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We consider a stochastic recursive optimal control problem in which the control variable has two
components: the regular control and the impulse control. The control variable does not enter the
diffusion coefficient, and the domain of the regular controls is not necessarily convex. We establish
necessary optimality conditions, of the Pontryagin maximum principle type, for this stochastic
optimal control problem. Sufficient optimality conditions are also given. The optimal control is
obtained for an example of linear quadratic optimization problem to illustrate the applications of
the theoretical results.

1. Introduction

The nonlinear backward stochastic differential equations (BSDEs for short) were first intro-
duced by Pardoux and Peng [1]. Independently, Duffie and Epstein [2] introduced BSDEs
under economic background. In [2], they presented a stochastic recursive utility which is an
extension of the standard additive utility with the instantaneous utility depending not only
on the instantaneous consumption rate but also on the future utility. Actually, it corresponds
to the solution of a particular BSDE whose generator does not depend on the variable z. And
then, El Karoui et al. [3] gave the formulation of recursive utilities from the BSDE point of
view. The problem that the cost function of the control system is described by the solution
of BSDE is called the stochastic recursive optimal control problem. In this case, the control
systems become forward-backward stochastic differential equations (FBSDEs).
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One fundamental research direction for optimal control problem is to establish the nec-
essary optimality conditions—Pontryagin maximum principle. Stochastic maximum prin-
ciple for forward, backward, and forward-backward systems has been studied by many
authors, including Peng [4, 5], Tang and Li [6], Wang and Yu [7], Wu [8], and Xu [9] for
full information and Huang et al. [10], Wang and Wu [11], Wang and Yu [12], and Wu [13]
for partial information case. However, in these papers, there are only regular controls in the
control systems and impulse controls are not included.

Stochastic impulse control problems have received considerable research attention
in recent years due to wide applicability in a number of different areas, especially in
mathematical finance; see, for example, [14–17]. In most cases, the optimal impulse control
problem was studied through dynamic programming principle. It was shown in particular
that the value function is a solution of some quasi-variational inequalities.

The first result in stochastic maximum principle for singular control problem was
obtained by Cadenillas andHaussmann [18], in which linear dynamics, convex cost criterion,
and convex state constraint are assumed. Bahlali and Chala [19] generalized [18] to the
nonlinear dynamics case with a convex state constraint. Bahlali and Mezerdi [20] considered
a stochastic singular control problem in which the control system is governed by a stochastic
differential equation where the regular control enters the diffusion coefficient and the control
domain is not necessarily convex. The stochastic maximum principle was obtained with the
approach developed by Peng [4]. Dufour andMiller [21] studied a stochastic singular control
problem in which the admissible control is of bounded variation. It is worth pointing out that
the control systems in these works are stochastic differential equations with singular control,
and few examples are given to illustrate the theoretical results. Wu and Zhang [22] were the
first to study stochastic optimal control problems of forward-backward systems involving
impulse controls, and they obtained both the maximum principle and sufficient optimality
conditions for the optimal control problem.

In this paper, we continue to study stochastic optimal control problem involving
impulse controls, in which the control system is described by a forward-backward stochastic
differential equation and the control variable consists of regular control and impulse control.
Different from [22], it is assumed in this paper that the domain of the regular controls is
not necessarily convex and the control variable does not enter the diffusion coefficient. Thus
the result of this paper and that of [22] do not contain each other. We obtain the stochastic
maximum principle by using a spike variation on the regular part of the control and a convex
perturbation on the impulsive one. Sufficient optimality conditions are also obtained which
can help to find the optimal control in applications.

The rest of this paper is organized as follows. In Section 2 we give some preliminary
results and the formulation of our stochastic optimal control problem. In Section 3 we obtain
the maximum principle for our stochastic optimal control problem. Sufficient optimality
conditions for the optimal control problem is established in Section 4, and an example of
linear quadratic optimization problem is also given to illustrate the applications of our
theoretical results.

2. Formulation of the Stochastic Optimal Control Problem

Firstly we introduce some notations. Let (Ω,F,P) be a probability space andE the expectation
with respect to P. Let T be a finite time horizon andFt the natural filtration of a d-dimensional
standard Brownian motion {Bt, 0 ≤ t ≤ T} augmented by the P-null sets of F. For n ∈ N and
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p > 1, denote by Sp(Rn) the set of n-dimensional adapted processes {ϕt, 0 ≤ t ≤ T} such
that E[sup0≤t≤T |ϕt|p] < ∞, and denote byHp(Rn) the set of n-dimensional adapted processes

{ψt, 0 ≤ t ≤ T} such that E[(
∫T
0 |ψt|2dt)

p/2
] <∞.

Let U be a nonempty subset of R
k and K a nonempty convex subset of R

n. Let {τi}
be a given sequence of increasing Ft-stopping times such that τi ↑ +∞ as i → ∞. We denote
by I the class of right continuous processes η(·) =

∑
i≥1 ηi1[τi,T](·) such that each ηi is an

Fτi-measurable random variable. It is worth noting that the assumption τi ↑ +∞ implies
that at most finitely many impulses may occur on [0, T]. Denote by U the class of adapted
processes v : [0, T] × Ω → U such that E[sup0≤t≤T |vt|3] < ∞, and denote by K the class of
K-valued impulse processes η(·) ∈ I such that E[(

∑
i≥1 |ηi|)3] < ∞. We call A := U × K the

admissible control set. Inwhat follows, for a continuous function l(·), the integration ∫T0 l(t)dηt
is understood as follows:

∫T

0
l(t)dηt =

∑

0≤τi≤T
l(τi)ηi. (2.1)

Given η(·) ∈ I and x ∈ R
n, we consider the following SDE with impulses:

dXt = b(t, Xt)dt + σ(t, Xt)dBt + Ctdηt, X0 = x, (2.2)

where b : [0, T] × Ω × R
n → R

n, σ : [0, T] × Ω × R
n → R

n×d, and C : [0, T] → R
n×n are

measurable mappings. Similar to [22, Proposition 2.1], we have the following.

Proposition 2.1. Let C be continuous and b, σ uniformly Lipschitz in x. Assume that b(·, 0) ∈
Hp(Rn), σ(·, 0) ∈ Hp(Rn×d), and E[(

∑
i≥1 |ηi|)p] < ∞ for some p ≥ 2. Then SDE (2.2) admits a

unique solution X(·) ∈ Sp(Rn).

For η(·) ∈ I, let us consider the following BSDE with impulses:

dYt = −f(t, Yt, Zt)dt + ZtdBt −Dtdηt, YT = ζ, (2.3)

where ζ ∈ FT , f : [0, T] × Ω × R
m × R

m×d → R
m and D : [0, T] → R

m×n are measurable
mappings. Similar to [22, Proposition 2.2], we have the following.

Proposition 2.2. Let D be continuous and f Lipschitz in (y, z). Assume that E|ζ|p < ∞,
E[(
∑

i≥1 |ηi|)p] < ∞, and f(·, 0, 0) ∈ Hp(Rm) for some p ≥ 2. Then BSDE (2.3) admits a unique
solution (Y (·), Z(·)) ∈ Sp(Rm) ×Hp(Rm×d).

The control system of our stochastic optimal control problem is subject to the following
FBSDE:

dx
v,η
t = b

(
t, x

v,η
t , vt

)
dt + σ

(
t, x

v,η
t

)
dBt + Ctdηt,

dy
v,η
t = −f

(
t, x

v,η
t , y

v,η
t , z

v,η
t , vt

)
dt + zv,ηt dBt −Dtdηt,

x
v,η

0 = a ∈ R
n, y

v,η

T = g
(
x
v,η

T

)
,

(2.4)
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where b : [0, T]×R
n ×U → R

n, σ : [0, T]×R
n → R

n×d, f : [0, T]×R
n ×R

m ×R
m×d ×U → R

m,
g : R

n → R
m are measurable mappings, and C : [0, T] → R

n×n, D : [0, T] → R
m×n are

continuous functions. The objective is to minimize the following cost functional over the class
A:

J
(
v(·), η(·)) = E

[

φ
(
x
v,η

T

)
+ γ
(
y
v,η

0

)
+
∫T

0
h
(
t, x

v,η
t , y

v,η
t , vt

)
dt +

∑

i≥1
l
(
τi, ηi

)
]

, (2.5)

where φ : R
n → R, γ : R

m → R, h : [0, T] × R
n × R

m ×U → R, and l : [0, T] × R
n → R are

measurable mappings.
In what follows we assume the following.

(H1) b, σ, f , g are continuous, and they are continuously differentiable in (x, y, z), with
derivatives continuous and uniformly bounded. Moreover, assume that b and f
have linear growth in (x, y, z, v).

(H2) φ, γ , h, l are continuous, and they are continuously differentiable in (x, y, η), with
derivatives continuous and bounded by c(1+ |x|), c(1+ |y|), c(1+ |x|+ |y|+ |v|), and
c(1 + |η|), respectively. Moreover, we assume |h(t, 0, 0, v)| ≤ c(1 + |v|3) for any (t, v).

From Propositions 2.1 and 2.2, it follows that FBSDE (2.4) admits a unique solution
(xv,η(·), yv,η(·), zv,η(·)) ∈ S3(Rn) × S3(Rm) × H3(Rm×d) for any (v(·), η(·)) ∈ A, and the
functional J is well defined.

3. Stochastic Maximum Principle for the Optimal Control Problem

Let (u(·), ξ(·) =
∑

i≥1 ξi1[τi,T](·)) ∈ A be an optimal control and (xu,ξ(·), yu,ξ(·), zu,ξ(·)) the
corresponding trajectory. We introduce the spike variation with respect to u(·) as follows:

uεt =

{
v, if τ ≤ t ≤ τ + ε,
ut, otherwise,

(3.1)

where τ ∈ [0, T) is an arbitrarily fixed time, ε > 0 is a sufficiently small constant, and v is
an arbitrary U-valued Fτ -measurable random variable such that E|v|3 < ∞. Let η(·) ∈ I be
such that ξ(·) + η(·) ∈ K. Then it is easy to check that ξε(·) := ξ(·) + εη(·), 0 ≤ ε ≤ 1 is also an
element of K. Let us denote by (xε(·), yε(·), zε(·)) the trajectory associated with (uε(·), ξε(·)).
For convenience, denote ϕ(t) = ϕ(t, xu,ξt , y

u,ξ
t , z

u,ξ
t , ut), ϕ(uεt ) = ϕ(t, xu,ξt , y

u,ξ
t , z

u,ξ
t , uεt ) for ϕ =

b, σ, f, h, bx, σx, fx, fy, fz, hx, hy. In what follows, we use c to denote a positive constant which
can be different from line to line.

Let us introduce the following FBSDE (called the variational equation):

dx1
t =

[
bx(t)x1

t + b
(
uεt
) − b(t)

]
dt + σx(t)x1

t dBt + εCtdηt,

dy1
t = −

[
fx(t)x1

t + fy(t)y
1
t + fz(t)z

1
t + f

(
uεt
) − f(t)

]
dt + z1t dBt − εDtdηt,

x1
0 = 0, y1

T = gx
(
x
u,ξ
T

)
x1
T .

(3.2)
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By Propositions 2.1 and 2.2, FBSDE (3.2) admits a unique solution (x1(·), y1(·), z1(·)) ∈
S3(Rn) × S3(Rm) ×H3(Rm×d).

Similar to [9, Lemma 1], we can easily obtain the following.

Lemma 3.1. We have

sup
0≤t≤T

E

∣
∣
∣x1

t

∣
∣
∣
3
+ sup

0≤t≤T
E

∣
∣
∣y1

t

∣
∣
∣
3
+ E

⎡

⎣

(∫T

0
|z1t |2dt

)3/2
⎤

⎦ ≤ cε3. (3.3)

We proceed to give the following lemma.

Lemma 3.2. The following estimations hold:

sup
0≤t≤T

E

[∣∣∣xεt − xu,ξt − x1
t

∣∣∣
2
]
≤ Cεε

2, (3.4)

sup
0≤t≤T

E

[∣∣∣yεt − yu,ξt − y1
t

∣∣∣
2
]
≤ Cεε

2, (3.5)

E

[∫T

0

∣∣∣zεt − zu,ξt − z1t
∣∣∣
2
dt

]

≤ Cεε
2, (3.6)

where Cε → 0 as ε → 0.

Proof. It is easy to check that

xεt − xu,ξt − x1
t =

∫ t

0

[
Cε
s

(
xεs − xu,ξs − x1

s

)
+Aε

s

]
ds

+
∫ t

0

[
Dε
s

(
xεs − xu,ξs − x1

s

)
+ Bεs

]
dBs,

(3.7)

where

Aε
s =

∫1

0

[
bx
(
s, x

u,ξ
s + λx1

s, u
ε
s

)
− bx(s)

]
dλx1

s,

Bεs =
∫1

0

[
σx
(
s, x

u,ξ
s + λx1

s

)
− σx(s)

]
dλx1

s,

Cε
s =

∫1

0
bx
(
s, x

u,ξ
s + x1

s + λ
(
xεs − xu,ξs − x1

s

)
, uεs

)
dλ,

Dε
s =

∫1

0
σx
(
s, x

u,ξ
s + x1

s + λ
(
xεs − xu,ξs − x1

s

))
dλ.

(3.8)
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Since bx, σx are uniformly bounded, we have sup0≤s≤T(|Cε
s|+ |Dε

s|) ≤ c. Hence, if we can obtain

sup
0≤t≤T

E

[∫ t

0
Aε
sds +

∫ t

0
BεsdBs

]2
≤ Cεε

2, (3.9)

then the estimation (3.4) can be obtained from Gronwall’s lemma and (3.7). Let us take the
Aε term for example. By the definition of uε and Hölder’s inequality, we have

sup
0≤t≤T

E

[∫ t

0
Aε
sds

]2
≤ 2E

[∫T

0

∣∣
∣
∣
∣

∫1

0

[
bx
(
s, x

u,ξ
s + λx1

s, us
)
− bx(s)

]
dλx1

s

∣∣
∣
∣
∣
ds

]2

+ 2E

[∫ τ+ε

τ

∣
∣
∣
∣
∣

∫1

0

[
bx
(
s, x

u,ξ
s + λx1

s, v
)
− bx(s)

]
dλx1

s

∣
∣
∣
∣
∣
ds

]2

=: 2I + 2II.

(3.10)

From Hölder’s inequality, Lemma 3.1, and the dominated convergence theorem, it follows
that

I ≤ TE

⎧
⎨

⎩

∫T

0

∣∣∣∣∣

∫1

0

[
bx
(
s, x

u,ξ
s + λx1

s, us
)
− bx(s)

]
dλx1

s

∣∣∣∣∣

2

ds

⎫
⎬

⎭

≤ T
∫T

0

{
E

∣∣∣x1
s

∣∣∣
3
}2/3

⎧
⎨

⎩
E

⎡

⎣

∣∣∣∣∣

∫1

0

[
bx
(
s, x

u,ξ
s + λx1

s, us
)
− bx(s)

]
dλ

∣∣∣∣∣

6
⎤

⎦

⎫
⎬

⎭

1/3

ds

≤ T5/3

{

sup
0≤s≤T

E

∣∣∣x1
s

∣∣∣
3
}2/3

⎧
⎨

⎩

∫T

0
E

⎡

⎣

∣∣∣∣∣

∫1

0

[
bx
(
s, x

u,ξ
s + λx1

s, us
)
− bx(s)

]
dλ

∣∣∣∣∣

6
⎤

⎦ds

⎫
⎬

⎭

1/3

≤ Cεε
2.

(3.11)

Since bx is uniformly bounded, by Lemma 3.1 we get

II ≤ ε
∫ τ+ε

τ

E

⎡

⎣

∣∣∣∣∣

∫1

0

[
bx
(
s, x

u,ξ
s + λx1

s, v
)
− bx(s)

]
dλx1

s

∣∣∣∣∣

2
⎤

⎦ds

≤ cε2 sup
0≤s≤T

E

∣∣∣x1
s

∣∣∣
2 ≤ cε4.

(3.12)

Thus we obtain sup0≤t≤TE[
∫ t
0A

ε
sds]

2 ≤ Cεε
2. In the same way we can get

sup
0≤t≤T

E

[∫ t

0
BεsdBs

]2
≤ Cεε

2. (3.13)

Hence, the estimation (3.4) is proved.
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Now we prove (3.5) and (3.6). Set

Xε
s = x

ε
s − xu,ξs − x1

s, Y ε
s = yεs − yu,ξs − y1

s , Zε
s = z

ε
s − zu,ξs − z1s,

Πε
s =

(
s, x

u,ξ
s + x1

s + λX
ε
s, y

u,ξ
s + y1

s + λY
ε
s , z

u,ξ
s + z1s + λZ

ε
s, u

ε
s

)
,

Λε
s =

(
s, x

u,ξ
s + λx1

s, y
u,ξ
s + λy1

s , z
u,ξ
s + λz1s, u

ε
s

)
.

(3.14)

It is easy to obtain

Yε
t = g

(
xεT
) − g

(
x
u,ξ
T

)
− gx

(
x
u,ξ
T

)
x1
T −

∫T

t

Zε
sdBs

+
∫T

t

(
E1,ε
s x1

s + E
2,ε
s y1

s + E
3,ε
s z1s

)
ds

+
∫T

t

(
F1,ε
s Xε

s + F
2,ε
s Y ε

s + F
3,ε
s Zε

s

)
ds,

(3.15)

where

E1,ε
s =

∫1

0

[
fx(Λε

s) − fx(s)
]
dλ, E2,ε

s =
∫1

0

[
fy(Λε

s) − fy(s)
]
dλ,

E3,ε
s =

∫1

0

[
fz(Λε

s) − fz(s)
]
dλ, F1,ε

s =
∫1

0
fx(Πε

s)dλ,

F2,ε
s =

∫1

0
fy(Πε

s)dλ, F3,ε
s =

∫1

0
fz(Πε

s)dλ.

(3.16)

We have

g
(
xεT
) − g

(
x
u,ξ
T

)
− gx

(
x
u,ξ
T

)
x1
T

=
[
g
(
xεT
) − g

(
x
u,ξ
T + x1

T

)]
+
[
g
(
x
u,ξ
T + x1

T

)
− g
(
x
u,ξ
T

)
− gx

(
x
u,ξ
T

)
x1
T

]

=
∫1

0
gx
(
x
u,ξ
T + x1

T + λX
ε
T

)
dλXε

T +
∫1

0

[
gx
(
x
u,ξ
T + λx1

T

)
− gx

(
x
u,ξ
T

)]
dλx1

T =: I + II.

(3.17)

Since gx is uniformly bounded, it follows from (3.4) that E|I|2 ≤ cE|Xε
T |2 ≤ Cεε

2. Since gx
is continuous and uniformly bounded, from Lemma 3.1 and the dominated convergence
theorem it follows that

E|II|2 ≤
{

sup
0≤t≤T

E

∣∣∣x1
t

∣∣∣
3
}2/3

⎧
⎨

⎩
E

⎡

⎣

∣∣∣∣∣

∫1

0

(
gx
(
x
u,ξ
T + λx1

T

)
− gx

(
x
u,ξ
T

))
dλ

∣∣∣∣∣

6
⎤

⎦

⎫
⎬

⎭

1/3

≤ Cεε
2. (3.18)
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Consequently,

E

[∣∣
∣g
(
xεT
) − g

(
x
u,ξ
T

)
− gx

(
x
u,ξ
T

)
x1
T

∣∣
∣
2
]
≤ 2E|I|2 + 2E|II|2 ≤ Cεε

2. (3.19)

From Lemma 3.1 and the dominated convergence theorem, it follows that

sup
0≤t≤T

E

[∫T

t

(
E1,ε
s x1

s + E
2,ε
s y1

s + E
3,ε
s z1s

)
ds

]2
≤ Cεε

2. (3.20)

Since fx, fy, and fz are uniformly bounded, we have

sup
0≤t≤T

[∣∣∣F1,ε
s

∣∣∣ +
∣∣∣F2,ε

s

∣∣∣ +
∣∣∣F3,ε

s

∣∣∣
]
≤ c. (3.21)

Similar to the proof of Lemma 1 in [9] for the BSDE part, we can obtain (3.5) and (3.6) with
the iterative method.

We are now ready to state the variational inequality.

Lemma 3.3. The following variational inequality holds:

E

[

φx
(
x
u,ξ
T

)
x1
T + γy

(
y
u,ξ
0

)
y1
0 + ε

∑

i≥1
lξ(τi, ξi)ηi

]

+E

{∫T

0

[
hx(t)x1

t + hy(t)y
1
t + h

(
uεt
) − h(t)

]
dt

}

≥ o(ε).
(3.22)

Proof. From the optimality of (u(·), ξ(·)), we have

J(uε(·), ξε(·)) − J(u(·), ξ(·)) ≥ 0. (3.23)

From Lemmas 3.1 and 3.2, it follows that

E

[
φ
(
xεT
) − φ

(
x
u,ξ
T + x1

T

)]
= o(ε),

E

[
φ
(
x
u,ξ
T + x1

T

)
− φ
(
x
u,ξ
T

)]
= E

[
φx
(
x
u,ξ
T

)
x1
T

]
+ o(ε).

(3.24)

Hence,

E

[
φ
(
xεT
) − φ

(
x
u,ξ
T

)]
= E

[
φx
(
x
u,ξ
T

)
x1
T

]
+ o(ε). (3.25)
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Similarly we get

E

[
γ
(
yε0
) − γ

(
y
u,ξ
0

)]
= E

[
γy
(
y
u,ξ
0

)
y1
0

]
+ o(ε),

E

[
∑

i≥1
l
(
τi, ξi + εηi

) −
∑

i≥1
l(τi, ξi)

]

= εE

[
∑

i≥1
lξ(τi, ξi)ηi

]

+ o(ε),
(3.26)

while

E

{∫T

0

[
h
(
t, xεt , y

ε
t , u

ε
t

) − h(t)]dt
}

= E

{∫T

0

[
h
(
t, xεt , y

ε
t , u

ε
t

) − h
(
t, x

u,ξ
t + x1

t , y
u,ξ
t + y1

t , u
ε
t

)]
dt

}

+ E

{∫T

0

[
h
(
t, x

u,ξ
t + x1

t , y
u,ξ
t + y1

t , u
ε
t

)
− h(uεt

)]
dt

}

+ E

{∫T

0

[
h
(
uεt
) − h(t)]dt

}

:= I + II + E

{∫T

0

[
h
(
uεt
) − h(t)]dt

}

.

(3.27)

Since hx, hy, hz have linear growth, it follows from Lemma 3.2 and Hölder’s inequality that

I = E

{∫T

0

∫1

0

[
hx
(
Πε
t

)
Xε
t + hy

(
Πε
t

)
Yε
t

]
dλdt

}

= o(ε). (3.28)

By Lemma 3.1 and the dominated convergence theorem, we have

II = E

{∫T

0

∫1

0

[
hx
(
Λε
t

)
x1
t + hy

(
Λε
t

)
y1
t

]
dλdt

}

= E

{∫T

0

[
hx
(
uεt
)
x1
t + hy

(
uεt
)
y1
t

]
dt

}

+ o(ε)

= E

{∫T

0

[(
hx
(
uεt
) − hx(t)

)
x1
t +
(
hy
(
uεt
) − hy(t)

)
y1
t

]
dt

}

+ E

{∫T

0

[
hx(t)x1

t + hy(t)y
1
t

]
dt

}

+ o(ε)

= E

{∫ τ+ε

τ

[
(hx(t, v) − hx(t))x1

t +
(
hy(t, v) − hy(t)

)
y1
t

]
dt

}

+ E

{∫T

0

[
hx(t)x1 + hy(t)y1

]
dt

}

+ o(ε),

(3.29)
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where ϕ(t, v) = ϕ(t, xu,ξt , y
u,ξ
t , v), ϕ = hx, hy. It follows from Hölder’s inequality that

II ≤
{

E

∫ τ+ε

τ

|hx(t, v) − hx(t)|2dt
}1/2{

E

∫T

0

∣
∣
∣x1

t

∣
∣
∣
2
dt

}1/2

+
{

E

∫ τ+ε

τ

∣
∣hy(t, v) − hy(t)

∣
∣2dt

}1/2{

E

∫T

0

∣
∣
∣y1

t

∣
∣
∣
2
dt

}1/2

+ E

{∫T

0

[
hx(t)x1

t + hy(t)y
1
t

]
dt

}

+ o(ε).

(3.30)

Using Lemma 3.1 again, we get

II ≤ E

{∫T

0

[
hx(t)x1

t + hy(t)y
1
t

]
dt

}

+ o(ε). (3.31)

Consequently,

E

{∫T

0

[
h
(
t, xεt , y

ε
t , u

ε
t

) − h(t)]dt
}

= E

{∫T

0

[
hx(t)x1

t + hy(t)y
1
t + h

(
uεt
) − h(t)

]
dt

}

+ o(ε).

(3.32)

The variational inequality follows from (3.25)–(3.32).

Now we introduce the following FBSDE (called the adjoint equation):

dpt =
[
f∗
y(t)pt − h∗y(t)

]
dt + f∗

z(t)ptdBt,

dqt =
[
f∗
x(t)pt − b∗x(t)qt − σ∗

x(t)kt − h∗x(t)
]
dt + ktdBt,

p0 = −γ∗y
(
y
u,ξ
0

)
, qT = −g∗

x

(
x
u,ξ
T

)
pT + φ∗

x

(
x
u,ξ
T

)
.

(3.33)

It is easy to check that the adjoint equation admits a unique solution (p(·), q(·), k(·)) ∈
S3(Rm) × S3(Rn) ×H3(Rm×d).

We are now in a position to state the stochastic maximum principle.

Theorem 3.4. Let (u(·), ξ(·)) be an optimal control, (xu,ξ(·), yu,ξ(·), zu,ξ(·)) the corresponding
trajectory, and (p(·), q(·), k(·)) the solution of the adjoint equation. Then for any v ∈ U and η(·) ∈ K
it holds that

H
(
t, x

u,ξ
t , y

u,ξ
t , z

u,ξ
t , v, pt, qt, kt

)
−H

(
t, x

u,ξ
t , y

u,ξ
t , z

u,ξ
t , ut, pt, qt, kt

)
≥ 0, a.e., a.s., (3.34)

E

{
∑

i≥1

[(
lξ(τi, ξi) + q∗τiCτi − p∗τiDτi

)(
ηi − ξi

)]
}

≥ 0, (3.35)



Abstract and Applied Analysis 11

whereH : [0, T] × R
n × R

m × R
m×d ×U × R

m × R
n × R

n×d → R is defined by

H
(
t, x, y, z, v, p, q, k

)
= −〈p, f(t, x, y, z, v)〉 + 〈q, b(t, x, v)〉

+ 〈k, σ(t, x)〉 + h(t, x, y, v). (3.36)

Proof. Applying Itô’s formula to 〈pt, y1
t 〉 + 〈qt, x1

t 〉, by Lemma 3.3 we derive

E

{∫T

0

[
H
(
t, x

u,ξ
t , y

u,ξ
t , z

u,ξ
t , uεt , pt, qt, kt

)
−H

(
t, x

u,ξ
t , y

u,ξ
t , z

u,ξ
t , ut, pt, qt, kt

)]
dt

}

+ εE

{
∑

i≥1

[(
lξ(τi, ξi) + q∗τiCτi − p∗τiDτi

)
ηi
]
}

≥ o(ε),
(3.37)

where η(·) ∈ I satisfies ξ(·) + η(·) ∈ K. Dividing (3.37) by ε and letting ε go to 0, we obtain

E

[
H
(
τ, x

u,ξ
τ , y

u,ξ
τ , z

u,ξ
τ , v, pτ , qτ , kτ

)
−H

(
τ, x

u,ξ
τ , y

u,ξ
τ , z

u,ξ
τ , uτ , pτ , qτ , kτ

)]

+ E

{
∑

i≥1

[(
lξ(τi, ξi) + q∗τiCτi − p∗τiDτi

)
ηi
]
}

≥ 0, a.e. τ ∈ [0, T].
(3.38)

By choosing v = uτ in (3.38) we obtain the conclusion (3.35). If we choose η(·) ≡ 0, then for
v ∈ Fτ satisfying E|v|3 <∞ we have

E

[
H
(
τ, x

u,ξ
τ , y

u,ξ
τ , z

u,ξ
τ , v, pτ , qτ , kτ

)
−H

(
τ, x

u,ξ
τ , y

u,ξ
τ , z

u,ξ
τ , uτ , pτ , qτ , kτ

)]
≥ 0. (3.39)

Now let us set vτ = v1A +uτ1A for any v ∈ U andA ∈ Fτ . Then it is obvious that vτ ∈ Fτ and
E|vτ |3 <∞. So from (3.39) it follows that, for any A ∈ Fτ ,

E

{
1A
[
H
(
τ, x

u,ξ
τ , y

u,ξ
τ , z

u,ξ
τ , v, pτ , qτ , kτ

)
−H

(
τ, x

u,ξ
τ , y

u,ξ
τ , z

u,ξ
τ , uτ , pτ , qτ , kτ

)]}
≥ 0. (3.40)

Hence,

E

{[
H
(
τ, x

u,ξ
τ , y

u,ξ
τ , z

u,ξ
τ , v, pτ , qτ , kτ

)
−H

(
τ, x

u,ξ
τ , y

u,ξ
τ , z

u,ξ
τ , uτ , pτ , qτ , kτ

)]
| Fτ

}
≥ 0, ∀v ∈ U.

(3.41)

Since the quantity inside the conditional expectation is Fτ -measurable, the conclusion (3.34)
can be obtained easily.

Similar to [22, Corollary 3.1], by Theorem 3.4 we can easily obtain the following.
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Corollary 3.5. Assume K = R
n. Then for the optimal control (u(·), ξ(·)) it holds that

H
(
t, x

u,ξ
t , y

u,ξ
t , z

u,ξ
t , v, pt, qt, kt

)
−H

(
t, x

u,ξ
t , y

u,ξ
t , z

u,ξ
t , ut, pt, qt, kt

)
≥ 0, ∀v ∈ U, a.e., a.s.,

lξ(τi, ξi) + q∗τiCτi − p∗τiDτi = 0, i ≥ 1, a.s.
(3.42)

Remark 3.6. We can still obtain the stochastic maximum principle if the assumptions are
relaxed in the following way.

(i) The regular control process v(·) and the impulse control process η(·) are assumed
to satisfy E[sup0≤t≤T |vt|p] <∞ and E[

∑
i≥1 |ηi|p] <∞ for some p ∈ (2, 3).

(ii) The assumption |h(t, 0, 0, v)| ≤ c(1 + |v|3) in Hypothesis (H2) can be weakened as
|h(t, 0, 0, v)| ≤ c(1 + |v|p).

(iii) In the spike variation setting, the random variable v is assumed to satisfy E|v|p <∞.

In fact, under these new assumptions both the solutions of the control system (2.4)
and the variational equation (3.2) belong to Sp(Rn) × Sp(Rm) ×Hp(Rm×d). The conclusion of
Lemma 3.1 becomes

sup
0≤t≤T

E

∣∣∣x1
t

∣∣∣
p
+ sup

0≤t≤T
E

∣∣∣y1
t

∣∣∣
p
+ E

⎡

⎣

(∫T

0

∣∣∣z1t
∣∣∣
2
dt

)p/2
⎤

⎦ ≤ cεp. (3.43)

And Lemmas 3.2 and 3.3 still hold true.

4. Sufficient Optimality Conditions for Optimal Controls

We still denote by (xv,η(·), yv,η(·), zv,η(·)) the trajectory corresponding to (v(·), η(·)) ∈ A. Let
us first introduce an additional assumption.

(H3) The control domain U is a convex body in R
k. The maps b, f , and h are locally

Lipschitz in the regular control variable v.

Theorem 4.1. Let (H1)–(H3) hold. Assume that the functions φ, γ , η → l(t, η) and (x, y, z, v) →
H(t, x, y, z, v, p, q, k) are convex. Moreover, yv,ηT has the following particular form: yv,ηT = Kxv,ηT + ζ
for K ∈ R

m×n and ζ ∈ L3(Ω,FT ,P;Rm). Let (pu,ξ, qu,ξ, ku,ξ) be the solution of the adjoint equation
associated with (u, ξ) ∈ A. Then (u, ξ) is an optimal control of the stochastic optimal control problem
if it satisfies (3.34) and (3.35).

Proof. Set J̃ = J(v(·), η(·)) − J(u(·), ξ(·)). Since φ, γ , η → l(t, η) are convex, we have

φ
(
x
v,η

T

)
− φ
(
x
u,ξ
T

)
≥ φx

(
x
u,ξ
T

)(
x
v,η

T − xu,ξT
)
,

γ
(
y
v,η

0

)
− γ
(
y
u,ξ
0

)
≥ γy

(
y
u,ξ
0

)(
y
v,η

0 − yu,ξ0

)
,

∑

i≥1
l
(
τi, ηi

) −
∑

i≥1
l(τi, ξi) ≥

∑

i≥1

[
lξ(τi, ξi)

(
ηi − ξi

)]
.

(4.1)
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Thus,

J̃ ≥ E

{
φx
(
x
u,ξ
T

)(
x
v,η

T − xu,ξT
)
+ γy

(
y
u,ξ
0

)(
y
v,η

0 − yu,ξ0

)}

+ E

{∫T

0

[
h
(
t, x

v,η
t , y

v,η
t , vt

)
− h
(
t, x

u,ξ
t , y

u,ξ
t , ut

)]
dt

}

+ E

{
∑

i≥1

[
lξ(τi, ξi)

(
ηi − ξi

)]
}

.

(4.2)

Set Hv,η(t) := H(t, xv,ηt , y
v,η
t , z

v,η
t , vt, p

u,ξ
t , q

u,ξ
t , k

u,ξ
t ). Then by Itô’s formula applied to

〈qu,ξt , (xv,ηt − xu,ξt )〉 + 〈pu,ξt , (yv,ηt − yu,ξt )〉, we get J̃ ≥ Ξ + Θ, where

Ξ = E

{
∑

i≥1

[(
lξ(τi, ξi) + q∗τiCτi − p∗τiDτi

)(
ηi − ξi

)]
}

,

Θ = E

{∫T

0

[
Hv,η(t) −Hu,ξ(t) −Hu,ξ

x (t)
(
x
v,η
t − xu,ξt

)

− Hu,ξ
y (t)

(
y
v,η
t − yu,ξt

)
−Hu,ξ

z (t)
(
z
v,η
t − zu,ξt

)]
dt

}

.

(4.3)

From (3.35) we have Ξ ≥ 0. By (3.34) and [23, Lemma 2.3-(iii); Chapter 3], we have 0 ∈
∂uHu,ξ(t). By [23, Lemma 2.4; Chapter 3], we further conclude that

(
Hu,ξ

x (t),Hu,ξ
y (t),Hu,ξ

z (t), 0
)
∈ ∂x,y,z,uHu,ξ(t). (4.4)

Then, by [23, Lemma 2.3-(v); Chapter 3] and the convexity ofH(t, ., ., ., ., p, q, k), we obtain

Hv,η(t) −Hu,ξ(t) ≥ Hu,ξ
x (t)

(
x
v,η
t − xu,ξt

)
+Hu,ξ

y (t)
(
y
v,η
t − yu,ξt

)
+Hu,ξ

z (t)
(
z
v,η
t − zu,ξt

)
, (4.5)

fromwhich it follows immediately thatΘ ≥ 0. Thus we obtain J̃ ≥ 0 and the proof is complete.

We now give an example of linear quadratic optimal control problem involving
impulse controls to illustrate the application of our theoretical results.

Example 4.2. For simplicity, assume that the variables and coefficients are scalar-valued. Let
us take U = {−1, 1} and K = R. There are only two values −1 and 1 in U which is a usual
case in practice and represents only two control states: “on” and “off”. For (v(·), η(·)) ∈ A,
the controlled system is subject to the following linear FBSDE:

dxt = (Axt + Bvt)dt + CxtdBt +Hdηt,

dyt = −(Dxt + Eyt + Fzt +Gvt
)
dt + ztdBt − Rdηt,

x0 = a, yT = gxT ,

(4.6)
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and the cost functional is given by

J
(
v(·), η(·)) = 1

2
E

[

Wx2
T + γy

2
0 +
∫T

0

(
Mx2

t +Ny2
t +Qv

2
t

)
dt + L

∑

i≥1
η2i

]

. (4.7)

The coefficients are deterministic constants such that W, γ,M,N ≥ 0 and Q,L > 0. By
Propositions 2.1 and 2.2 we know that the control system admits a unique solution
(x(·), y(·), z(·)) ∈ S3(R) × S3(R) × H3(R) for any (v, η) ∈ A. And the functional J is well
defined fromA into R.

Let (u(·), ξ(·) =
∑

i≥1 ξi1[τi,T](·)) ∈ A be an optimal control and (x(·), y(·), z(·)) the
corresponding trajectory. Then the following adjoint equation

dpt =
(
Ept −Nyt

)
dt + FptdBt,

dqt =
(
Dpt −Aqt − Ckt −Mxt

)
dt + ktdBt,

p0 = −γy0, qT = −gpT +WxT

(4.8)

admits a unique solution (p(·), q(·), k(·)) ∈ S3(R) × S3(R) × H3(R). The Hamiltonian H is
given by

H
(
t, x, y, z, v, p, q, k

)
= −p(Dx + Ey + Fz +Gv

)
+ q(Ax + Bv)

+ kCx +
1
2

(
Mx2 +Ny2 +Qv2

)
.

(4.9)

Then by Corollary 3.5 we obtain

(−Gpt + Bqt
)
v +

1
2
Qv2 ≥ (−Gpt + Bqt

)
ut +

1
2
Qu2t , ∀v ∈ U, a.e., a.s., (4.10)

Lξi +Hqτi − Rpτi = 0, i ≥ 1, a.s.. (4.11)

From (4.10) we get

ut =

{
1, if Gpt − Bqt ≥ 0,
−1, otherwise.

(4.12)

From (4.11) we obtain that

ξi = L−1(Rpτi −Hqτi
)
, i ≥ 1, a.s. (4.13)

Hence, if (u, ξ) ∈ A is an optimal control of this linear quadratic control problem, then it
satisfies (4.12) and (4.13).

We can prove that (u(·), ξ(·)) obtained in (4.12) and (4.13) is indeed an optimal control
of this linear quadratic optimization problem. Note that Theorem 4.1 does not hold now since
U is not convex in this example. In what follows, we use the same notations as those in the
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proof of Theorem 4.1. In fact, as in the proof of Theorem 4.1, we can still derive J(v(·), η(·)) −
J(u(·), ξ(·)) ≥ Ξ+Θ. On the one hand, it follows from (4.13) that Ξ = 0. On the other hand, we
have

Θ = E

{∫T

0

[
Hv,η(t) −H

(
t, x

v,η
t , y

v,η
t , z

v,η
t , ut, p

u,ξ
t , q

u,ξ
t , k

u,ξ
t

)
+ Φt

]
dt

}

, (4.14)

where

Φt = H
(
t, x

v,η
t , y

v,η
t , z

v,η
t , ut, p

u,ξ
t , q

u,ξ
t , k

u,ξ
t

)
−Hu,ξ(t)

−Hu,ξ
x (t)

(
x
v,η
t − xu,ξt

)
−Hu,ξ

y (t)
(
y
v,η
t − yu,ξt

)
−Hu,ξ

z (t)
(
z
v,η
t − zu,ξt

)
.

(4.15)

From (4.12) and the definition ofH, it is easy to get

Hv,η(t) −H
(
t, x

v,η
t , y

v,η
t , z

v,η
t , ut, p

u,ξ
t , q

u,ξ
t , k

u,ξ
t

)

=
[
(−Gpt + Bqt

)
vt +

1
2
Qv2

t

]
−
[
(−Gpt + Bqt

)
ut +

1
2
Qu2t

]
≥ 0.

(4.16)

SinceM,N ≥ 0,H is convex in (x, y, z), and thus Φt ≥ 0, so we obtain Θ ≥ 0. Consequently,
it follows that J(v(·), η(·)) − J(u(·), ξ(·)) ≥ 0 and the optimality of (u(·), ξ(·)) is proved.

Remark 4.3. For the classical linear quadratic optimal control problem, one can usually obtain
an optimal control in a linear state feedback form by virtue of the so-called Riccati equation,
and along this line the solvability of the Riccati equation leads to that of the linear quadratic
problem. However, it is difficult to obtain a state feedback optimal control in terms of the
Riccati equation in Example 4.2 mainly due to the particular form of the regular control
domain and the appearance of the impulse control in the control system.
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