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We will give the Lebesgue-Radon-Nikodym theorem with respect to weighted p-adic q-measure
on Zp. In special case, q = 1, we can derive the same result as Kim, 2012; Kim et al., 2011.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, the symbols Zp,Qp, and Cp denote
the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the
algebraic closure of Qp, respectively. The p-adic norm | · |p is defined by |x|p = p−vp(x) = p−r for
x = pr(s/t)where s and t are integers with (p, s) = (p, t) = 1 and r ∈ Q (see [1–12]).

When one speaks of q-extension, q can be regarded as an indeterminate, a complex
q ∈ C, or a p-adic number q ∈ Cp. In this paper, we assume that q ∈ Cp with |q − 1|p < p−1/(p−1)

and we use the notations of q-numbers as follows:

[x]q =
[
x : q

]
=

1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

. (1.1)

LetC(Zp) be the space of continuous functions on Zp. The fermionic invariant measure
on Zp is defined by Kim as follows:

μ−1
(
a + pnZp

)
= (−1)a, (1.2)
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where

a + pnZp =
{
x ∈ Zp | x ≡ a

(
mod pn

)}
, (1.3)

and a ∈ Z with 0 ≤ a < pn (see [2–4, 7]).
From (1.2), the fermionic p-adic invariant integral on Zp is defined by Kim as follows:

I
(
f
)
=
∫

Zp

f(x)dμ−1(x) = lim
N→∞

pN−1∑

x=0

f(x)(−1)x, (1.4)

where f ∈ C(Zp) (see [2–4, 6–9]).
The idea for generalizing the fermionic integral is replacing the fermionic Haar

measure with weakly (strongly) fermionic measure Zp satisfying

∣∣∣μ−1
(
a + pnZp

) − μ−1
(
a + pn+1Zp

)∣∣∣
p
≤ δn, (1.5)

(see [4, 5, 10]), where δn → 0, a is a element of Zp, and δn is independent of a (for strongly
fermionic measure, δn is replaced by Cp−n, where C is a positive constant).

Let f(x) be a function defined on Zp. The fermionic integral of f with respect to a
weakly fermionic measure μ−1 is

∫

Zp

f(x)dμ−1(x) = lim
n→∞

pn−1∑

x=0

f(x)μ−1
(
x + pnZp

)
, (1.6)

if the limit exists.
If μ−1 is a weakly fermionic measure on Zp, then we can define the Radon-Nikodym

derivative of μ−1 with respect to the Haar measure on Zp as follows:

fμ−1(x) = lim
n→∞

μ−1
(
x + pnZp

)
(1.7)

(see [4, 11]). Note that fμ−1 is only a continuous function on Zp. Let UD(Zp) be the space of
uniformly differentiable functions on Zp. For f ∈ UD(Zp), let us define μ−1,f as follows:

μ−1,f
(
x + pnZp

)
=
∫

x+pnZp

f(x)dμ−1(x) (1.8)
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(see [4, 11]), where the integral is the fermionic p-adic invariant integral. From (1.8), we can
easily note that μ−1,f is a strongly fermionic measure on Zp. Since then

∣∣∣μ−1,f
(
x + pnZp

) − μ−1,f
(
x + pn+1Zp

)∣∣∣
p
=

∣∣∣∣∣

pn−1∑

x=0

f(x)(−1)x −
pn∑

x=0

f(x)(−1)x
∣∣∣∣∣
p

=

∣∣∣∣∣
f
(
pn

)

pn

∣∣∣∣∣
∣∣pn

∣∣ ≤ Cp−n,

(1.9)

where C is positive constant.
The purpose of this paper is to derive a Lebesgue-Radon-Nikodym type theorem with

respect to the fermionic weighted p-adic q-measure on Zp.

2. The Lebesgue-Radon-Nikodym Theorem with Respect to
the Weighted p-adic q-Measure

For any positive integer a and n with a < pn and f ∈ UD(Zp), we define μ̃f,−q, weighted
fermionic measure on Zp as follows:

μ̃f,−q
(
a + pnZp

)
=
∫

a+pnZp

qxf(x)dμ−1(x), (2.1)

where the integral is the fermionic p-adic invariant integral on Zp.
From (2.1), we note that

μ̃f,−q
(
a + pnZp

)
= lim

m→∞

pm−1∑

x=0

f
(
a + pnx

)
(−1)a+pnxqa+pnx

= (−1)aqa lim
m→∞

pm−n−1∑

x=0

f
(
a + pnx

)
(−1)xqpnx

= (−1)a
∫

Zp

f
(
a + pnx

)
qa+p

nxdμ−1(x).

(2.2)

By (2.2), we get

μ̃f,−q
(
a + pnZp

)
= (−1)a

∫

Zp

f
(
a + pnx

)
qa+p

nxdμ−1(x). (2.3)

Thus, by (2.3), we have

μ̃αf+βg,−q = αμ̃f,−q + βμ̃g,−q, (2.4)

where f, g ∈ UD(Zp) and α, β are positive constants.
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By (2.1), (2.2), (2.3), and (2.4), we get

∣∣μ̃f,−q
(
a + pnZp

)∣∣
p
≤ ∥∥fq

∥∥
∞, (2.5)

where ‖fq‖∞ = supx∈Zp
|f(x)qx|p.

Let P(x) ∈ Cp[[x]q] be an arbitrary q-polynomial. Now we show that μ̃P,−q is a
strongly weighted fermionic p-adic invariant measure on Zp. Without a loss of generality,
it is enough to prove the statement for P(x) = [x]kq .

For a ∈ Z with 0 ≤ a < pn, we have

μ̃P,−q
(
a + pnZp

)
= lim

m→∞
(−q)a

pm−n−1∑

i=0

qp
ni[a + ipn

]k
q(−1)i. (2.6)

Note that

qp
ni =

i∑

l=0

(
i
l

)[
pn

]l
q

(
q − 1

)l
, (2.7)

and

[
a + ipn

]k
q =

(
[a]q + qa

[
pn

]
q[i]qpn

)k
. (2.8)

By (2.6) and (2.8), we easily get

μ̃P,−q
(
a + pnZp

) ≡ (−1)aqa[a]kq
(
mod

[
pn

]
q

)

≡ (−1)aP(a)qa
(
mod

[
pn

]
q

)
.

(2.9)

For x ∈ Zp, let x ≡ xn (mod pn) and x ≡ xn+1 (mod pn+1), where xn,xn+1 ∈ Z with
0 ≤ xn < pn and 0 ≤ xn+1 < pn+1. Then we have

∣∣∣μ̃P,−q
(
a + pnZp

) − μ̃P,−q
(
a + pn+1Zp

)∣∣∣
p
≤ Cp−vp(1−qpn ), (2.10)

where C is positive constant and n � 0.
Let

fμ̃P,−q(a) = lim
n→∞

μ̃P,−q
(
a + pnZp

)
. (2.11)

Then, by (2.9) and (2.10), we see that

fμ̃P,−q(a) = (−1)aqa[a]kq = (−1)aqaP(a). (2.12)
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Since fμ̃P,−q(x) is continuous function on Zp. For x ∈ Zp, we have

fμ̃P,−q(x) = (−1)xqx[x]kq , (k ∈ Z+). (2.13)

Let g ∈ UD(Zp). Then, by (2.10), (2.12), and (2.13), we get

∫

Zp

g(x)dμ̃P,−q(x) = lim
n→∞

pn−1∑

x=0

g(x)μ̃P,−q
(
x + pnZp

)

= lim
n→∞

pn−1∑

x=0

g(x)qx[x]kq(−1)x

=
∫

Zp

g(x)qx[x]kqdμ−1(x).

(2.14)

Therefore, by (2.14), we obtain the following theorem.

Theorem 2.1. Let P(x) ∈ Cp[[x]q] be an arbitrary q-polynomial. Then μ̃P,−q is a strongly weighted
fermionic p-adic invariant measure on Zp; that is,

fμ̃P,−q(x) = (−1)xqxP(x), ∀x ∈ Zp. (2.15)

Furthermore, for any g ∈ UD(Zp),

∫

Zp

g(x)dμ̃P,−q(x) =
∫

Zp

g(x)P(x)qxdμ−1(x), (2.16)

where the second integral is weighted fermionic p-adic invariant integral on Zp.

Let f(x) =
∑∞

n=0 an,q( x
n )q be the Mahler q-expansion of continuous function on Zp,

where

(
x
n

)

q

=
[x]q[x − 1]q · · · [x − n + 1]q

[n]q!
. (2.17)

Then we note that limn→∞|an,q| = 0.
Let

fm(x) =
m∑

i=0

ai,q

(
x
i

)

q

∈ Cp

[
[x]q

]
. (2.18)

Then

∥∥f − fm
∥∥
∞ ≤ sup

n≤m

∣∣an,q

∣∣. (2.19)



6 Abstract and Applied Analysis

The function f(x) can be rewritten as f = fm + f − fm. Thus, by (2.4) and (2.19), we get

∣∣∣μ̃f,−q
(
a + pnZp

) − μ̃f,−q
(
a + pn+1Zp

)∣∣∣

≤ max
{∣∣∣μ̃fm,−q

(
a + pnZp

) − μ̃fm,−q
(
a + pn+1Zp

)∣∣∣,
∣∣∣μ̃f−fm,−q

(
a + pnZp

) − μ̃f−fm,−q
(
a + pn+1Zp

)∣∣∣
}
.

(2.20)

From Theorem 2.1, we note that

∣∣μ̃f−fm,−q
(
a + pnZp

)∣∣
p
≤ ∥∥f − fm

∥∥
∞ ≤ C1p

−2vp(1−qpn ), (2.21)

where C1 are positive constants. For m � 0, we have ‖f‖∞ = ‖fm‖∞. So, we see that

∣∣∣μ̃fm,−q
(
a + pnZp

) − μ̃fm,−q
(
a + pn+1Zp

)∣∣∣
p

=

∣∣∣∣∣∣∣

fm
([

pn
]
q

)
qp

n

[
pn

]2
q

∣∣∣∣∣∣∣
p

∣∣∣
[
pn

]2
q

∣∣∣
p
≤ ∥∥fmqx

∥∥
∞
∣∣∣
[
pn

]2
q

∣∣∣
p
≤ C2p

−2vp(1−qpn ),
(2.22)

where C2 is a positive constant.
By (2.21), we get

∣∣(−1)af(a)qa − μ̃f,−q
(
a + pnZp

)∣∣
p

≤ max
{∣∣qaf(a) − fm(a)qa

∣∣
p,
∣∣qafm(a) − μ̃fm,−q

(
a + pnZp

)∣∣
p
,
∣∣μ̃f−fm,−q

(
a + pnZp

)∣∣
p

}

≤ max
{∣∣f(a) − fm(a)

∣∣
p,
∣∣fm(a) − μ̃fm,−q

(
a + pnZp

)∣∣
p
,
∥∥f − fm

∥∥
∞
}
.

(2.23)

Let us assume that we fix ε > 0 and fixm such that ‖f − fm‖ < ε. Then we have

∣∣(−q)af(a) − μ̃f,−q
(
a + pnZp

)∣∣
p
≤ ε, for n � 0. (2.24)

Thus, by (2.24), we have

fμ̃f,−q(a) = lim
n→∞

μ̃f,−q
(
a + pnZp

)
= (−1)aqaf(a). (2.25)

Let m be the sufficiently large number such that ‖f − fm‖∞ ≤ p−n. Then we get

μ̃f,−q
(
a + pnZp

)
= μ̃fm,−q

(
a + pnZp

)
+ μ̃f−fm,−q

(
a + pnZp

)

= (−1)aqaf(a)
(
mod

[
pn

]2
q

)
.

(2.26)
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For g ∈ UD(Zp), we have

∫

Zp

g(x)dμ̃f,−q(x) =
∫

Zp

f(x)g(x)qxdμ−1(x). (2.27)

Let f be the function from UD(Zp) to Lip(Zp). We easily see that qxμ−1(x + pnZp) is a
strongly weighted p-adic invariant measure on Zp and

∣∣∣
(
fq
)
μ−1

(a) − qaμ−1
(
a + pnZp

)∣∣∣
p
≤ C3p

−2vp(1−qpn ), (2.28)

where fq(x) = f(x)qx and C3 is positive constant and n ∈ Z+.
If μ̃1,−q is associated with strongly weighted fermionic invariant measure on Zp, then

we have
∣∣∣μ̃1,−q

(
a + pnZp

) − (
fq
)
μ−1

(a)
∣∣∣
p
≤ C4p

−2vp(1−qpn ), (2.29)

where n > 0 and C4 is positive constant.
For n � 0, we have

∣∣qaμ−1
(
a + pnZp

) − μ̃1,−q
(
a + pnZp

)∣∣
p

≤
∣∣∣qaμ−1

(
a + pnZp

) − (
fq
)
μ̃−1

(a)
∣∣∣
p
+
∣∣∣
(
fq
)
μ̃−1

(a) − μ̃1,−q
(
a + pnZp

)∣∣∣
p
≤ K,

(2.30)

where K is positive constant.
Hence, qμ−1 − μ̃1,−q is a weighted measure on Zp. Therefore, we obtain the following

theorem.

Theorem 2.2. Let qμ−1 be a strongly weighted p-adic invariant measure on Zp, and assume that
the fermionic weighted Radon-Nikodym derivative (fq)μ−1 on Zp is uniformly differentiable function.
Suppose that μ̃1,−q is the strongly weighted fermionic p-adic invariant measure associated with (fq)μ−1 .
Then there exists a weighted measure μ̃2,−q on Zp such that

qxμ−1
(
x + pnZp

)
= μ̃1,−q

(
x + pnZp

)
+ μ̃2,−q

(
x + pnZp

)
. (2.31)
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