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We propose a numerical Taylor’s Decomposition method to compute approximate eigenvalues
and eigenfunctions for regular Sturm-Liouville eigenvalue problem and nonlinear Euler buckling
problem very accurately for relatively large step sizes. For regular Sturm-Liouville problem, the
technique is illustrated with three examples and the numerical results show that the approximate
eigenvalues are obtained with high-order accuracy without using any correction, and they are
compared with the results of other methods. The numerical results of Euler Buckling problem are
compared with theoretical aspects, and it is seen that they agree with each other.

1. Introduction

We investigate the computation of eigenvalues of regular Sturm-Liouville eigenvalue
problems:

−y′′(x) + r(x)y(x) = λy(x), 0 ≤ x0 < x < xn,

y(x0) = y(xn) = 0,
(1.1)

where r(x) ∈ Cp+q[x0, xn] and p, q ∈ N and Euler Buckling problem:

y′′ + λ siny = 0,

y′(0) = 0, y′(1) = 0.
(1.2)

Regular Sturm-Liouville problems arise in many applications, and many methods are
available for their numerical solution Pryce [1].
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We also examine an elementary, classical problem buckling of an end-loaded rod
which possesses a completely soluble continuous model in the form of a nonlinear, second-
order boundary value problem as described in elsewhere [2–5]. An essential complete
analysis of this problem was provided by Euler [6]. For the nonlinear eigenvalue problem
(1.2), one may find that for small λ the only solution is zero solution as in the linear case.
But as the eigenvalue λ increases, it reaches a critical value λ1 at which a nonzero solution
appears, corresponding to buckling of the rod. For λ > λ1, the nonlinear problem behaves
quite differently from the linear problem: for a range of values λ1 < λ < λ2, there is exactly
one nonzero solution of (1.2) for each λ, and when λ exceeds λ2, a second nonzero solution
appears; similarly, there is a value λ3 beyond which there are three nonzero solutions, and so
on. Namely, one may give inductively

0 ≤ λ ≤ π2, only the trivial solution,

π2 < λ ≤ 4π2, one nontrivial solution,

n2π2 < λ ≤ (n + 1)2π2, n nontrivial solutions,

(1.3)

as given by Stakgold [2]. This behavior is a simple example of the phenomenon of bifurcation
or branching; it occurs in many different areas of applied mathematics.

The method considered here is a Taylor decomposition which was used by Adiyaman
and Somali [7] for the solution of certain nonlinear problems. Like classical finite-difference
and finite-element methods, this high order method is best suited to the fundamental
eigenvalue and small eigenvalues.

In Section 2, the behavior of eigenvalues and corresponding eigenfunctions for regular
Sturm-Liouville problem is obtained by Taylor’s decomposition method, and convergence
of the method for regular Sturm-Liouville problem with constant function r(x) is given. We
establish a Lemma and a Theorem, and thenwe give an application of Taylor’s decomposition
method to the Euler Buckling problem in Section 3. The technique is illustrated with
three examples, and the numerical results of regular Sturm-Liouville problem are given
by comparing the results of other methods in Section 4. The numerical results of Euler
Buckling problem accompanying the theoretical results and the behavior of solution are
also discussed in Section 4. In the conclusion, we summarize the study and present our
suggestions regarding future work.

2. Application and Error Analysis of Taylor’s Decomposition Method
for Regular Sturm-Liouville Eigenvalue Problems

2.1. Application of Taylor’s Decomposition on Two Points for Regular
Sturm-Liouville Eigenvalue Problems

We consider the regular Sturm-Liouville eigenvalue problem (1.1) by introducing the new
depending variable y′(x) = z(x), (1.1) can be written as

Y ′(x) = A(x)Y (x),

C0Y (x0) + C1Y (xn) = 0,
(2.1)
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where

Y (x) =

[
y(x)

z(x)

]
, A(x) =

[
0 1

r(x) − λ 0

]
, C0 =

[
1 0

0 0

]
, C1 =

[
0 0

1 0

]
. (2.2)

From Ashyralyev and Sobolevskii [8], we will consider the application of Taylor’s decompo-
sition of function Y (x) on two points. We need to find Y (j)(x) for any 1 ≤ j ≤ p and q. Using
the equation Y ′(x) = A(x)Y (x), we get

Y (j)(x) = Aj(x)Y (x), (2.3)

with

A0(x) = I,

A1(x) = A(x),

Aj(x) = A′
j−1(x) +Aj−1(x)A(x), 2 ≤ j ≤ p,

(2.4)

where I is the 2 × 2 identity matrix. By using the structure of the matrix A(x), we obtain the
entries of the matrix of

Aj(x) =

[
aj(1,1)(λ;x) aj(1,2)(λ;x)

aj(2,1)(λ;x) aj(2,2)(λ;x)

]
(2.5)

as in the following formulas:

aj(1,1)(λ;x) =
∂aj−1(1,1)(λ;x)

∂x
+ (r(x) − λ)aj−2(2,2)(λ;x) = aj−1(2,1)(λ;x),

aj(2,2)(λ;x) =
∂aj−1(2,2)(λ;x)

∂x
+ aj(1,1)(λ;x),

aj(1,2)(λ;x) = aj−1(2,2)(λ;x),

aj(2,1)(λ;x) = −∂aj(2,2)(λ;x)
∂x

+ aj+1(2,2)(λ;x),

(2.6)

for 2 ≤ j ≤ p, where

a0(1,1)(λ;x) = 1, a1(1,1)(λ;x) = 0,

a0(1,2)(λ;x) = 0, a1(1,2)(λ;x) = 1,

a0(2,1)(λ;x) = 0, a1(2,1)(λ;x) = r(x) − λ,

a0(2,2)(λ;x) = 1, a1(2,2)(λ;x) = 0.

(2.7)
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From the theorem given in Ashyralyev and Sobolevskii [8], we have the following
relation:

Y (xk) − Y (xk−1) +
p∑
j=1

αjY
(j)(xk)hj −

q∑
j=1

βjY
(j)(xk−1)hj

=
(−1)p(
p + q

)
!

∫xk

xk−1
(xk − s)q(s − xk−1)pY (p+q+1)(s)ds

(2.8)

on the uniform grid

[x0, xn]h = {xk = x0 + kh, k = 0, 1, . . . , n, nh = xn − x0, n ∈ N}, (2.9)

where

αj =

(
p + q − j

)
!p!(−1)j(

p + q
)
!j!
(
p − j

)
!
, 1 ≤ j ≤ p,

βj =

(
p + q − j

)
!q!(

p + q
)
!j!
(
q − j

)
!
, 1 ≤ j ≤ q.

(2.10)

Rewriting (2.8) by neglecting the last term, we obtain the single-step difference scheme of
(p + q)-order of accuracy for the approximate solution of problem (2.1):

Yk − Yk−1 +
p∑
j=1

αjAj(xk)Ykh
j −

q∑
j=1

βjAj(xk−1)Yk−1hj = 0, (2.11)

where

Yk =

[
yk

zk

]
(2.12)

is the approximate value of Y (xk). For the simple computation, let p = q, then we have

⎛
⎝I +

p∑
j=1

αjAj(xk)hj

⎞
⎠Yk =

⎛
⎝I +

p∑
j=1

(−1)jαjAj(xk−1)hj

⎞
⎠Yk−1, (2.13)

where βj = (−1)jαj . Letting M(xk) = (I +
∑p

j=1 αjAj(xk)hj) and N(xk−1) = (I +∑p

j=1(−1)jαjAj(xk−1)hj), we write

Yk = M−1(xk)N(xk−1)Yk−1. (2.14)
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Since the accuracy and convergence of the method not only depend on h, they also depend
on p, we can increase the order of accuracy by increasing p for fixed h. So h is chosen as length
of the whole interval as follows. Now, taking h = xn − x0 gives

Y1 = M−1(xn)N(x0)Y0, (2.15)

and substituting into the boundary condition of (2.1), we get

(
C1M

−1(xn)N(x0) + C0

)
Y0 = 0. (2.16)

To obtain a nontrivial solution Y0, we must have the following equation:

det
(
C1M

−1(xn)N(x0) + C0

)
= 0. (2.17)

Defining

M(xn) =

[
m11 m12

m21 m22

]
, N(x0) =

[
n11 n12

n21 n22

]
, (2.18)

we have the following statement

m22n12 −m12n22 = 0. (2.19)

Since

M(xn) =

⎡
⎢⎢⎢⎢⎣
1 +

p∑
j=1

αjaj(1,1)(λ;xn)hj
p∑
j=1

αjaj(1,2)(λ;xn)hj

p∑
j=1

αjaj(2,1)(λ;xn)hj 1 +
p∑
j=1

αjaj(2,2)(λ;xn)hj

⎤
⎥⎥⎥⎥⎦,

N(x0) =

⎡
⎢⎢⎢⎢⎣
1 +

p∑
j=1

(−1)jαjaj(1,1)(λ;x0)hj
p∑
j=1

(−1)jαjaj(1,2)(λ;x0)hj

p∑
j=1

(−1)jαjaj(2,1)(λ;x0)hj 1 +
p∑
j=1

(−1)jαjaj(2,2)(λ;x0)hj

⎤
⎥⎥⎥⎥⎦,

(2.20)
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using the entriesm12, m22, n12, and n22 of the above matrices and the properties of the entries
of Aj(x), we obtain (2.19) in terms of λ:

F(λ) = m22n12 −m12n22

=

⎛
⎝1 +

p∑
j=1

αjaj(2,2)(λ;xn)hj

⎞
⎠
⎛
⎝ p∑

j=1

(−1)jαjaj−1(2,2)(λ;x0)hj

⎞
⎠

−
⎛
⎝ p∑

j=1

αjaj−1(2,2)(λ;xn)hj

⎞
⎠
⎛
⎝1 +

p∑
j=1

(−1)jαjaj(2,2)(λ;x0)hj

⎞
⎠.

(2.21)

Solving nonlinear equation F(λ) = 0 by Newton’s method, we find the approximate
eigenvalues. This method appears to require a separate calculation for the eigenfunctions.

To find the corresponding eigenfunctions of the regular Sturm-Liouville eigenvalue
problem (2.1), we substitute the eigenvalue to (2.1) and we solve the obtained boundary
value problem by Taylor’s decompositionmethod on two points xk−1 and xk with the uniform
grid [0, 1]h for p = q. Then, we get a homogeneous linear equation system of 2n equations
with 2n unknown z0, y1, z1, y2, z2 . . . , yn−1, zn−1, zn which are the approximated values of
y′(x0), y(x1), y′(x1), y(x2), y′(x2), . . . , y(xn−1), y′(xn−1), y′(xn), respectively. Solving the 2n×2n
homogeneous system, we obtain approximate values of the eigenfunction and its derivative
of (1.1) at the point x = xk.

2.2. Error Analysis for Regular Sturm-Liouville Problem When r(x) = c

In this section, we will show the convergence of the method for eigenfunctions with the
constant function r(x) = c by obtaining approximate value of eigenfunction at the point
x ∈ [x0, xn] of the problem (1.1). Without loss of generality, we may choose r(x) = 0, then
Aj(x) = Aj , that is, aj(2,2)(λ;xn) = aj(2,2)(λ; 0) = aj(2,2)(λ). Using (2.6), we can find explicit
values of aj(1,1), aj(2,2) as follows:

a2j(1,1) = (−1)jλj ,

a2j(2,2) = (−1)jλj ,
a2j+1(1,1) = 0,

a2j+1(2,2) = 0, j ≥ 0.

(2.22)
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This yields

m22 = 1 +
�p/2�∑
j=1

α2j(−1)jλjh2j ,

n22 = m22,

m12 =
�(p−1)/2�∑

j=0

α2j+1(−1)jλjh2j+1,

n12 = −m12,

m11 = m22,

m21 = −λm12.

(2.23)

Using (2.14) for k = 1, we have

Y1 = M−1(x)N(x0)Y0, (2.24)

where Y0 and Y1 are the approximated values of Y (x0) and Y (x), respectively, with the
stepsize h = x − x0:

Y1 =
z0

det(M)

[ −2m22m12

−λ(m12)2 + (m22)2

]
. (2.25)

The first component of the above vector (2.25) gives the approximate eigenfunction y1, and
the second component of the above vector (2.25) gives the derivative of the approximate
eigenfunction z1 of the regular Sturm-Liouville problem (1.1) at x. Now, we will show that
y1 and z1 converge to exact functions y(x) and y′(x), respectively, as p → ∞.

Using the Stirling’s Formula n! ≈ √
2πn(n+1)/2e−n for αj in (2.10), we obtain

αj =

(
2p − j

)
!p!(−1)j(

2p
)
!j!
(
p − j

)
!
≈ (−1)j 1

j!
1
2j

(
p − j/2
p − j

)(p−j+1)/2(p − j/2
p

)p/2

. (2.26)

This gives

lim
p→∞

αj = (−1)j 1
j!

1
2j
. (2.27)
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Thus,

lim
p→∞

m22 = lim
p→∞

⎛
⎝1 +

�p/2�∑
j=1

α2j(−1)jλjh2j

⎞
⎠ = 1 +

∞∑
j=1

1(
2j
)
!
1
22j

(−1)jλjh2j

=
∞∑
j=0

(−1)j
(√

λh

2

)2j
1(
2j
)
!
= cos

(√
λ
)h
2
.

(2.28)

By using the same idea, we obtain

lim
p→∞

m12 = lim
p→∞

⎛
⎝�(p−1)/2�∑

j=0
(−1)jα2j+1λ

jh2j+1

⎞
⎠ =

1√
λ
sin
(√

λ
)h
2
. (2.29)

It follows from (2.28) and (2.29) that

lim
p→∞

det(M) = m2
22 + λm2

12 = cos2
(√

λ
)h
2
+ λ

(
1√
λ
sin(
√
λ)

h

2

)2

= 1. (2.30)

Hence, for r(x) = 0, the approximate eigenfunction of (1.1) to the corresponding eigenvalue
λ converges to exact eigenfunction:

lim
p→∞

y1 = 2
z0

det(M)
1√
λ

(
cos
(√

λ
h

2

))(
sin
(√

λ
h

2

))
=

z0√
λ
sin
(√

λ(x − x0)
)
. (2.31)

Since we have z(x) = y′(x), the derivative of approximate eigenfunction of (1.1) to the
corresponding eigenvalue λ converges to derivative of the exact solution:

lim
p→∞

z1 =
z0

det(M)

(
(−λ) 1

λ
sin2
(√

λ
h

2

)
+ cos2

(√
λ
h

2

))
= z0 cos

(√
λ(x − x0)

)
, (2.32)

where λ = k2π2, k = 1, 2, . . ..
This demonstration shows that approximate eigenfunction and eigenvalue converges

to exact one as p → ∞ for fixed step-size “h.”
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2.3. Taylor’s Decomposition Method to the Euler Buckling Problem

For convenience, we introduce the following notations as in (2.1) and Adiyaman and Somali
[7]:

Y (x) =

[
y(x)

z(x)

]
, F(Y (x)) =

⎡
⎣f (0)

1

(
y, z
)

f
(0)
2

(
y, z
)
⎤
⎦,

C0 =

[
0 1

0 0

]
, C1 =

[
0 0

0 1

]
, f

(0)
1

(
y, z
)
= z, f

(0)
2

(
y, z
)
= −λ siny.

(2.33)

Thus, the Euler Buckling Problem (1.2) can be written in the form:

Y ′(x) = F(Y (x)), 0 < x < 1,

C0Y (0) + C1Y (1) = 0,
(2.34)

Defining the following recurrence relations for j = 1, . . . , 2p:

f
(j)
i

(
y, z
)
= z

∂f
(j−1)
i

(
y, z
)

∂y
− λ siny

∂f
(j−1)
i

(
y, z
)

∂z
, i = 1, 2, (2.35)

we obtain

Y (j)(x) =

⎡
⎣f (j−1)

1

(
y, z
)

f
(j−1)
2

(
y, z
)
⎤
⎦ =

⎡
⎣f (j−2)

2

(
y, z
)

f
(j−1)
2

(
y, z
)
⎤
⎦ for j = 2, . . . , 2p + 1. (2.36)

We first give the following lemma which defines f (j−1)
2 (y, z) explicitly.

Lemma 2.1. For j = 0, . . . , 2p, let f (j)
2 (y, z) satisfy the recurrence relation (2.35) with f

(0)
2 (y, z) =

−λ siny. Then

f
(2m)
2

(
y, z
)
=

m∑
i=0

λi+1z2m−2i
�i/2�∑
k=0

(−1)m+1−ka2m+1,i,k
(
cosy

)i−2k(siny)2k+1, (2.37)

where

a2m+1,i,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, i = 0, k = 0,

(2k + 2)a2m,i,k+1 + (i + 1 − 2k)a2m,i,k

+(2m + 1 − 2i)a2m,i−1,k, 1 ≤ i ≤ m, 0 ≤ k ≤ i

2
,

0, else,

(2.38)
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form = 0, . . . , p, and

f
(2m+1)
2

(
y, z
)
=

m∑
i=0

λi+1z2m+1−2i
�(i+1)/2�∑

k=0

(−1)m+1−ka2m+2,i,k
(
cosy

)i+1−2k(siny)2k, (2.39)

where

a2m+2,i,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, i = 0, k = 0,

(2k + 1)a2m+1,i,k + (i − 2k)a2m+1,i,k−1

+(2m + 2 − 2i)a2m+1,i−1,k−1, 1 ≤ i ≤ m, 0 ≤ k ≤ i

2
0, else,

(2.40)

form = 0, . . . , p − 1.

Proof. The proof follows induction argument based on (2.35).

Theorem 2.2. If f (j)
1 (y, z) and f

(j)
2 (y, z), are sufficiently smooth and satisfy (2.36), (2.37), and

(2.39) then the following relations hold: (a) it holds that

y1 − y0 +
p∑
j=1

βj
[
(−1)jf (j−1)

1

(
y1, 0

) − f
(j−1)
1

(
y0, 0

)]
= −2

(
y0 +

p∑
j=1

βjf
(j−1)
1

(
y0, 0

))
,

p∑
j=1

βj
[
(−1)jf (j−1)

2

(
y1, 0

) − f
(j−1)
2

(
y0, 0

)]
= 0,

(2.41)

for y1 = −y0, (b) it holds that

p∑
j=1

βj
[
(−1)jf (j−1)

2

(
y1, 0

) − f
(j−1)
2

(
y0, 0

)]
= −2

p∑
j=1

βjf
(j−1)
2

(
y0, 0

)
,

y1 − y0 +
p∑
j=1

βj
[
(−1)jf (j−1)

1

(
y1, 0

) − f
(j−1)
1

(
y0, 0

)]
= 0,

(2.42)

for y1 = y0.

Proof. Let j = 2m + 1 for m = 0, . . . , p, then f
(2m+1)
1 (y, z) becomes

f
(2m)
1

(
y, z
)
= f

(2m−1)
2

(
y, z
)
=

(m−1)∑
i=0

λi+1z2m−2i−1
�(i+1)/2�∑

k=0

(−1)m−ka2m,i,k

(
cosy

)i+1−2k(siny)2k,
(2.43)
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by Lemma 2.1. Since all terms of previous sum contain z, f2m
1 (y, 0) = f2m−1

2 (y, 0) = 0 for
m = 1, . . . , p, hence, we get the following equations:

y1 − y0 +
p∑
j=1

βj
[
(−1)jf (j−1)

1

(
y1, 0

) − f
(j−1)
1

(
y0, 0

)]

= y1 − y0 +
p∑
j=1

βj
[
f
(j−1)
1

(
y1, 0

) − f
(j−1)
1

(
y0, 0

)]
,

p∑
j=1

βj
[
(−1)jf (j−1)

2

(
y1, 0

) − f
(j−1)
2

(
y0, 0

)]
=

p∑
j=1

βj
[
−f (j−1)

2

(
y1, 0

) − f
(j−1)
2

(
y0, 0

)]
.

(2.44)

Letting j = 2m + 2 for m = 0, . . . , p − 1 and using (2.37), we get

f
(2m+2−1)
1

(
y, z
)
= f

(2m)
2

(
y, z
)
=

m∑
i=0

λi+1z2m−2i
�i/2�∑
k=0

(−1)m+1−ka2m+1,i,k
(
cosy

)i−2k(siny)2k+1.
(2.45)

Substituting the value z = 0 into (2.45), we obtain

f
(2m+1)
1

(−y0, 0
)
= f2m

2

(−y0, 0
)
= λm+1

�m/2�∑
k=0

(−1)m+1−ka2m+1,m,k

(
cosy0

)i−2k[−(siny0
)2k+1]

= −f (2m)
2

(
y0, 0

)
,

(2.46)

which gives the following relations:

f
(2m+1)
1

(−y0, 0
)
= −f (2m+1)

1

(
y0, 0

)
,

f
(2m)
2

(−y0, 0
)
= −f (2m)

2

(
y0, 0

)
.

(2.47)
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Table 1: Corresponding to the initial values y1,0, y2,0, y3,0, and y4,0 for various λ obtained from (2.54) and
(2.55).

λ y1,0 y2,0 y3,0 y4,0

15 > π2 1.7471 — — —
45 > 4π2 2.8578 1.0092 — —
90 > 9π2 3.0718 2.3413 0.3236 —
160 > 16π2 3.1272 2.7999 2.0239 0.3771

Using (2.47) for y1 = −y0, we obtain the following relations:

y1 − y0 +
p∑
j=1

βj
[
(−1)jf (j−1)

1

(
y1, 0

) − f
(j−1)
1

(
y0, 0

)]

= −y0 − y0 +
p∑
j=1

βj
[
f
(j−1)
1

(−y0, 0
) − f

(j−1)
1

(
y0, 0

)]

= −2
⎛
⎝y0 +

p∑
j=1

βjf
(j−1)
1

(
y0, 0

)⎞⎠
p∑
j=1

βj
[
−f (j−1)

2

(
y1, 0

) − f
(j−1)
2

(
y0, 0

)]
= 0.

(2.48)

Similarly for y1 = y0 using (2.47), we observe that

y1 − y0 +
p∑
j=1

βj
[
(−1)jf (j−1)

1

(
y1, 0

) − f
(j−1)
1

(
y0, 0

)]
= 0,

p∑
j=1

βj
[
(−1)jf (j−1)

2

(
y1, 0

)
f
(j−1)
2

(
y0, 0

)]
= −2

p∑
j=1

βjf
(j−1)
2

(
y0, 0

)
.

(2.49)

So, our assertions (a) and (b) are proved.
Again, we consider the application of Taylor’s decomposition method to (2.34) on two

points xk and xk−1:

Yk − Yk−1 +
p∑
j=1

αjY
(j)
k

hj −
q∑
j=1

βjY
(j)
k−1h

j = 0, (2.50)

where Y
(j)
k is the approximate value of Y (j)

k (xk). For the computation of the eigenvalues of
(1.2), putting h = 1 and p = q, the approximation (2.50) gives

Y1 − Y0 +
p∑
j=1

(−1)jβjY (j)
1 −

p∑
j=1

βjY
(j)
0 = 0, (2.51)
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Table 2: Comparison of the first eigenvalue and solutions of Example 3.1 using Taylor’s decomposition
method, exact values, and Table 4 from [9], when n = 0.

x
HWSM FDM TDM

Exact

Errors of
TDM

Errors of
TDM

Errors of
TDM

(h = 1/16) (h = 1/16) (p = 3)
(h = 1/16)

(p = 3)
(h = 1/16)

(p = 4)
(h = 1/8)

(p = 5)
(h = 1/4)

0 0 0 0 0 0 0 0
0.0625 0.27521 0.278599 0.275999 0.275899 1.54E − 10 — —
0.125 0.54181 0.541196 0.541196 0.541196 2.91E − 10 1.13E − 11 —
0.1875 0.78549 0.785695 0.785695 0.785695 3.93E − 10 — —
0.25 1.00482 1 1 1 4.45E − 10 1.74E − 11 6.87E − 12
0.3125 1.17851 1.17588 1.17588 1.17588 4.37E − 10 — —
0.375 1.31285 1.30656 1.30656 1.30656 3.61E − 10 1.41E − 11 —
0.4375 1.38376 1.38704 1.38704 1.38704 2.15E − 10 — —
0.5 1.41103 1.41421 1.41421 1.41421 2.22E − 16 2.22E − 16 0
0.5625 1.38376 1.38704 1.38704 1.38704 2.76E − 10 — —
0.625 1.31285 1.30656 1.30656 1.30656 6.03E − 10 2.35E − 11 —
0.6875 1.17851 1.17588 1.17588 1.17588 9.63E − 10 — —
0.75 1.00482 1 1 1 1.33E − 9 5.22E − 11 2.06E-11
0.8125 0.78549 0.785695 0.785695 0.785695 1.70E − 9 — —
0.875 0.54181 0.541196 0.541196 0.541196 2.03E − 9 7.96E − 11 —
0.9375 0.27521 0.275899 0.275999 0.275899 2.31E − 9 — —
1 0 0 0 0 0 0 0
λ1 = 10.9334 (HWSM), 10.8379 (FDM), 10.8696 (TDM), 10.8696 (Exact).

Table 3: Comparison of the first eigenvalue and solutions of Example 3.1 using TDM and Table 4 from [9],
when p = 16, n = 2, and h = 0.0625.

x HWSM FDM TDM
0 0 0 0
0.0625 0.27521 0.27756 0.277563
0.125 0.54181 0.54434 0.544337
0.1875 0.78949 0.78996 0.789953
0.25 1.00485 1.00488 1.00487
0.3125 1.18153 1.18075 1.18074
0.375 1.31286 1.31082 1.31076
0.4375 1.39372 1.38996 1.38994
0.5 1.42102 1.41527 1.41529
0.5625 1.39371 1.38591 1.38598
0.625 1.31285 1.30323 1.30334
0.6875 1.18154 1.18066 1.17081
0.75 1.0048 0.99361 0.993792
0.8125 0.77949 0.77917 0.779357
0.875 0.53481 0.53577 0.535934
0.9375 0.27726 0.27277 0.272878
1 0 0 0
λ1 = 10.3452 (HWSM), 9.95067 (FDM), 9.98317 (TDM).
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Table 4: The errors between exact and approximate fundamental eigenvalue for various p and for h = 1
and n = 0 in Example 3.1.

p 2 3 4 6 7 9 10 11
Errors 2.13E0 1.30E − 1 5.49E − 3 2.60E − 6 3.38E − 8 2.60E − 12 1.59E − 14 1.77E − 15

Table 5: Observed orders of Example 3.1 for n = 2 at x = 1/2 using Taylor’s decomposition method.

p = 2 p = 3 p = 4
ord(1/8) 4.23247 7.90607 10.6574
ord(1/16) 3.86153 5.22141 8.13719
ord(1/32) 3.98674 5.93074 7.63932

where αj = (−1)jβj . Writing (2.51) with respect to the components and imposing the
boundary conditions z0 = z(0) = y′(0) = 0 and z1 = z(1) = y′(1) = 0, we have the following
equations

y1 − y0 +
p∑
j=1

βj
[
(−1)jf (j−1)

1

(
y1, 0

) − f
(j−1)
1

(
y0, 0

)]
= 0, (2.52)

p∑
j=1

βj
[
(−1)jf (j−1)

2

(
y1, 0

) − f
(j−1)
2

(
y0, 0

)]
= 0. (2.53)

Using Theorem 2.2(a) for y1 = −y0, (2.52) becomes

G1
(
y0, λ

)
= −2

⎛
⎝y0 +

p∑
j=1

βjf
(j−1)
1

(
y0, 0

)⎞⎠ = 0, (2.54)

and (2.53) is satisfied. For y1 = y0, (2.52) is satisfied by Theorem 2.2(b) and (2.53) becomes

G2
(
y0, λ

)
= −2

p∑
j=1

βjf
(j−1)
2

(
y0, 0

)
= 0. (2.55)

From Table 1, we observe that there is only trivial initial condition for 0 ≤ λ ≤ π2, there
is one nontrivial initial condition from (2.54) for π2 < λ ≤ 4π2, there are n nontrivial initial
conditions for n2π2 < λ ≤ (n + 1)2π2. These results show that the numerical results obtained
using Taylor’s decomposition method agree with the theoretical results of Euler buckling
problem given in [2].

Now, we find an approximate solution to the problem

Y ′(x) = F(Y (x)),

Y (0) = Y0,
(2.56)

Which corresponds to Euler buckling problem (1.2) for an eigenvalue λ and the initial
value y0. Using Taylor’s Decomposition on two points xk−1, xk for p = q then y0 � y(0),
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Table 6: Comparison of higher eigenvalues for Mathieu’s equation obtained from FDM, HWSM, and TDM
corresponding to θ = 5.

n n2 λn (FDM) λn (HWSM) λn (TDM)
1 1 −5.7311 −5.4665 −5.79008
2 4 2.0992 2.6161 2.09946
3 9 9.2365 9.4227 9.23633
4 16 16.648 16.3707 16.6482
5 25 25.511 24.1471 25.5108
6 36 36.359 36.6577 36.3589
λ1 = −5.46653 (HWSM), −5.73115 (FDM), −5.79008 (TDM).

Table 7: Comparison of the exact eigenvalues with approximate eigenvalues obtained from Numerov’s
method (Λk) with correction and TDM (μk) for Example 3.3 corresponding to β = 10.

k λk λk −Λ(40)
k

λk −Λ(80)
k

λk − μ70
k

λk − μ80
k

1 0.0000000 2.32E − 3 1.43E − 4 3.63E − 3 7.60E − 5
2 37.7596285 7.52E − 3 4.42E − 4 9.15E − 4 3.81E − 6
3 37.8059002 1.61E − 3 9.93E − 5 5.66E − 7 1.12E − 7
4 37.8525995 6.88E − 3 4.43E − 4 8.97E − 4 3.85E − 5
5 70.5475097 3.22E − 2 1.97E − 3 1.57E − 2 3.74E − 4
6 92.6538177 2.25E − 2 1.37E − 3 2.25E − 3 2.20E − 5
7 96.2058159 1.20E − 2 7.28E − 4 2.18E − 3 1.78E − 4
8 102.254347 3.45E − 2 2.09E − 3 4.38E − 3 2.44E − 4
h = π for Taylor’s decomposition method.

z0 = z(0). Solving the obtained nonlinear system by Newton’s method, we obtain the approx-
imate value yk of the eigenfunction y(x) at x = xk with O(h2p).

It is clear that f (0)
2 (y, z) = siny is Lipschitz in y in 2-dimensional box D. Using the

results (Adiyaman and Somali [7, Lemma 2 and Theorem 3]), the global error for (2.50) is
bounded by

‖Y (xk) − Yk‖ ≤ C0‖Y (0) − Y0‖ + C1
ξh2pMp+1(

2p
)
!

, (2.57)

where C0 = ex((2LB(h))/(1−LB(h))), C1 = const (C0/L)(1/(1 + (β2/β1)h + · · · + βp/β1h
p−1)), M =

max(y,z)∈D{|f (0)
1 (y, z)|, |f (0)

2 (y, z)|}, D is 2-dimensional box in R2, ξ = max{∑�(i+1)/2�
k=0 aj,i,k},

j = 1, . . . , 2p, i = 0, . . . , p, const is a constant independent of h, p, ‖ · ‖ denotes ‖ · ‖∞,
L = max1≤j≤p{l1,j , l2,j} with l1,j = max1≤j≤p{d1,j , s1,j}, l2,j = max1≤j≤p{d2,j , s2,j}, dk,j =

max(y,z)∈D|(∂f (j)
k
(y, z)/∂y)|, sk,j = max(y,z)∈D|(∂f (j)

k
(y, z)/∂z)|, k = 1, 2, and B(h) =

L
∑p

j=1 βjh
j−1 for some x > 0.



16 Abstract and Applied Analysis

Table 8: Comparison of the exact eigenvalues with approximate eigenvalues obtained from Numerov’s
method (Λk) with correction and TDM (μk) for Example 3.3 corresponding to β = 20.

k λk λk −Λ(40)
k

λk −Λ(80)
k

λk − μ100
k

λk − μ110
k

1 0.0000000 1.93E − 2 1.17E − 3 1.04E − 1 7.64E − 3
2 77.9161943 1.22E − 1 7.38E − 3 4.37E − 2 6.98E − 2
3 77.9161957 1.63E − 2 9.95E − 4 9.89E − 4 1.67E − 4
4 77.9161972 1.62E − 2 9.89E − 4 1.13E − 1 7.48E − 2
5 151.463224 3.90E − 1 2.33E − 2 7.04E − 1 1.56E − 1
h = π for Taylor’s decomposition method.

3. Numerical Results

3.1. Numerical Results for Regular Sturm-Liouville Eigenvalue Problems

We consider three regular Sturm-Liouville eigenvalue problems, one of them has polynomial
coefficients and the others have periodic coefficients taken from Bujurke et al. [9] andAndrew
[10].

Example 3.1. Consider the Titchmarch equation:

y′′ +
(
λ − x2n

)
y(x) = 0,

y(0) = y(1) = 0,
(3.1)

where n is a nonnegative integer. We obtain the numerical solutions taking n = 0, 2. The
accuracy of the method is tested by comparing with the exact solution which exists when
n = 0 and finite-difference method (FDM) solution andHaar wavelet series method (HWSM)
solution when n = 2.

Tables 2 and 3 give computed eigenvalues and solution y(x) of Titchmarch problem
using Taylor’s decomposition method (TDM) with different values of p, HWSM and FDM
for n = 0, 2, the integer parameter in Titchmarch problem. In Table 2, it is easily seen that the
error between approximate eigenfunction and exact eigenfunction decreases as p increases or
the step-size decreases or both happen. So, we can find good approximation to eigenfunctions
for relatively large step-sizes by increasing p. In Table 3 m is the number of intervals. Table 4
gives the errors between exact and approximate eigenvalues for fixed step-size h = 1 for
n = 0. Notice that, as p increases, the accuracy of approximation almost doubles in digits
which demonstrates a fast convergence.

Example 3.2. Consider the Mathieu’s equation:

y′′ + (λ − 2θ cos(2x))y = 0,

y(0) = y(π) = 0.
(3.2)

We will solve these two problems approximately using Taylor’s decomposition method
(TDM), and we will compare our results with the results in Bujurke et al. [9]. Bujurke et
al. [9] solved Examples 3.1 and 3.2 approximately using Haar wavelets. They transform
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Figure 1: Higher eigenfunctions of Mathieu’s equation for a fixed parameter θ = 5.
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Figure 2: Solutions of Mathieu’s equation for different parameters of θ.

the interval [0, π] to [0, 1] because of the properties of Haar wavelets. So to compare the
results we normalize the interval [0, π] by using x = πt, Mathieu’s equation in Example 3.2
transformed into

y′′ +
(
π2λ − 2π2θ cos(2πt)

)
y = 0,

y(0) = y(1) = 0.
(3.3)

The eigenvalues for a fixed value for θ = 5 are obtained in Table 6 which gives the
asymptotic behavior of higher eigenvalues of Mathieu’s equation, and these eigenvalues
are λn = n2 + O(1). This result agrees with the classical theorem on asymptoticity of the
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Figure 3: Solution of (1.2) corresponding to the initial values y0 for π2 ≤ λ = 15 < 4π2.

eigenvalues limn→∞λ
1/2
n /n = 1 from van Brunt [11]. Figure 1 demonstrates that the nth

eigenfunction has n − 1 zeros in (0,1) which is consistent with the relevant graph in Bujurke
et al. [9]. The selected values of parameter θ shifts the symmetry of the solutions and this
property is given in Figure 2.

Example 3.3. Consider the equation

−y′′ +
(
2β cos 2x + β2sin22x

)
y = λy,

y′(0) = y′(π) = 0.
(3.4)

We give the comparison of approximate eigenvalues obtained using Taylor’s Decomposition
method with the approximate eigenvalues obtained using Numerov’s method Andrew [10]
for β = 10 and β = 20 in Tables 7 and 8. The values shown as the “exact” λk and the corrected
approximate eigenvalues Λk obtained using Numerov’s method for step-sizes h = 40 and
h = 80 in Tables 7 and 8 are taken from Andrew [10]. The values shown as μk are evaluated
using Taylor’s Decomposition method for p = 70 and 80 in Table 7 and for p = 100 and 110
in Table 8. From the tables, it can be seen that Taylor’s Decomposition method approximates
small eigenvalues with high-order accuracy without using any correction.

In comparison to Example 3.1, the estimation of eigenvalues for Examples 3.2 and 3.3
is more complicated. But Example 3.1 is important to show the high accuracy of the method
while calculating the eigenfunctions for relatively large step-sizes. Other two examples show
the accuracy of the method while calculating the eigenvalues for large step-sizes which equal
to whole interval.
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Figure 4: Solution of (1.2) corresponding to the initial values y0 for 4π2 ≤ λ = 45 < 9π2.

In Table 5, the observed orders ord(h) are computed using the following formula

ord(h) =
log
((
y4h − y2h

)
/
(
y2h − yh

))
log 2

, (3.5)

where y4h, y2h, and yh are the approximated value of eigenfunctions at xk to the
corresponding eigenvalue λ when the problems are solved with step sizes 4h, 2h, and h
respectively. The observed orders given in Table 5 well confirm the theoretical results. That
is, the order of TDM is order of 2p.

The numerical calculations and all figures in this work are performed using
Mathematica.

3.2. Numerical Results for Euler Buckling Problem

The approximate solutions of Euler Buckling problem for λ = 15, λ = 45, λ = 90, and λ = 160
generated using Taylor’s Decomposition method for step size h = 1/20 are illustrated in
Figures 3, 4, 5, and 6, respectively.

4. Conclusion

In this paper, we have described Taylor’s Decomposition method for regular Sturm-
Liouville eigenvalue problems with Dirichlet and Neumann boundary conditions to obtain
approximate eigenvalues and eigenfunctions and for Euler Buckling Problem to obtain
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Figure 5: Solution of (1.2) corresponding to the initial values y0 for 9π2 ≤ λ = 90 < 16π2.
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Figure 6: Solution of (1.2) corresponding to the initial values y0 for 16π2 ≤ λ = 160 < 25π2.
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approximate initial values and eigenfunctions. The obtained results for Euler Buckling
problem give the behavior of eigenvalues and corresponding eigenfunctions with high-
order accuracy without using small stepsize. We have seen that these results agree with the
theoretical aspects. This method can be extended to solve regular Sturm-Liouville eigenvalue
problems with Robin (mixed) boundary conditions and to some nonlinear eigenvalue
problems to investigate the behavior of the eigenvalues and eigenfunction. However, this
method is best suited to find small eigenvalues for the other nonlinear problems in literature.
One possible method of improving its efficiency for higher eigenvalues may be to follow the
ideas of [10, 12, 13] and for eigenvalue problems for partial differential equations given in
elsewhere [14–18].
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