i = 0, 1.

We say that two morphisms α, β : A → B are homotopic if there is a morphism
Θ : A → BI such that Θ0 = α, Θ1 = β, where Θi = πi ◦ Θ. A morphism α : A → B is called
null homotopic if it is homotopic to a morphism with one-dimensional range. Obviously this
is a natural Banach algebraic analogy of classical null homotopicity.

For a unital Banach algebra A with unit element 1, the element λ.1 is simply shown
by λ where λ ∈ C is an scalar. For an element a ∈ A, we denote sp(a) for all λ ∈ C such that
a − λ is not invertible. The spectral radius of a, which is denoted by spr(a), is defined as the
infimum of all r such that the disc of radius r around the origin contains sp(a).

3. Main Result

In the next theorem, which is the main result of this paper, k is an arbitrary positive integer,
G is a finite Abelian group, and A is a unital complex Banach algebra.

Main Theorem 1. Let A be a G-graded Banach algebra with no nontrivial idempotents. Let a ∈ A be
a nontrivial homogenous element. Then 0 belongs to the convex hull of the spectrum sp(ak).
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Further, if A is commutative and a is invertible, then ak and 1 do not lie in the same connected
component of the space of invertible elements G(A).

Proof. Without lose of generality we assume thatG = Zn. So we have amultiplicative operator
T : A → Awith Tn = Id. Let a be a nontrivial homogenous element so T(a) = λawhere λ/= 1
is a root of the unity. Assume for contrary that the convex hull of sp(ak) does not contain 0.
Then sp(ak) can be included in a disc with center z0, for some z0 ∈ C, which is a subset of a
branch of logarithm. Using holomorphic functional calculus as described in [4, Chapter 10],
we can find a convergent series b =

∑∞
i=0 ci(a

k − z0)
i where exp b = ak where ci’s are complex

numbers.
So T(b) =

∑∞
i=0 ci(λ

kak − z0)
i. Thus T(b) and b are power series in a. In particular

ab = ba and Ti(b)Tj(b) = Tj(b)Ti(b), for all i and j. So we have (a−1 exp(b/k))k = 1. Then
sp(a−1 exp(b/k)) is a subset of the set of all kth roots of unity. On the other hand, since A
has no nontrivial idempotent, the spectrum of each element must be connected. So we can
assume that sp(a−1 exp(b/k)) = {1}; otherwise we multiply a with an appropriate root of
unity. Put q = a−1 exp(b/k) − 1. Then q is a quasinilpotent element of A; that is, its spectral
radius spr(q) = 0. We have

exp
b

k
= a + qa = a + q′, (3.1)

where q′ is a quasinilpotent too because aq = qa and note that spr(aq) ≤ spr(a)spr(q) for com-
muting elements a and q; see [4, page 302]. Moreover, we have

exp
T(b)
k

= T(a) + T
(
qa

)
= λa + T

(
q′
)
= λa + q1, (3.2)

where q1 is a quasinilpotent.
On the other hand, (a + q)−1 − a−1 = −(a + q)−1qa−1, then (a + q)−1 = a−1 + q′′ for some

quasinilpotent q′′. Thus we have exp(−b/k) = a−1 + q′′. We obtain from (3.1) and (3.2) and the
latest equation exp(T(b) − b)/k = λ + q2 for some quasinilpotent q2. Then sp(T(b) − b) is a
single point {μ} different from zero, since λ/= 1, so T(b) = b +μ+y for some quasinilpotent y.
Then y = T(b) − b − μ is a quasinilpotent element that can be expanded as a power series in
a. Note that we emphasize on this power series expansion only for commutativity purpose.
We have T(b) = b + μ + y, so by induction we obtain

b = Tn(b) = b + nμ + y + T
(
y
)
+ T2(y

)
+ · · · + Tn−1(y

)
. (3.3)

Since T is multiplicative and y has a power series expansion in a, we conclude that Tj(y)’s
are commuting quasinilpotent elements so their sum is quasinilpotent too; see [4, page 302].
This implies that nμ is quasinilpotent which is a contradiction. This completes the first part
of the theorem.

Now assume that A is commutative and a is a nontrivial homogenous element such
that ak is in the same connected component as the identity. Then there exists an element b ∈ A
with exp b = ak. Obviously the same argument as above, but without needing to expansion
of b as a power series in a, leads to a contradiction. So the proof is complete.

The following corollaries are immediate consequence of the above theorem.



Abstract and Applied Analysis 7

Corollary 3.1. Let X be a compact locally path connected and simply connected space, and let φ :
X �→ X be a homeomorphism of order n. Assume that λ/= 1 is an nth root of the unity. Then, for every
continuous function f : X → C, there is a point x ∈ X such that

∑p−1
i=0 λif(φi(x)) = 0.

Proof. LetA be the commutative Banach algebra of continuous functions f : X → C with the
usual structures. SinceX is connected,A has no nontrivial idempotent. Define the continuous
automorphism T : A �→ A by T(f) = f ◦φ. T satisfies Tn = 1, so we have aZn-graded structure
for A in the form A =

⊕n−1
i=0 ker(A − λi). Put g =

∑p−1
i=0 λif(φi(x)), then T(g) = λn−1g, so g is a

nontrivial homogenous element of A. If g(x)/= 0 for all x ∈ X, then g is an invertible element
ofAwhich is not in the same connected component as the identity, by the above theorem. On
the other hand, consider the covering space exp : C → C − {0}. Since X is simply connected
and locally path connected, there is a lifting h of f ; that is, h ∈ A with exph = g, using
the standard lifting lemma in the theory of covering space; see [5, proposition 1.33]. So g
is a logarithmic element and must be in the same connected component as the identity. This
contradicts to the fact that g cannot be connected to the identity. This completes the proof.

Putting X = S2, φ(x) = −x, and λ = −1, we obtain the classical two-dimensional
Borsuk Ulam theorem as follows.

Corollary 3.2 (Borsuk-Ulam Theorem). For a continuous function f : S2 → C, there must exist
a point x ∈ S2 with f(x) = f(−x).

Example 3.3. Put S2 = {(x, y, z) ∈ R
3 : x2 + y2 + z2 = 1}, and let f : S2 → R

2 be a continuous
function. Then there is a point (x0, y0, z0) ∈ S2 such that f(y0,−x0,−z0) − f(−x0,−y0, z0) +
f(−y0, x0,−z0)− f(x0, y0, z0) = 0. To prove this, consider the fourth-order homeomorphism φ
of S2 with φ(x, y, z) = (−y, x,−z). Now apply Corollary 3.1 with λ = −1.

The following corollary is an obvious consequence of the last part of the main theorem.
In this corollary and its sequel, G(A)0 is the connected component of the identity.

Corollary 3.4. Let A be an idempotentless commutative Banach algebra which is graded by a finite
Abelian group such that a nontrivial homogenous element is invertible. Then G(A)/G(A)0 is an
infinite group.

4. Further Questions and Remarks

In this section we present some questions which naturally arise from the main theorem and
the corollaries of the previous sections.

First we discuss about a pure algebraic analogy of Corollary 3.4. For this purpose,
we need some elements of stable rank theory and K-theory for both Banach algebras and
complex algebras. We say that a commutative Banach algebra A has topological stable rank
one if G(A) is dense in A; see [6]. Let A be a commutative complex algebra. We say that a
pair (a1, a2) is invertible if there is a pair (b1, b2) such that a1b1 + a2b2 = 1. We say A has Bass
stable rank one if, for every invertible pair (a, b) ∈ A2, there is an element x ∈ A such that
a + bx is invertible; see [7]. It is mentioned in [6] that, for a commutative C∗ algebra, the Bass
stable rank coincide with the topological stable rank.

For a complex Banach algebra A, let GLn(A) be the space of all n by n invertible
matrices with entries in A. There is a natural topology on this space, and there is a natural
embedding of GLn(A) into GLn+1(A) which sends a matrices B to diag(B,1), so we have
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an inductive system with GLn(A)’s. Put GL(A) = lim
−→

GLn(A). Then GL(A) has a natural

inductive limit topology and algebraic structure. Define K1(A) = GL(A)/GL(A)0 where
GL(A)0 is the connected component of the identity. This Abelian groupK1(A) is the standard
K1 functor defined on the category of the Banach algebras. For a complex algebraA, there is a

pure algebraicKalg
1 functor defined as the quotient of GL(A) by its commutator. On the other

hand, it is well known that for an stable rank one Banach algebraA,G(A)/G(A)0 is naturally
isomorphic to K1(A); see [8].

So considering this isomorphism, the equality of the Bass and topological stable rank
for commutative C∗ algebras, and the above corollary, it is natural to ask the next pure
algebraic question.

Question 1. Let A be an idempotentless involutive and commutative complex algebra with
Bass stable rank one which is graded by a finite Abelian group. Assume that a nontrivial
homogenous element of A is invertible. Does this imply that Kalg

1 (A) is an infinite group?
In the following example, we drop simultaneously the commutativity of both grading

group G and the graded idempotent less algebra A in the main theorem. We observe that in
this case the theorem is no longer valid.

Example 4.1. Let F2 be the free group on two generators x and y. We shall see that there is a
normal subgroup G0 of F2 which does not contain yxy−1x−1 and its quotient is isomorphic to
S3, the permutation group on three elements. Assuming the existence of such subgroup G0,
we obtain an S3-graded structure for C∗

red(F2) for which yxy−1x−1, as an element of C∗
red(F2),

is a nontrivial homogenous element. On the other hand, it is well known that this algebra
has no nontrivial idempotent and yxy−1x−1 ∈ C∗

red(F2), is in the same connected component
as the identity; see [8]. To prove the existence of such subgroup G0, we first note that F4,
the free group on four generators, can be considered as an index three subgroup of F2 which
does not contain yxy−1x−1. This can be proved using certain covering space of figure-8 space
as illustrated in [5, page 58]. Let h : X̃ → X be a covering space with h(q) = p. Then the
induced map h∗ : π1(X̃, q) → π1(X, p) is an injective map. h∗(π1(X̃, q)) is isomorphic to
π1(X̃, q) whose index, as a subgroup of π1(X, p), is equal to the cardinal of a fibre of the
covering space. Moreover, a loop γ ∈ π1(X, p) lies in the range of h∗ if and only if the unique
lifting γ̃ of γ with starting point q is a loop with base point q, see [5, proposition 1.31].

Now consider the 3-fold covering space which is illustrated in the Figure 1. The
fundamental group of the total space is F4, and the fundamental group of the base space
is F2. The loop yxy−1x−1 is not in the range of projecting map of the covering because its
lifting with base point q ends to a different point O.

Put G = F2 and b = yxy−1x−1. Then G has a subgroup H of index 3 which does not
contain a commutator element b. We obtain a morphism β : G → S3 with the standard action
of G on the set of left cosets of H. Then ker β is a normal subgroup of G which is contained
in H and does not contain b. G/ker β is isomorph to a subgroup of S3; on the other hand,
G/ker β is not Abelian since ker β does not contain a commutator element b. This shows
that ker β is a normal subgroup of G = F2 in which quotient is isomorphic to S3 and does not
contain the commutator element b = yxy−1x−1. So the above construction gives an example of
a noncommutative Banach algebra C∗

red(F2), without nontrivial idempotent, which is graded
by a non-Abelian finite group S3, such that a nontrivial homogenous element yxy−1x−1 lies
in the same connected component as the identity.
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Figure 1

But could we give any such example with a finite Abelian group G? In other words,
can we drop the hypothesis of commutativity of Banach algebra A from the second part of
the main theorem. This is a motivation for the next question which can be considered as a
noncommutative analogy of the two-dimensional Borsuk-Ulam theorem.

Question 2. LetA be a Banach algebra without nontrivial idempotent which is equipped with
a G-graded structure, where G is a finite Abelian group. Can one prove that the connected
component of the identity has null intersection with nontrivial homogenous elements? As
a particular case, put A = C∗

red(F2), with the Z2-graded structure corresponding to the Z2-
partition of F2 to the union of odd and even words. Can a linear combination of odd words
be connected to the identity? Is the decomposition of this algebra to even and odd words, the
only Z2-graded structure for A, up to graded isomorphism?

There is an affirmative answer to a particular case of the second part of the above
question. We thank professor Valette for his affirmative answer in this case. This affirmative
answer is mentioned in the following proposition.

Proposition 4.2. Every linear combination of two odd words a and b in C∗
red(F2) cannot be connected

to the identity.

Proof. For a contradiction assume that ra + sb can be connected to the identity in the space of
invertible elements, where r and s are two complex numbers. With a small perturbation, we
can assume that |r| < |s|. (Note that with this perturbation the connected component does not
change.) Now put z0 = r/s, so z0a + b lies in the same connected component as the identity
with |z0| < 1. Then the curve tz0a + b, t ∈ [0, 1] is a curve which lies in the space of invertible
elements of C∗

red(F2). Because ba−1 is a unitary element, its spectrum does not contain an
element tz0 where t ∈ [0, 1]. So b as an odd element lies in the same connected component
as the identity. But the only words which can be connected to the identity are members of
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the commutator subgroup of F2. This contradiction shows that a linear combination of two
odd words can not be connected to the identity.

What is a Banach algebraic formulation of the higher dimensional Borsuk-Ulam
theorem? In order to obtain a noncommutative version of this theorem, we restate the classical
case as follows.

Let f1, f2, . . . , fn be n odd continuous real-valued functions on Sn, then the function
∑n

i=1 f
2
i is not an invertible element of C(Sn) or equivalently is not in the same connected

component as the identity (since every invertible element can be connected to the identity).
In fact fi’s are self-adjoint elements of C(Sn) which are odd elements of the standard Z2-
graded structure of C(Sn). Now a relevant noncommutative version of this statement can
be presented as the next question. So it seems natural to ask that for what type of non-
commutative spheres the answer to the next question is affirmative?

Question 3. Assume that A is a Z2-graded noncommutative n-sphere and a1, a2, . . . an are
self-adjoint elements ofAwhich are odd elements of this graded algebra. Is it true to say that
∑n

i=1 a
2
i is either non-invertible or is not in the same connected component as the identity?

Remark 4.3. A family of noncommutative spheres is a family of C∗ algebras Aθ, θ ∈ R with
some relations as a natural generalization of the algebra of continuous functions on n-sphere.
For more information on noncommutative spheres, see [9] or [10].

Another candidate for the noncommutative analogy of the Borsuk-Ulam theorem can
be presented as follows.

Consider the equivalent statement of the Borsuk-Ulam theorem which says that an
odd continuous map f : Sn → Sn is not null homotopic; namely, it is not homotopic to a
constant map. We try to translate this statement into the language of Banach or C∗ algebras.
The antipodal map φ(x) = −x defines an order two automorphism T ; C(Sn) → C(Sn) with
T(g) = g ◦ φ which naturally gives a Z2-graded structure for C(Sn). Similarly an odd map
f : Sn → Sn defines a morphism α : C(Sn) → C(Sn) which satisfies Tα = αT . This means
that α is a graded morphism. So we ask, for what type of noncommutative spheres (spaces),
the answer to the next question is affirmative?

Question 4. LetA be a noncommutative sphere with a nontrivial Z2-graded structure, and let
α : A → A be a graded morphism. Is it true to say that α is not a null homotopic morphism?

Final Remark on the Main Theorem

We explain that the main theorem gives us a weaker version of the Kaplansky-Kadison
conjecture. This conjecture says that, for a torsion free group Γ, C∗

red(Γ) has no nontrivial
idempotent; see [11]. Now as a consequence of our theorem, we present the following
question as a weaker version of the Kaplansky-Kadison conjecture.

Question 5 (A Weak Version of the Kaplansky-Kadison Conjecture). Let Γ be a torsion-free
group and C∗

red(Γ) equipped with a Zn-graded structure. Is it possible that the convex hull of
the spectrum of a nontrivial homogenous element does not contain the origin?
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