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The existence of global weak solutions to the Cauchy problem for a generalized Camassa-Holm
equation with a dissipative term is investigated in the space C([0,∞) × R) ∩ L∞([0,∞); H1(R))
provided that its initial value u0(x) belongs to the spaceH1(R). A one-sided super bound estimate
and a space-time higher-norm estimate on the first-order derivatives of the solution with respect
to the space variable are derived.

1. Introduction

In [1], the author investigated the following weakly dissipative Camassa-Holm model

ut − uxxt + 3uux + λ(u − uxx) = 2uxuxx + uuxxx, (1.1)

where λ ≥ 0. When λ = 0, (1.1) becomes the classical Camassa-Holm equation [2]. The
authors in [1] obtained the local well-posedness of the solution for the model by using the
Kato theorem. A necessary and sufficient condition of the blow-up of the solution and some
criteria guaranteeing the blow-up of the solution are derived. The blow-up rate of the solution
is discussed. It is also shown in [1] that the equation has global strong solutions, and these
strong solutions decay to zero as time goes to infinite provided the potentials associated to
their initial data are of one sign. However, the existence of global weak solutions in the space
H1(R) is not discussed in paper [1]. This will constitute the objective of this work.

More relevant for the present paper, here we state several works on the global
weak solution for the Camassa-Holm and Degasperis-Procesi equations. The existence and
uniqueness results for global weak solutions to the Camassa-Holm equation have been
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proved by Constantin and Escher [3], Constantin and Molinet [4], and Danchin [5, 6].
Xin and Zhang [7] proved that the global existence of the weak solution for the Camassa-
Holm equation in the energy space H1(R) without any sign conditions on the initial
value, and the uniqueness of this weak solution is obtained under certain conditions on
the solution [8]. Coclite et al. [9] investigated the global weak solutions for a generalized
hyperelastic-rod wave equation or a generalized Camassa-Holm equation. The existence of a
strongly continuous semigroup of global weak solutions for the generalized hyperelastic-rod
equation with any initial value in the space H1(R) was established in [9]. Under the sign
condition imposed on the initial value, Yin et al. [10] proved the existence and uniqueness
results of global weak solution for a nonlinear shallow water equation, which includes the
famous Camassa-Holm and Degasperis-Procesi equations as special cases. For other dynamic
properties about various generalized Camassa-Holm models and other partial differential
equations, the reader is referred to [11–16].

The aim of this work is to study the existence of global weak solutions for (1.1) in the
space C([0,∞) × R)

⋂
L∞([0,∞);H1(R)) under the assumption u0(x) ∈ H1(R). The limits of

viscous approximations for the equation are used to establish the existence of the global weak
solution. Here, we should mention that up to now, there have been no global existence results
for weak solutions to the generalized Camassa-Holm equation (1.1).

The rest of this paper is as follows. The main result is given in Section 2. In Section 3,
we state the viscous problem and give a corresponding well-posedness result. An upper
bound, higher integrability estimate, and basic compactness properties for the viscous
approximations are also established in Section 3. Strong compactness of the derivative of the
viscous approximations is obtained in Section 4, where the main result for the existence of
(1.1) is proved.

2. Main Result

Consider the Cauchy problem for (1.1)

ut − utxx +

(
3u2

2

)

x

+ λ(u − uxx) = 2uxuxx + uuxxx,

u(0, x) = u0(x),

(2.1)

which is equivalent to

ut + uux +
∂P

∂x
= 0,

∂P(t, x)
∂x

= Λ−2∂x

[

u2 +
1
2
u2
x

]

+ λu,

u(0, x) = u0(x),

(2.2)

where operator Λ2 = 1 − (∂2/∂x2). For a fixed 1 ≤ p0 < ∞, it has

Λ−2g(x) =
1
2

∫

R

e−|x−y|g
(
y
)
dy for g(x) ∈ Lp0(R), 1 < p0 < ∞. (2.3)
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In fact, problem (2.1) satisfies the following conservation law:

∫

R

(
u2 + u2

x

)
dx + 2λ

∫ t

0

∫

R

(
u2 + u2

x

)
dxdt =

∫

R

(
u2
0 + u2

0x

)
dx. (2.4)

Now, we introduce the definition of a weak solution to the Cauchy problem (2.1) or
(2.2).

Definition 2.1. A continuous function u : [0,∞) × R → R is said to be a global weak solution
to the Cauchy problem (2.2) if

(i) u ∈ C([0,∞) × R)
⋂
L∞([0,∞);H1(R));

(ii) ‖u(t, .)‖H1(R) ≤ ‖u0‖H1(R);

(iii) u = u(t, x) satisfies (2.2) in the sense of distributions and takes on the initial value
pointwise.

The main result of this paper is stated as follows.

Theorem 2.2. Assume u0(x) ∈ H1(R). Then, the Cauchy problem (2.1) or (2.2) has a global weak
solution u(t, x) in the sense of Definition 2.1. Furthermore, this weak solution satisfies the following
properties.

(a) There exists a positive constant c0 depending on ‖u0‖H1(R) and λ such that the following
one-sided L∞ norm estimate on the first order spatial derivative holds

∂u(t, x)
∂x

≤ 4
t
+ c0, for (t, x) ∈ [0,∞) × R. (2.5)

(b) Let 0 < γ < 1, T > 0, and a, b ∈ R, a < b. Then, there exists a positive constant
c1 depending only on ‖u0‖H1(R), γ, T, a, b and λ such that the space higher integrability
estimate holds

∫ t

0

∫b

a

∣
∣
∣
∣
∂u(t, x)

∂x

∣
∣
∣
∣

2+γ

dx ≤ c1. (2.6)

3. Viscous Approximations

Defining

φ(x) =

{
e1/(x

2−1), |x| < 1,
0, |x| ≥ 1,

(3.1)

and setting the mollifier φε(x) = ε−(1/4)φ(ε−(1/4)x) with 0 < ε < 1/4 and uε,0 = φε � u0, we
know that uε,0 ∈ C∞ for any u0 ∈ Hs, s > 0 (see [10]). In fact, suitably choosing the mollifier,
we have

‖uε,0‖H1(R) ≤ ‖u0‖H1(R), uε,0 −→ u0 in H1(R). (3.2)
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The existence of a weak solution to the Cauchy problem (2.2) will be established by
proving compactness of a sequence of smooth functions {uε}ε>0 solving the following viscous
problem:

∂uε

∂t
+ uε

∂uε

∂x
+
∂Pε

∂x
= ε

∂2uε

∂x2
,

∂Pε(t, x)
∂x

= Λ−2∂x

[

u2
ε +

1
2

(
∂uε

∂x

)2
]

+ λuε,

uε(0, x) = uε,0(x).

(3.3)

The beginning point of our analysis is the following well-posedness result for problem
(3.3).

Lemma 3.1. Provided that u0 ∈ H1(R), then for any σ ≥ 3, there exists a unique solution uε ∈
C([0,∞);Hσ(R)) to the Cauchy problem (3.3). Moreover, for any t > 0, it holds that

∫

R

(

u2
ε +

(
∂uε

∂x

)2
)

dx + 2λ
∫ t

0

∫

R

(

u2
ε +

(
∂uε

∂x

)2
)

dxdt

+ 2ε
∫ t

0

∫

R

⎛

⎝
(
∂uε

∂x

)2

+

(
∂2uε

∂x2

)2
⎞

⎠(s, x)dxds = ‖uε,0‖2H1(R),

(3.4)

or

‖uε(t, .)‖2H1(R) + 2ε
∫ t

0

∥
∥
∥
∥
∂uε

∂x
(s, .)

∥
∥
∥
∥

2

H1(R)
ds

+ 2λ
∫ t

0
‖uε(t, .)‖2H1(R)dt = ‖uε,0‖2H1(R).

(3.5)

Proof. For any σ ≥ 3 and u0 ∈ H1(R), we have uε,0 ∈ C([0,∞);Hσ(R)). From Theorem 2.1
in [9] or Theorem 2.3 in [11], we conclude that problem (3.3) has a unique solution uε ∈
C([0,∞);Hσ(R)) for an arbitrary σ > 3.

We know that the first equation in system (3.3) is equivalent to the form

∂uε

∂t
− ∂3uε

∂tx2
+
3
2
∂u2

ε

∂x
+ λ

(

uε − ∂2uε

∂x2

)

= 2
∂uε

∂x

∂2uε

∂x2
+ uε

∂3uε

∂x3

+ ε

(
∂2uε

∂x2
− ∂4uε

∂x4

)

,

(3.6)
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from which we derive that

1
2
d

dt

∫

R

(

u2
ε +

(
∂uε

∂x

)2
)

dx + λ

∫

R

(

u2
ε +

(
∂uε

∂x

)2
)

dx

+ ε

∫

R

⎛

⎝
(
∂uε

∂x

)2

+

(
∂2uε

∂x2

)2
⎞

⎠dx = 0,

(3.7)

which completes the proof.

From Lemma 3.1, we have

‖uε‖L∞(R) ≤ ‖uε‖H1(R) ≤ ‖uε,0‖H1(R) ≤ ‖u0‖H1(R). (3.8)

Differentiating the first equation of problem (3.3) with respect to the variable x and writing
∂uε/∂x = qε, we obtain

∂qε
∂t

+ uε
∂qε
∂x

− ε
∂2qε

∂x2
+
1
2
q2ε + λux = u2

ε −Λ−2
[

u2
ε +

1
2
q2ε

]

= Qε(t, x). (3.9)

Lemma 3.2. Let 0 < γ < 1, T > 0, and a, b ∈ R, a < b. Then, there exists a positive constant
c1 depending only on ‖u0‖H1(R), γ, T, a, b and λ, but independent of ε, such that the space higher
integrability estimate holds

∫T

0

∫b

a

∣
∣
∣
∣
∂uε(t, x)

∂x

∣
∣
∣
∣

2+γ

dx ≤ c1, (3.10)

where uε = uε(t, x) is the unique solution of problem (3.3).

Proof. The proof is a variant of the proof presented by Xin and Zhang [7] (also see Coclite et
al. [9]). Let χ ∈ C∞(R) be a cut-off function such that 0 < χ < 1 and

φ(x) =

{
1, if x ∈ [a, b],
0, if x ∈ (−∞, a − 1]

⋃
[b + 1,∞).

(3.11)

Consider the map θ(ξ) := ξ(1 + |ξ|)γ , ξ ∈ R, 0 < γ < 1, and observe that

θ′(ξ) =
(
1 +

(
1 + γ

)|ξ|)(1 + |ξ|)γ−1,

θ′′(ξ) = γ sign(ξ)(1 + |ξ|)γ−2(2 + (
1 + γ

)|ξ|)

= γ
(
1 + γ

)
sign(ξ)(1 + |ξ|)γ−1 + (

1 − γ
)
γ sign(ξ)(1 + |ξ|)γ−2.

(3.12)
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We have

|θ(ξ)| ≤ |ξ| + |ξ|1+γ , ∣
∣θ′(ξ)

∣
∣ ≤ 1 +

(
1 + γ

)|ξ|, ∣
∣θ′′(ξ)

∣
∣ ≤ 2γ, (3.13)

ξθ(ξ) − 1
2
ξ2θ′(ξ) =

1 − γ

2
ξ2(1 + |ξ|)γ + γ

2
ξ2(1 + |ξ|)γ−1

≥ 1 − γ

2
ξ2(1 + |ξ|)γ .

(3.14)

Differentiating the first equation of problem (3.3) with respect to the variable x and
writing u = uε and ∂uε/∂x = qε = q for simplicity, we obtain

utx + uuxx +
1
2
u2
x + λux = u2 −Λ−2

[

u2 +
1
2
u2
x

]

= Q(t, x). (3.15)

Multiplying (3.15) by χθ′(q), using the chain rule and integrating over ΠT := [0, T] × R, we
have

∫

ΠT

χ(x)qθ
(
q
)
dtdx − 1

2

∫

ΠT

q2χ(x)θ′(q
)
dtdx

=
∫

R

χ(x)
(
θ
(
q(t, x)

) − θ
(
q(0, x)

))
dx −

∫

ΠT

uχ′(x)θ
(
q
)
dtdx

+ ε

∫

ΠT

∂q

∂x
χ′(x)θ′(q

)
dtdx + ε

∫

ΠT

(
∂q

∂x

)2

χ(x)θ′′(q
)
dtdx

+ λ

∫

ΠT

qχ(x)θ′(q
)
dtdx −

∫

ΠT

Q(t, x)χ(x)θ′(q
)
dtdx.

(3.16)

From (3.14), we get

∫

ΠT

χ(x)qθ
(
q
)
dtdx − 1

2

∫

ΠT

q2χ(x)θ′(q
)
dtdx

=
∫

ΠT

χ(x)
(

qθ
(
q
) − 1

2
q2θ′(q

)
)

dtdx

≥
(
1 − γ

)

2

∫

ΠT

χ(x)q2
(
1 +

∣
∣q

∣
∣
)γ
dtdx.

(3.17)
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Using the Hölder inequality, (3.8) and (3.13), yields

∣
∣
∣
∣

∫

R

χ(x)θ
(
q
)
dx

∣
∣
∣
∣ ≤

∫

R

χ(x)
(∣
∣q

∣
∣1+γ +

∣
∣q

∣
∣
)
dx

≤ ∥
∥χ

∥
∥
L2/(1−γ)(R)

∥
∥q

∥
∥1+γ
L2(R) +

∥
∥χ

∥
∥
L2(R)

∥
∥q

∥
∥
L2(R)

≤ (b − a + 2)(1−γ)/2‖u0‖1+γH1(R) + (b − a + 2)1/2‖u0‖H1(R),

(3.18)

∣
∣
∣
∣
∣

∫

ΠT

uχ′(x)θ
(
q
)
dtdx

∣
∣
∣
∣
∣
≤

∫

ΠT

|u|∣∣χ′(x)
∣
∣
(∣
∣q

∣
∣1+γ +

∣
∣q

∣
∣
)
dtdx

≤ ‖u0‖H1(R)

∫T

0

(∥
∥χ′∥∥

L2/(1−γ)(R)

∥
∥q

∥
∥1+γ
L2(R) +

∥
∥χ′∥∥

L2(R)

∥
∥q

∥
∥
L2(R)

)
dt

≤ T‖u0‖H1(R)

(∥
∥χ′∥∥

L2/(1−γ)(R)‖u0‖1+γH1(R) +
∥
∥χ′∥∥

L2(R)‖u0‖H1(R)

)
.

(3.19)

Integration by parts gives rise to

∫

ΠT

∂q

∂x
χ′(x)θ′(q

)
dtdx = −

∫

ΠT

θ
(
q
)
χ′′(x)dtdx. (3.20)

From (3.13), (3.20), and the Hölder inequality, we have

∣
∣
∣
∣
∣

∫

ΠT

∂q

∂x
χ′(x)θ′(q

)
dtdx

∣
∣
∣
∣
∣
≤ ε

∫

ΠT

∣
∣θ

(
q
)∣
∣
∣
∣χ′′(x)

∣
∣dtdx

≤ ε

∫

ΠT

∣
∣χ′′(x)

∣
∣
(∣
∣q

∣
∣1+γ +

∣
∣q

∣
∣
)
dtdx

≤ εT
(∥
∥χ′′∥∥

L2/(1−γ)(R)‖u0‖1+γH1(R) +
∥
∥χ′′∥∥

L2(R)‖u0‖H1(R)

)
.

(3.21)

Using (3.13) and Lemma 3.1, we have

ε

∣
∣
∣
∣
∣

∫

ΠT

(
∂q

∂x

)2

χ(x)θ′′(q
)
dtdx

∣
∣
∣
∣
∣
≤ 2γε

∫

ΠT

(
∂q

∂x

)2

dtdx ≤ γ‖u0‖2H1(R). (3.22)

From (3.13), it has

∣
∣
∣
∣
∣
λ

∫

ΠT

qχ(x)θ′(q
)
dtdx

∣
∣
∣
∣
∣

≤ |λ|
∫

ΠT

∣
∣χ(x)

∣
∣
((

1 + γ
)
q2 +

∣
∣q

∣
∣
)
dtdx

≤ |λ|
((

1 + γ
)∥
∥χ

∥
∥
L∞‖u0‖2H1(R) +

∥
∥χ(x)

∥
∥
L2(R)‖u0‖H1(R)

)
.

(3.23)
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Applying (3.8), the Hölder inequality, Lemma 3.1 and
∫

R e
−|x−y|dy = 2, we have

|Q(t, x)| =
∣
∣
∣
∣u

2 −Λ−2
[

u2 +
1
2
q2

]∣
∣
∣
∣

≤ ‖u‖2L∞(R) +
1
2
‖u‖2H1(R)

≤ 3
2
‖u0‖2H1(R).

(3.24)

From (3.24), we obtain

∣
∣
∣
∣
∣

∫

ΠT

Q(t, x)χ(x)θ′(q
)
dtdx

∣
∣
∣
∣
∣
≤ c

∫

ΠT

∣
∣χ(x)

∣
∣
((
1 + γ

)∣
∣q

∣
∣ + 1

)
dtdx

≤ 3
2
‖u0‖2H1(R)T

(
(
1 + γ

)∥
∥χ(x)

∥
∥
L2(R)‖u0‖H1(R) +

∫

R

∣
∣χ(x)

∣
∣dx

)

.

(3.25)

The inequalities (3.15)–(3.23) and (3.25) derive the desired result (3.10).

Lemma 3.3. There exists a positive constant C depending only on ‖u0‖H1(R) and λ such that

‖Qε(t, .)‖L∞(R) ≤ C, (3.26)

‖Qε(t, .)‖L1(R) ≤ C, (3.27)

‖Qε(t, .)‖L2(R) ≤ C, (3.28)
∥
∥
∥
∥
∂Pε(t, .)

∂x

∥
∥
∥
∥
L∞(R)

≤ C, (3.29)

∥
∥
∥
∥
∂Pε(t, .)

∂x

∥
∥
∥
∥
L2(R)

≤ C, (3.30)

where uε = uε(t, x) is the unique solution of system (3.3).

Proof. For simplicity, setting u(t, x) = uε(t, x), we have

Qε(t, x) = u2 −Λ−2
[

u2 +
1
2
u2
x

]

,

∂Pε(t, x)
∂x

= Λ−2∂x

[

u2 +
1
2

(
∂u

∂x

)2
]

+ λu.

(3.31)
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The inequality (3.26) is proved in Lemma 3.2 (see (3.24)). Now, we prove (3.27). Using

∫

R

∣
∣
∣
∣Λ

−2
[

u2 +
1
2
u2
x

]∣
∣
∣
∣dx

=
1
2

∫

R

∣
∣
∣
∣

∫

R

e−|x−y|
(

u2 +
1
2
u2
x

)

dy

∣
∣
∣
∣dx

≤ ‖u‖2H1(R)

≤ ‖u0‖2H1(R),

(3.32)

and (3.8) result in (3.27).
Applying the Tonelli theorem, (3.26) and (3.27), we get

‖Qε(t, .)‖2L2(R) ≤ ‖Qε(t, .)‖L∞‖Qε(t, .)‖L1(R) ≤ C. (3.33)

Since

∣
∣
∣
∣
∣
Λ−2∂x

[

u2 +
1
2

(
∂u

∂x

)2
]∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1
2
e−x

∫x

−∞
ey∂y

[

u2 +
1
2

(
∂u

∂y

)2
]

dy +
1
2
ex

∫∞

x

e−y∂y

[

u2 +
1
2

(
∂u

∂y

)2
]

dy

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
−1
2
e−x

∫x

−∞
ey

[

u2 +
1
2

(
∂u

∂y

)2
]

dy +
1
2
e−x

∫x

−∞
ey

[

u2 +
1
2

(
∂u

∂y

)2
]

dy

∣
∣
∣
∣
∣

≤
∫

R

e−|x−y|
[

u2 +
1
2

(
∂u

∂y

)2
]

dy

≤ ‖u‖2H1(R)

≤ ‖u0‖2H1(R),

∫

R

∣
∣
∣
∣
∣
Λ−2∂x

[

u2 +
1
2

(
∂u

∂y

)2
]∣
∣
∣
∣
∣
dx

=
∫

R

∣
∣
∣
∣
∣
−1
2
e−x

∫x

−∞
ey

[

u2 +
1
2

(
∂u

∂y

)2
]

dy +
1
2
e−x

∫x

−∞
ey

[

u2 +
1
2

(
∂u

∂y

)2
]

dy

∣
∣
∣
∣
∣
dx

≤
∫

R

∫

R

e−|x−y|
[

u2 +
1
2

(
∂u

∂y

)2
]

dydx

≤ 2‖u‖2H1(R)

≤ 2‖u0‖2H1(R),

(3.34)
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we have

∫

R

∣
∣
∣
∣
∣
Λ−2∂x

[

u2 +
1
2

(
∂u

∂x

)2
]∣
∣
∣
∣
∣

2

dx

≤ ‖u0‖2H1(R)

∫

R

∣
∣
∣
∣
∣
Λ−2∂x

[

u2 +
1
2

(
∂u

∂x

)2
]∣
∣
∣
∣
∣
dx

≤ 2‖u0‖4H1(R),

(3.35)

which, together with Lemma 3.1, we get (3.29) and (3.30). The proof of Lemma 3.3 is
completed.

Lemma 3.4. Assume uε = uε(t, x) is the unique solution of problem (3.3). There exists a positive
constant C depending only on ‖u0‖H1(R) and λ such that the following one-sided L∞ norm estimate
on the first order spatial derivative holds

∂uε(t, x)
∂x

≤ 4
t
+ C, for (t, x) ∈ [0,∞) × R. (3.36)

Proof. From (3.9) and Lemma 3.3, we know that there exists a positive constant C depending
only on ‖u0‖H1(R) and λ such that ‖Qε(t, x)‖L∞(R) ≤ C. Therefore,

∂qε
∂t

+ uε
∂qε
∂x

+
1
2
q2ε + λqε = Qε(t, x) ≤ C. (3.37)

Let f = f(t) be the solution of

df

dt
+
1
2
f2 + λf = C, t > 0, f(0) =

∥
∥
∥
∥
∂uε,0

∂x

∥
∥
∥
∥
L∞(R)

. (3.38)

Letting supx∈Rqε(t, x) = f(t), due to the comparison principle for parabolic equations, we get

qε(t, x) ≤ f(t). (3.39)

Using −λf ≤ ρ2f2 + (1/4ρ2)λ2, we derive that

df

dt
= C − 1

2
f2 − λf ≤ C − 1

2
f2 + ρ2f2 +

1
4ρ2

λ2

≤ C − 1
4
f2 + λ2,

(3.40)

where (1/4ρ2)λ2 = λ2 and ρ = 1/2. Setting M0 = C + λ2, we obtain

df

dt
+
1
4
f2 ≤ M0. (3.41)
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Letting F(t) = (4/t) + 2
√
M0, we have (dF(t)/dt) + (1/4)F2(t) −M0 = (4

√
M0/t) > 0. Due to

the comparison principle for ordinary differential equations, we get f(t) ≤ F(t) for all t > 0.
Therefore, by this and (3.39), the estimate (3.36) is proved.

Lemma 3.5. There exists a sequence {εj}j∈N tending to zero and a function u ∈ L∞([0,∞);
H1(R))

⋂
H1([0, T] × R), such that

uεj ⇀ u in H1([0, T] × R), for each T ≥ 0, (3.42)

uεj −→ u in L∞
loc([0,∞) × R), (3.43)

where uε = uε(t, x) is the unique solution of (3.3).

Proof. For fixed T > 0, using Lemmas 3.1 and 3.3, and

∂uε

∂t
+ uε

∂uε

∂x
+
∂Pε

∂x
= ε

∂2uε

∂x2
, (3.44)

we obtain

∥
∥
∥
∥
∂uε

∂t

∥
∥
∥
∥
L2([0,T]×R)

≤ c
(
1 +

√
ε‖u0‖H1(R)

)
, (3.45)

where c depends on T . Hence, {uε} is uniformly bounded in L∞([0,∞);H1(R))
⋂
H1([0, T]×

R) and (3.42) follows.
Observe that, for each 0 ≤ s, t ≤ T ,

‖uε(t, .) − uε(s, .)‖2L2(R) =
∫

R

(
∂uε

∂t
(τ, x)dτ

)2

dx

≤
√

|t − s|
∫

R

∫T

0

(
∂uε

∂t
(τ, x)

)2

dτdx.

(3.46)

Moreover, {uε} is uniformly bounded in L∞([0, T];H1(R)) andH1(R) ⊂ L∞
loc ⊂ L2

loc(R).
Then, (3.43) is valid.

Lemma 3.6. There exists a sequence {εj}j∈N tending to zero and a function Q ∈ L∞([0,∞);
W1,∞(R)) such that for each 1 < p < ∞

Qεj −→ Q strongly in L
p

loc([0,∞) × R). (3.47)

Proof. Using Lemma 3.3, we have the existence of pointwise convergence subsequence Qεj

which is uniformly bounded in L∞([0,∞) × R). This implies (3.47).

Throughout this paper we use overbars to denote weak limits (the space in which
these weak limits are taken is Lr

loc([0,∞) × R)with 1 < r < (3/2)).
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Lemma 3.7. There exists a sequence {εj}j∈N tending to zero and two functions q ∈ L
p

loc([0,∞)×R),

q2 ∈ Lr
loc([0,∞) × R) such that

qεj ⇀ q in L
p

loc([0,∞) × R), qεj
�
⇀ q in L∞

loc

(
[0,∞);L2(R)

)
, (3.48)

q2εj ⇀ q2 in Lr
loc([0,∞) × R), (3.49)

for each 1 < p < 3 and 1 < r < (3/2). Moreover,

q2(t, x) ≤ q2(t, x), for almost every (t, x) ∈ [0,∞) × R (3.50)

∂u

∂x
= q in the sense of distributions on [0,∞) × R. (3.51)

Proof. (3.48) and (3.49) are direct consequence of Lemmas 3.1 and 3.2. Inequality (3.50) is
valid because of the weak convergence in (3.49). Finally, (3.51) is a consequence of the
definition of qε, Lemma 3.5 and (3.48).

In the following, for notational convenience, we replace the sequence {uεj}j∈N , {qεj}j∈N
and {Qεj}j∈N by {uε}ε>0, {qε}ε>0 and {Qε}ε>0, separately.

Using (3.48), we conclude that for any convex function η ∈ C1(R) with η′ bounded,
Lipschitz continuous on R and any 1 < p < 3 we get

η
(
qε

)
⇀ η

(
q
)

in L
p

loc([0,∞) × R),

η
(
qε

) �
⇀ η(q) in L∞

loc

(
[0,∞);L2(R)

)
.

(3.52)

Multiplying (3.9) by η′(qε) yields

∂

∂t
η
(
qε

)
+

∂

∂x

(
uεη

(
qε

)) − ε
∂2

∂x2
η
(
qε

)
+ εη′′(qε

)
(
∂qε
∂x

)2

= qεη
(
qε

) − 1
2
η′(qε

)
q2ε − λqεη

′(qε
)
+Qε(t, x)η′(qε

)
.

(3.53)

Lemma 3.8. For any convex η ∈ C1(R) with η′ bounded, Lipschitz continuous on R, it holds that

∂η
(
q
)

∂t
+

∂

∂x

(
uη

(
q
)) ≤ qη

(
q
) − 1

2
η′(q

)
q2 − λqη′(q

)
+Q(t, x)η′(q

) (3.54)

in the sense of distributions on [0,∞) ×R. Here, qη(q) and η′(q)q2 denote the weak limits of qεη(qε)
and q2εη

′(qε) in Lr
loc([0,∞) × R), 1 < r < (3/2), respectively.

Proof. In (3.53), by the convexity of η, (3.8), Lemmas 3.5, 3.6, and 3.7, sending ε → 0 gives
rise to the desire result.
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Remark 3.9. From (3.48) and (3.49), we know that

q = q+ + q− = q+ + q−, q2 =
(
q+

)2 +
(
q−

)2
, q2 =

(
q+

)2 +
(
q−

)2
, (3.55)

almost everywhere in [0,∞) × R, where ξ+ := ξχ[0,+∞)(ξ), ξ− := ξχ(−∞,0](ξ) for ξ ∈ R. From
Lemma 3.4 and (3.48), we have

qε(t, x), q(t, x) ≤ 4
t
+ C, for t > 0, x ∈ R, (3.56)

where C is a constant depending only on ‖u0‖H1(R) and λ.

Lemma 3.10. In the sense of distributions on [0,∞) × R, it holds that

∂q

∂t
+

∂

∂x

(
uq

)
=

1
2
q2 − λq +Q(t, x). (3.57)

Proof. Using (3.9), Lemmas 3.5 and 3.6, (3.48), (3.49), and (3.51), the conclusion (3.57) holds
by sending ε → 0 in (3.9).

The next lemma contains a generalized formulation of (3.57).

Lemma 3.11. For any η ∈ C1(R) with η ∈ L∞(R), it has

∂η
(
q
)

∂t
+

∂

∂x

(
uη

(
q
))

= qη
(
q
)
+
(
1
2
q2 − q2

)

η′(q
)

− λqη′(q
)
+Q(t, x)η′(q

)
,

(3.58)

in the sense of distributions on [0,∞) × R.

Proof. Let {ωδ}δ be a family of mollifiers defined on R. Denote qδ(t, x) := (q(t, .) �ωδ)(x). The
� is the convolution with respect to the x variable. Multiplying (3.57) by η′(qδ), it has

∂η
(
qδ

)

∂t
= η′(qδ

)∂qδ
∂t

= η′(qδ
)
[
1
2
q2 � ωδ − λqδ +Q(t, x) � ωδ

−q2 � ωδ − u
∂q

∂x
� ωδ

]

,

∂

∂x

(
uη

(
qδ

))
= qη

(
qδ

)
+ uη′(qδ

)
(
∂qδ
∂x

)

.

(3.59)

Using the boundedness of η, η′ and letting δ → 0 in the above two equations, we obtain
(3.58).
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4. Strong Convergence of qε and Existence for (1.1)

Following the ideas in [7] or [9], in this section, we improve the weak convergence of qε
in (3.48) to strong convergence, and then we have an existence result for problem (3.3).
Generally speaking, we will derive a “transport equation” for the evolution of the defect
measure (q2 − q2) ≥ 0. Namely, we will prove that the measure is zero initially then it will
continue to be zero at all later times t > 0.

Lemma 4.1. Assume u0 ∈ H1(R). It holds that

lim
t→ 0

∫

R

q2(t, x)dx = lim
t→ 0

∫

R

q2(t, x)dx =
∫

R

(
∂u0

∂x

)2

dx. (4.1)

Lemma 4.2. If u0 ∈ H1(R), for eachM > 0, it has

lim
t→ 0

∫

R

(
η±
M

(
q
)
(t, x) − η±

M

(
q(t, x)

))
dx = 0, (4.2)

where

ηM(ξ) :=

⎧
⎪⎨

⎪⎩

1
2
ξ2, if |ξ| ≤ M,

M|ξ| − 1
2
M2, if |ξ| > M,

(4.3)

and η+
M(ξ) := ηM(ξ)χ[0,+∞)(ξ), η−

M(ξ) := ηM(ξ)χ(−∞,0](ξ), ξ ∈ R.
The proof of Lemmas 4.1 and 4.2 is similar to those of Lemmas 6.1 and 6.2 in [9]. Here, we omit

their proofs.

Lemma 4.3 (Coclite et al. [9]). LetM > 0. Then, for each ξ ∈ R, it holds that

ηM(ξ) =
1
2
ξ2 − 1

2
(M − |ξ|)2χ(−∞,−M)

⋂
(M,∞)(ξ),

η′
M(ξ)ξ = ξ + (M − |ξ|) sign(ξ)χ(−∞,−M)

⋂
(M,∞)(ξ),

η+
M(ξ) =

1
2
(ξ+)

2 − 1
2
(M − ξ)2χ(M,∞)(ξ),

(
η+
M

)′(ξ) = ξ+ + (M − ξ)χ(M,∞)(ξ),

η−
M(ξ) =

1
2
(ξ−)

2 − 1
2
(M + ξ)2χ(−∞,−M)(ξ),

(
η−
M

)′(ξ) = ξ− − (M + ξ)χ(−∞,−M)(ξ).

(4.4)

Lemma 4.4. Assume u0 ∈ H1(R). Then, for almost all t > 0

1
2

∫

R

(
(
q+

)2 − q2+

)

(t, x)dx ≤
∫ t

0

∫

R

Q(s, x)
[
q+(s, x) − q+(s, x)

]
dsdx. (4.5)
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Proof. For an arbitrary T > 0 (0 < t < T), we let M be sufficiently large (see Lemma 3.4).
Using (3.54)minus (3.58), and the entropy η+

M (see Lemma 4.2) results in

∂

∂t

(
η+
M

(
q
) − η+

M

(
q
))

+
∂

∂x

(
u
[
η+
M

(
q
) − η+

M

(
q
)])

≤
(
qη+

M

(
q
) − qη+

M

(
q
)) − 1

2

(

q2
(
η+
M

)′(
q
) − q2

(
η+
M

)′(
q
)
)

− 1
2

(
q2 − q2

)(
η+
M

)′(
q
) − λ

(

q
(
η+
M

)′(
q
) − q

(
η+
M

)′(
q
)
)

+Q(t, x)
(
(
η+
M

)′(
q
) − (

η+
M

)′(
q
)
)

.

(4.6)

By the increasing property of η+
M and the convexity of q(η+

M)′(q), from (3.50), we have

−1
2

(
q2 − q2

)(
η+
M

)′(
q
) ≤ 0, −λ

(

q
(
η+
M

)′(
q
) − q

(
η+
M

)′(
q
)
)

≤ 0. (4.7)

It follows from Lemma 4.3 that

qη+
M

(
q
) − 1

2
q2

(
η+
M

)′(
q
)
= −M

2
q
(
M − q

)
χ(M,∞)

(
q
)
,

qη+
M

(
q
) − 1

2
q2

(
η+
M

)′(
q
)
= −M

2
q
(
M − q

)
χ(M,∞)

(
q
)
.

(4.8)

In view of Remark 3.9. Let ΩM = (4/α(M − C),∞) × R. Applying (3.56) gives rise to

qη+
M

(
q
) − 1

2
q2

(
η+
M

)′(
q
)
= qη+

M

(
q
) − 1

2
q2

(
η+
M

)′(
q
)
= 0, in ΩM. (4.9)

In ΩM, it has

η+
M =

1
2
(
q+

)2
,

(
η+
M

)′(
q
)
= q+, η+

M

(
q
)
=

1
2
(
q+

)2
,

(
η+
M

)′(
q
)
= q+. (4.10)

From (4.6)–(4.10), we know that the following inequality holds in ΩM

∂

∂t

(
η+
M

(
q
) − η+

M

(
q
))

+
∂

∂x

(
u
[

η+
M

(
q
) − η+

M

(
q
)])

≤ Q(t, x)
(
(
η+
M

)′(
q
) − (

η+
M

)′(
q
)
)

.

(4.11)
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Integrating the resultant inequality over (4/(M − C), t) × R yields

1
2

∫

R

(
(
q+

)2 − q2+(t, x)
)

dx ≤ lim
t→ 0

∫

R

[
η+
M

(
q
)
(t, x) − η+

M

(
q
)
(t, x)

]
dx

+
∫ t

4/(α(M−C))

∫

R

Q(s, x)
[
q+(s, x) − q+(s, x)

]
dsdx,

(4.12)

for almost all t > 4/(M − C). Sending M → ∞ and using Lemma 4.2, we complete the
proof.

Lemma 4.5. For any t > 0 and M > 0, it holds that

∫

R

(
η−
M

(
q
) − η−

M

(
q
))

(t, x)dx

≤ M2

2

∫ t

0

∫

R

u
(
M + q

)
χ(−∞,−M)

(
q
)
dsdx

− M2

2

∫ t

0

∫

R

u
(
M + q

)
χ(−∞,−M)

(
q
)
dsdx

+M

∫ t

0

∫

R

u
[
η−
M

(
q
) − η−

M

(
q
)]
dsdx

+
M

2

∫ t

0

∫

R

u
(
q2+ − q2+

)
dsdx +

∫ t

0

∫

R

Q(t, x)
(
(
η−
M

)′(
q
) − (

η−
M

)′(
q
)
)

dsdx.

(4.13)

Proof. Let M > 0. Subtracting (3.58) from (3.54) and using entropy η−
M, we deduce

∂

∂t

(
η−
M

(
q
) − η−

M

(
q
))

+
∂

∂x

(
u
[

η−
M

(
q
) − η−

M

(
q
)])

≤
(
qη−

M

(
q
) − qη−

M

(
q
)) − 1

2

(

q2
(
η−
M

)′(
q
) − q2

(
η−
M

)′(
q
)
)

− 1
2

(
q2 − q2

)(
η−
M

)′(
q
) − λ

(

q
(
η−
M

)′(
q
) − q

(
η−
M

)′(
q
)
)

+Q(t, x)
(
(
η−
M

)′(
q
) − (

η−
M

)′(
q
)
)

.

(4.14)

Since −M ≤ (η−
M)′ ≤ 0, we get

−1
2

(
q2 − q2

)(
η−
M

)′(
q
) ≤ M

2

(
q2 − q2

)
. (4.15)
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By the convexity of q(η−
M)′(q), it has

−λ
(
q(η−

M)′(q) − q
(
η−
M

)′(q
)) ≤ 0. (4.16)

Using Remark 3.9 and Lemma 4.3 yields

qη−
M

(
q
) − 1

2
q2

(
η−
M

)′(
q
)
= −M

2
q
(
M + q

)
χ(−∞,−M)

(
q
)
, (4.17)

qη−
M

(
q
) − 1

2
q2

(
η−
M

)′(
q
)
= −M

2
q
(
M + q

)
χ(−∞,−M)

(
q
)
. (4.18)

Inserting the inequalities from (4.15) to (4.18) into (4.14) gives

∂

∂t

(
η−
M

(
q
) − η−

M

(
q
))

+
∂

∂x

(
u
[
η−
M

(
q
) − η−

M

(
q
)])

≤ −M
2
q
(
M + q

)
χ(−∞,−M)

(
q
)
+
M

2
q
(
M + q

)
χ(−∞,−M)

(
q
)

+
M

2

(
q2 − q2

)
+Q(t, x)

(
(
η−
M

)′(
q
) − (

η−
M

)′(
q
)
)

.

(4.19)

Integrating the above inequality over (0, t) × R, we obtain

∫

R

(
η−
M

(
q
) − η−

M

(
q
))

(t, x)dx

≤ −M
2

∫ t

0

∫

R

q
(
M + q

)
χ(−∞,−M)

(
q
)
dsdx

+
M

2

∫ t

0

∫

R

q
(
M + q

)
χ(−∞,−M)

(
q
)
dsdx

+
M

2

∫ t

0

∫

R

(
q2 − q2

)
dsdx +

∫ t

0

∫

R

Q(t, x)
(
(
η−
M

)′(
q
) − (

η−
M

)′(
q
)
)

dsdx.

(4.20)

It follows from Lemma 4.3 that

η−
M

(
q
) − η−

M

(
q
)
=

1
2

(
(
q−

)2 − (
q−

)2
)

+
1
2
(
M + q

)2
χ(−∞,−M)

(
q
)

− 1
2
(
M + q

)2
χ(−∞,−M)

(
q
)
.

(4.21)
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Using Remark 3.9 and (4.20), we have

∫

R

(
η−
M

(
q
) − η−

M

(
q
))

(t, x)dx

≤ −M
2

∫ t

0

∫

R

q
(
M + q

)
χ(−∞,−M)

(
q
)
dsdx

+
M

2

∫ t

0

∫

R

q
(
M + q

)
χ(−∞,−M)

(
q
)
dsdx

+M

∫ t

0

∫

R

[
η−
M

(
q
) − η−

M

(
q
)]
dsdx

+
M

2

∫ t

0

∫

R

(
M + q

)2
χ(−∞,−M)

(
q
)
dsdx

− M

2

∫ t

0

∫

R

(
M + q

)2
uχ(−∞,−M)

(
q
)
dsdx +

M

2

∫ t

0

∫

R

(
q2+ − q2+

)
dsdx

+
∫ t

0

∫

R

Q(t, x)
(
(
η−
M

)′(
q
) − (

η−
M

)′(
q
)
)

dsdx.

(4.22)

Applying the identity M(M + q)2 −Mq(M + q) = M2(M + q), we obtain (4.13).

Lemma 4.6. It holds that

q2 = q2 almost everywhere in [0,∞) × (−∞,∞). (4.23)

Proof. Applying Lemmas 4.4 and 4.5 gives rise to

∫

R

(
1
2

[
(
q+

)2 − (
q+

)2
]

+
[
η−
M − η−

M

])

(t, x)dx

≤ M2

2

(∫ t

0

∫

R

(
M + q

)
χ(−∞,−M)

(
q
)
dsdx − M2

2

∫ t

0

∫

R

(
M + q

)
χ(−∞,−M)(q)dsdx

)

+M

∫ t

0

∫

R

[
η−
M − η−

M

]
dsdx +

M

2

∫ t

0

∫

R

[
(
q+

)2 − (
q+

)2
]

dsdx

+
∫ t

0

∫

R

Q(s, x)
(
[
q+ − q+

]
+
[
(
η−
M

)′(
q
) − (

η−
M

)′(
q
)
])

dsdx.

(4.24)

From Lemma 3.6, we know that there exists a constant L > 0, depending only on ‖u0‖H1(R),
such that

‖Q(t, x)‖L∞([0,∞)×R) ≤ L. (4.25)
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By Remark 3.9 and Lemma 4.3, it has

q+ +
(
η−
M

)′(
q
)
= q − (

M + q
)
χ(−∞,−M),

q+ +
(
η−
M

)′(
q
)
= q − (

M + q
)
χ(−∞,−M)

(
q
)
.

(4.26)

Thus, by the convexity of the map ξ → ξ+ + (η−
M)′(ξ), we get

0 ≤ [
q+ − q+

]
+
[
(
η−
M

)′(
q
) − (

η−
M

)′(
q
)
]

=
(
M + q

)
χ(−∞,−M) −

(
M + q

)
χ(−∞,−M)

(
q
)
.

(4.27)

Using (4.25) derives

Q(s, x)
(
[
q+ − q+

]
+
[
(
η−
M

)′(
q
) − (

η−
M

)′(
q
)
])

≤ −L
((

M + q
)
χ(−∞,−M)

(
q
) − (

M + q
)
χ(−∞,−M)

)
.

(4.28)

Since ξ → (M + ξ)χ(−∞,−M) is concave and choosing M large enough, we have

M2

2

((
M + q

)
χ(−∞,−M)

(
q
) − (

M + q
)
χ(−∞,−M)

)

+Q(s, x)
(
[
q+ − q+

]
+
[
(
η−
M

)′(
q
) − (

η−
M

)′(
q
)
])

≤
(

M2

2
− L

)
((

M + q
)
χ(−∞,−M)

(
q
) − (

M + q
)
χ(−∞,−M)

)
≤ 0.

(4.29)

Then, from (4.24) and (4.29), it has

0 ≤
∫

R

(
1
2

[
(
q+

)2 − (
q+

)2
]

+
[
η−
M − η−

M

])

(t, x)dx

≤ cM

∫ t

0

∫

R

(
1
2

[
(
q+

)2 − (
q+

)2
]

+
[
η−
M − η−

M

])

(t, x)dsdx.

(4.30)

By making of the Gronwall inequality and Lemmas 4.1 and 4.2, for each t > 0, we conclude
that

0 ≤
∫

R

(
1
2

[
(
q+

)2 − (
q+

)2
]

+
[
η−
M − η−

M

])

(t, x)dx = 0. (4.31)
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By the Fatou lemma, Remark 3.9, and (3.50), sending M → ∞, we obtain

0 ≤
∫

R

(
q2 − q2

)
(t, x)dx = 0, for t > 0, (4.32)

which completes the proof.

Proof of the main result. Using (3.2), (3.4), and Lemma 3.5, we know that the Conditions (i)
and (ii) in Definition 2.1 are satisfied. We have to verify (iii). Due to Lemma 4.6, we have

qε −→ q in L2
loc([0,∞) × R). (4.33)

From Lemma 3.5, (3.47), and (4.33), we know that u is a distributional solution to problem
(2.2). In addition, inequalities (2.5) and (2.6) are deduced from Lemmas 3.2 and 3.4. The proof
of the main result is completed.
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