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We study the existence and uniqueness of nontrivial solutions for a class of fractional differential
system involving the Riemann-Stieltjes integral condition, by using the Leray-Schauder nonlinear
alternative and the Banach contraction mapping principle, some sufficient conditions of the
existence and uniqueness of a nontrivial solution of a system are obtained.

1. Introduction

HIV is a retrovirus that targets the CD4+ T lymphocytes, which are the most abundant white
blood cells of the immune system. To this day, there have already been over 16 million people
who died of AIDS. Although HIV infects other cells also, it wreaks the most havoc on the
CD4+ T cells by causing their decline and destruction, thus decreasing the resistance of the
immune system [1–3]. Mathematical models have been proven valuable in understanding
the dynamics of HIV infection [4–6]. Perelson et al. [7, 8] developed a simple model for the
primary infection with HIV. In this model, four categories of cells were defined: uninfected
CD4+ T cells, latently infected CD4+ T cells, productively infected CD4+ T cells, and virus
population. And the following two equations describe the evolution of the system:

dx

dt
= s − μx − βxy

dy

dt
= βxy − υy,

(HIV-1)
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where all parameters and variables are nonnegative. s is the assumed constant rate of the
production of CD4+ T-cells, μ is their per capita death rate, βxy is the rate of infection of
CD4+ T-cells by virus, and vy is the rate of disappearance of infected cells. Recently Arafa1
et al. introduced fractional order into a model of (HIV-1) infection of CD4+ T cells. The new
system is described by the following set of FODEs of order α1, α2, α3 > 0:

Dα1(T) = s −KVT − dT + bI,

Dα2(I) = KVT − (b + δ)I,

Dα3(I) = NδI − cV.

(HIV-2)

T, I, and V denote the concentration of uninfected CD4+ T cells, infected CD4+ T cells,
and free HIV virus particles in the blood, respectively. δ represents death rate of infected
T cells and includes the possibility of death by the bursting of infected T cells, hence δd. The
parameter b is the rate at which infected cells return to uninfected class while c is the death
rate of virus andN is the average number of viral particles produced by an infected cell.

Motivated byHIVmodel, in this paper, we consider the existence of nontrivial solution
for fractional differential system

−Dα
t x(t) = λf

(
t, x(t),Dβ

t x(t), y(t)
)
, −Dγ

t y(t) = g(t, x(t)), t ∈ (0, 1),

Dβ
t x(0) = 0, Dβ

t x(1) =
∫1

0
Dβ

t x(s)dA(s), y(0) = 0, y(1) =
∫1

0
y(s)dB(s),

(1.1)

where λ is a parameter, 1 < γ < α ≤ 2, 1 < α − β < γ , 0 < β < 1, Dα
t is the standard

Riemann-Liouville derivative.
∫1
0 D

β
t x(s)dA(s) denotes the Riemann-Stieltjes integral, and

A, B ∈ NBV ([0, 1]) are functions of bounded variation.
In the recent years, there has been a significant development in fractional order

differential equations involving fractional derivatives. For example, Ahmad and Nieto [9]
considered a coupled system of nonlinear fractional differential equations with three-point
boundary conditions

Dα
t u(t) = f

(
t, v(t),Dp

t v(t)
)
, Dβ

t v(t) = f
(
t, u(t),Dq

t u(t)
)
, t ∈ (0, 1),

u(0) = 0, u(1) = γu
(
η
)
, v(0) = 0, v(1) = γv

(
η
)
,

(1.2)

where α, β, p, q, γ, η satisfy certain conditions. Applying the Schauder fixed point theorem,
an existence result is proved provided that f, g : [0, 1] × R × R → R are given continuous
functions and satisfy some growth conditions. For a detailed description of recent work on
fractional differential equation, we refer the reader to some recent papers (see [10–17]).

The rest of the paper is organized as follows. Section 2 gives preliminaries and lemmas
about fractional calculus. In Section 3, we present themain results and the proof of the results.
In addition, an example is given to illustrate the application of the main results.
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2. Preliminaries and Lemmas

For the convenience of the reader, we present here some definitions from fractional calculus
which are to be used in the later sections.

Definition 2.1 (see [18–20]). The Riemann-Liouville fractional integral of order α > 0 of a
function x : (0,+∞) → R is given by

Iαx(t) =
1

Γ(α)

∫ t

0
(t − s)α−1x(s)ds (2.1)

provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.2 (see [18–20]). The Riemann-Liouville fractional derivative of order α > 0 of a
function x : (0,+∞) → R is given by

Dα
t x(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0
(t − s)n−α−1x(s)ds, (2.2)

where n = [α]+1, [α] denotes the integer part of number α, provided that the right-hand side
is pointwise defined on (0,+∞).

Lemma 2.3 (see [18–20]). (1) If x ∈ L(0, 1), ν > σ > 0, then

IνIσx(t) = Iν+σx(t), Dσ
t I

νx(t) = Iν−σx(t), Dσ
t I

σx(t) = x(t). (2.3)

(2) If ν > 0, σ > 0, then

Dν
t t

σ−1 =
Γ(σ)

Γ(σ − ν)
tσ−ν−1. (2.4)

Lemma 2.4 (see [18–20]). Assume that x ∈ L1(0, 1) with a fractional derivative of order α > 0 that
belongs to L1(0, 1). Then

IαDα
t x(t) = x(t) + c1t

α−1 + c2t
α−2 + · · · + cnt

α−n, (2.5)

where ci ∈ R (i = 1, 2, . . . , n), n is the smallest integer greater than or equal to α.

Let x(t) = Iβv(t), v(t) ∈ C[0, 1]; by standard discussion, we easily reduce the system
(1.1) to the following modified problems:

−Dα−β
t v(t) = λf

(
t, Iβv(t), v(t), y(t)

)
, −Dγ

t y(t) = g
(
t, Iβv(t)

)
, t ∈ (0, 1),

v(0) = 0, v(1) =
∫1

0
v(s)dA(s), y(0) = 0, y(1) =

∫1

0
y(s)dB(s),

(2.6)

and the system (2.6) is equivalent to the system (1.1).
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Lemma 2.5 (see [21]). Let h ∈ L1(0, 1), if 1 < α − β, γ ≤ 2, then the unique solution of the linear
problems

−Dα−β
t v(t) = h(t), t ∈ (0, 1),

v(0) = 0, v(1) = 0,

−Dγ
t y(t) = h(t), t ∈ (0, 1),

y(0) = 0, y(1) = 0,

(2.7)

is

v(t) =
∫1

0
K1(t, s)h(s)ds, y(t) =

∫1

0
K2(t, s)h(s)ds, (2.8)

respectively, where

K1(t, s) =
1

Γ
(
α − β

)
{
[t(1 − s)]α−β−1, 0 ≤ t ≤ s ≤ 1,
[t(1 − s)]α−β−1 − (t − s)α−β−1, 0 ≤ s ≤ t ≤ 1.

K2(t, s) =
1

Γ
(
γ
)
{
[t(1 − s)]γ−1, 0 ≤ t ≤ s ≤ 1,
[t(1 − s)]γ−1 − (t − s)γ−1, 0 ≤ s ≤ t ≤ 1,

(2.9)

are the Green functions of the boundary value problems (2.7).

By Lemma 2.4, the unique solution of the problem

Dα−β
t v(t) = 0, 0 < t < 1,

v(0) = 0, v(1) = 1,
(2.10)

is tα−β−1. Let

C =
∫1

0
tα−β−1dA(t), B =

∫1

0
tγ−1dB(t), (2.11)

and define

GA(s) =
∫1

0
K1(t, s)dA(t), GB(s) =

∫1

0
K2(t, s)dB(t). (2.12)
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As in [14], if C/= 0, B/= 0, we can get that the Green function for the following nonlocal
system

−Dα−β
t v(t) = h(t), t ∈ (0, 1),

v(0) = 0, v(1) =
∫1

0
v(s)dA(s),

−Dγ
t y(t) = h(t), t ∈ (0, 1),

y(0) = 0, y(1) =
∫1

0
y(s)dB(s),

(2.13)

are given by, respectively,

G(t, s) =
tα−β−1

1 − C GA(s) +K1(t, s), H(t, s) =
tγ−1

1 − BGB(s) +K2(t, s). (2.14)

Clearly, G(t, s), H(t, s) are continuous on [0, 1] × [0, 1]; thus there exist positive
constants m, n such that

|G(t, s)| ≤ m, |H(t, s)| ≤ n. (2.15)

It is well known that (v, y) is a solution of the system (2.6) if and only if (v, y) ∈
C[0, 1] × C[0, 1] is a solution of the following nonlinear integral equation system:

v(t) = λ

∫1

0
G(t, s)f

(
s, Iβv(s), v(s), y(s)

)
ds,

y(t) =
∫1

0
H(t, s)g

(
s, Iβv(s)

)
ds.

(2.16)

Obviously, the system (2.16) is equivalent to the following integral equation:

v(t) = λ

∫1

0
G(t, s)f

(
s, Iβv(s), v(s),

∫1

0
H(s, τ)g

(
τ, Iβv(τ)

)
dτ

)
ds. (2.17)

Lemma 2.6 (see [22]). LetX be a real Banach space andΩ a bounded open subset ofX, where θ ∈ Ω;
T : Ω → X is a completely continuous operator. Then, either there exists x ∈ ∂Ω, λ > 1 such that
T(x) = λx or there exists a fixed point x∗ ∈ Ω.

3. Main Results

The following definition introduces the Carathèodory conditions imposed on a map f .
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Definition 3.1. Let ẑ = (z1, z2, . . . , zn). A map f : [0, 1] × R
n, (t, ẑ) �→ f(t, ẑ) is said to satisfy

the Carathéodory conditions if the following conditions hold:

(i) for each ẑ ∈ R
n, the mapping t �→ f(t, ẑ) is Lebesgue measurable;

(ii) for a.e. t ∈ [0, 1], the mapping ẑ �→ f(t, ẑ) is continuous on R.

Throughout the paper we always assume the following conditions hold.

(H0) A, B are functions of bounded variation such that C,B/= 1, where C, B are defined
by (2.11).

(H1) f : [0, 1] × R
3 → R and g : [0, 1] × R → R satisfy the Carathéodory condition.

Theorem 3.2. Suppose that (H0)-(H1) hold. If f(t, 0, 0, 0)/≡ 0, and there exist nonnegative functions
pi (i = 1, 2, 3), q, r ∈ L1[0, 1] such that

∣∣f(t, x1, x2, x3)
∣∣ ≤ p1(t)|x1| + p2(t)|x2| + p3(t)|x3| + q(t), a.e. t ∈ [0, 1],
∣∣g(t, y)∣∣ ≤ r(t)

∣∣y∣∣, a.e. t ∈ [0, 1].
(3.1)

In addition, there exists t0 ∈ [0, 1] such that pi0(t0)/= 0 for some i0 ∈ {1, 2, 3}. Then there exists a
constant λ∗ > 0, such that, for any 0 < λ ≤ λ∗, the system (1.1) has at least one nontrivial solution
(x∗, y∗) ∈ C[0, 1] × C[0, 1].

Proof. Let X = C[0, 1] be endowed with the ordering x ≤ y if x(t) ≤ y(t) for all t ∈ [0, 1], and
‖u‖ = maxt∈[0,1]|u(t)| is defined as usual by maximum norm. Clearly, it follows that (X, ‖ · ‖)
is a Banach space. By (2.17) and (2.6), problem (1.1) has a solution (x∗, y∗) ∈ C[0, 1] × C[0, 1]
if and only if v∗ = Dβ

t x
∗ solves the following operator equation:

(Tv)(t) = λ

∫1

0
G(t, s)f

(
s, Iβv(s), v(s),

∫1

0
H(s, τ)g

(
τ, Iβv(τ)

)
dτ

)
ds, (3.2)

in X. So we only need to seek a fixed point of T in X. By Ascoli-Arzela Theorem, it is obvious
that the operator T : X → X is a completely continuous operator.

Since f(t, 0, 0, 0)/≡ 0, and f(t, 0, 0, 0) ≤ q(t) a.e. t ∈ [0, 1], we know
∫1
0 q(t)dt > 0. On the

other hand, by pi0(t0)/= 0 for some i0 ∈ {1, 2, 3}, we have

∫1

0

(
p1(t) + p2(t) + p3(t)

)
dt > 0. (3.3)

Let

R =

∫1
0 q(s)ds(

1/Γ
(
β
)
+ 1 +

(
n/Γ
(
β
)) ∫1

0 r(s)ds
) ∫1

0

(
p1(s) + p2(s) + p3(s)

)
ds

, (3.4)

where n is defined by (2.15). Define the set

Ω = {v ∈ C[0, 1] : ||v|| ≤ R}. (3.5)
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Suppose v ∈ ∂Ω, μ > 1 such that Tv = μv. Then, for any v ∈ ∂Ω, and noticing that

∣∣∣Iβv(τ)
∣∣∣ = 1

Γ
(
β
)
∫1

0
(t − s)β−1v(s)ds ≤ ||v||

Γ
(
β
) , (3.6)

we have

‖Tv‖ = max
t∈[0,1]

|(Tv)(t)| ≤ mλ

∫1

0

∣∣∣∣∣f
(
s, Iβv(s), v(s),

∫1

0
H(s, τ)g

(
τ, Iβv(τ)

)
dτ

)∣∣∣∣∣ds

≤ mλ

∫1

0

[
p1(t)

∣∣∣Iβv(s)
∣∣∣ + p2(t)|v(s)| + p3(t)

∣∣∣∣∣
∫1

0
H(s, τ)g

(
τ, Iβv(τ)

)
dτ

∣∣∣∣∣ + q(s)

]
ds

≤ mλ

∫1

0

[
p1(t)

∣∣∣Iβv(s)
∣∣∣ + p2(t)|v(s)| + np3(t)

∣∣∣∣∣
∫1

0
r(τ)Iβv(τ)dτ

∣∣∣∣∣ + q(s)

]
ds

≤ mλ

∫1

0

[
p1(t)||v||
Γ
(
β
) + p2(t)||v|| +

np3(t)||v||
Γ
(
β
)

∫1

0
r(τ)dτ + q(s)

]
ds

≤ mλ

(
1

Γ
(
β
) + 1 +

n

Γ
(
β
)
∫1

0
r(s)ds

)∫1

0

(
p1(s) + p2(s) + p3(s)

)
ds||v||

+mλ

∫1

0
q(s)ds.

(3.7)

Thus we take

λ∗ =
1
2

{[
m

(
1

Γ
(
β
) + 1 +

n

Γ
(
β
)
∫1

0
r(s)ds

)]∫1

0

(
p1(s) + p2(s) + p3(s)

)
ds

}−1
. (3.8)

Then for any 0 < λ ≤ λ∗ and v ∈ ∂Ω, by (3.7), one has

μ||v|| ≤ mλ

(
1

Γ
(
β
) + 1 +

n

Γ
(
β
)
∫1

0
r(s)ds

)∫1

0

(
p1(s) + p2(s) + p3(s)

)
ds||v|| +mλ

∫1

0
q(s)ds

≤ 1
2
||v|| +

∫1
0 q(s)ds

2
(
1/Γ
(
β
)
+ 1 +

(
n/Γ
(
β
)) ∫1

0 r(s)ds
) ∫1

0

(
p1(s) + p2(s) + p3(s)

)
ds

.

(3.9)

Consequently,

μ ≤ 1
2
+
1
2
= 1. (3.10)
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This contradicts μ > 1, by Lemma 2.6, T has a fixed point v∗ ∈ Ω. Since f(t, 0, 0, 0)/≡ 0, then
v∗ /≡ 0, Thus let

x∗ = Iβv∗, y∗ =
∫1

0
H(t, s)g(s, x∗(s))ds, (3.11)

and then the system (1.1) has at least one nontrivial solution (x∗, y∗) ∈ C[0, 1] × C[0, 1] for
any 0 < λ ≤ λ∗. This completes the proof of Theorem 3.2.

Theorem 3.3. Suppose that (H0)-(H1) hold. If f(t, 0, 0, 0)/≡ 0, and there exist nonnegative functions
pi(i = 1, 2, 3), r ∈ L1[0, 1] such that

∣∣f(t, x1, x2, x3)−f
(
t, y1, y2, y3

)∣∣≤p1(t)
∣∣x1−y1

∣∣+p2(t)
∣∣x2−y2

∣∣+p3(t)
∣∣x3−y3

∣∣, a.e. t ∈ [0, 1],
∣∣g(t, y1

) − g
(
t, y2
)∣∣ ≤ r(t)

∣∣y1 − y2
∣∣, a.e. t ∈ [0, 1].

(3.12)

In addition, there exists t0 ∈ [0, 1] such that pi0(t0)/= 0 for some i0 ∈ {1, 2, 3}. Then there exists a
constant λ∗ > 0, such that, for any 0 < λ ≤ λ∗, the system (1.1) has unique nontrivial solution
(x∗, y∗) ∈ C[0, 1] × C[0, 1].

Proof. Let T be given in Theorem 3.2; we will show that T is a contraction. In fact,

||Tv1 − Tv2|| ≤ mλ

∫1

0

∣∣∣∣∣f
(
s, Iβv1(s), v1(s),

∫1

0
H(s, τ)g

(
τ, Iβv1(τ)

)
dτ

)

− f

(
s, Iβv2(s), v2(s),

∫1

0
H(s, τ)g

(
τ, Iβv2(τ)

)
dτ

)∣∣∣∣∣ds

≤ mλ

∫1

0

[
p1(t)

∣∣∣Iβ(v1(s) − v2(s))
∣∣∣ + p2(t)|v1(s) − v2(s)|

+ np3(t)
∫1

0
r(τ)

∣∣∣Iβ(v1(τ) − v2(τ))
∣∣∣dτ
]
ds

≤ mλ

∫1

0

[
p1(t)||v1 − v2||

Γ
(
β
) + p2(t)||v1 − v2|| +

np3(t)
Γ
(
β
)
∫1

0
r(τ)dτ ||v1 − v2||

]
ds

≤ mλ

(
1

Γ
(
β
) + 1 +

n

Γ
(
β
)
∫1

0
r(s)ds

)∫1

0

(
p1(s) + p2(s) + p3(s)

)
ds||v1 − v2||.

(3.13)

If we choose

λ∗ =
1
2

{
m

(
1

Γ
(
β
) + 1 +

n

Γ
(
β
)
∫1

0
r(s)ds

)∫1

0

(
p1(s) + p2(s) + p3(s)

)
ds

}−1
. (3.14)
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Then by (3.13) and (3.14), we have

||Tv1 − Tv2|| ≤ 1
2
||v1 − v2||, (3.15)

which implies that T is indeed a contraction. Finally, we use the Banach fixed point theorem
to deduce the existence of a unique solution to the system (1.1).

Corollary 3.4. Suppose that (H0)-(H1) hold. If f(t, 0, 0, 0)/≡ 0,

lim sup
|x1|+|x2|+|x3|→+∞

max
t∈[0,1]

f(t, x1, x2, x3)
|x1| + |x2| + |x3| < +∞. (3.16)

In addition, there exists a nonnegative function r ∈ L1[0, 1] such that g satisfies

∣∣g(t, y)∣∣ ≤ r(t)
∣∣y∣∣, a.e. t ∈ [0, 1]. (3.17)

Then there exists a constant λ∗ > 0, such that, for any 0 < λ ≤ λ∗, the system (1.1) has at least one
nontrivial solution (x∗, y∗) ∈ C[0, 1] × C[0, 1].

Proof. We prove f satisfies the conditions of Theorem 3.2. Let

W = lim sup
|x1|+|x2|+|x3|→+∞

max
t∈[0,1]

f(t, x1, x2, x3)
|x1| + |x2| + |x3| , (3.18)

and choose ε > 0 such that W + 1 − ε > 0. By (3.16), there exists N > 0 such that

∣∣f(t, x1, x2, x3)
∣∣ ≤ (W + 1 − ε)(|x1| + |x2| + |x3|), |x1| + |x2| + |x3| > N, t ∈ [0, 1]. (3.19)

Take M = maxt∈[0,1]/Ω,|x1|+|x2|+|x3|≤N, |f(t, x1, x2, x3)|, and the measure of Ω is 0. Thus for any
(t, x,x2, x3) ∈ [0, 1] × R

3, we have

∣∣f(t, x1, x2, x3)
∣∣ ≤ (W + 1 − ε)(|x1| + |x2| + |x3|) + M, a.e. t ∈ [0, 1]. (3.20)

From Theorem 3.2 we know the system (1.1) has at least one nontrivial solution.

Example 3.5. Consider the following fractional differential system:

−D3/2
t x = λ

[(
t2 + sin t

)
x − t1/2cos2

(
D3/8

t x
)
+

1
3
√
t
siny +

1√
1 − t

+ 2
]
,

−D5/4
t y = (t cos t + ln(t + 1))x,

D3/8
t x(0)=0, D3/8

t x(1)=
∫1

0
D3/8

t x(t)dA(t), y(0)=0, y(1)=
∫1

0
y(t)dB(t),

(3.21)
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where

A(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈
[
0,

1
2

)
,

3
2
, t ∈

[
1
2
,
3
4

)
,

1, t ∈
[
3
4
, 1
]
,

B(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈
[
0,

1
4

)
,

1, t ∈
[
1
4
,
3
4

)
,

2, t ∈
[
3
4
, 1
]
.

(3.22)

Then the system (3.21) is equivalent to the following 4-point BVP with coefficients of both
signs

−D3/2
t x = λ

[(
t2 + sin t

)
x − t1/2cos2

(
D3/8

t x
)
+

1
3
√
t
siny +

1√
1 − t

+ 2
]
,

−D5/4
t y = (t cos t + ln(t + 1))x,

D3/8
t x(0) = 0, D3/8

t x(1) =
3
2
D3/8

t

(
1
2

)
− 1
2
D3/8

t

(
3
4

)
,

y(0) = 0, y(1) = y

(
1
4

)
+ y

(
3
4

)
.

(3.23)

Clearly, (H0) holds. Let

f(t, x1, x2, x3)=
(
t2+sin t

)
x1−t1/2cos2x2+

1
3
√
t
sinx3+

1√
1 − t

+2, g
(
t, y
)
=(t cos t+ln(t+1))y.

(3.24)

Then (H1) also is satisfied.
On the other hand, we have

∣∣f(t, x1, x2, x3)
∣∣ ≤
(
t2 + sin t

)
|x1| + t1/2|x2| + 1

3
√
t
|x3| + 1√

1 − t
+ 2,

∣∣g(t, y)∣∣ ≤ (t cos t + ln(t + 1))
∣∣y∣∣,

(3.25)

and f(t, 0, 0, 0) = 1/
√
1 − t + 2/≡ 0, which imply all conditions of Theorem 3.2 are satisfied, by

Theorem 3.2, there exists a constant λ∗ > 0, such that for any 0 < λ ≤ λ∗, the system (3.21) has
at least one nontrivial solution (x∗, y∗) ∈ C[0, 1] × C[0, 1].
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