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The purpose of this paper is to introduce new spaces ̂f and ̂f0 that consist of all sequences whose
Riesz transforms of order one are in the spaces f and f0, respectively. We also show that ̂f and ̂f0
are linearly isomorphic to the spaces f and f0, respectively. The β- and γ-duals of the spaces ̂f and
̂f0 are computed. Furthermore, the classes ( ̂f : μ) and (μ : ̂f) of infinite matrices are characterized
for any given sequence space μ and determine the necessary and sufficient conditions on a matrix
A to satisfy BR − core(Ax) ⊆ K − core(x), BR − core(Ax) ⊆ st − core(x) for all x ∈ �∞.

1. Introduction and Preliminaries

Let w be the space of all real or complex valued sequences. Then, each linear subspace of
w is called a sequence space. For example, the notations �∞, c, c0, �1, cs, and bs are used
for the sequence spaces of all bounded, convergent, and null sequences, absolutely conver-
gent series, convergent series, and bounded series, respectively. Let λ and μ be two sequence
spaces and A = (ank) an infinite matrix of real or complex numbers ank, where n, k ∈ N =
{0, 1, 2, . . .}. Then,A defines a matrix mapping from λ to μ and is denoted byA : λ → μ if for
every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A-transform of x, is in μ where

(Ax)n =
∑

k

ankxk, (n ∈ N). (1.1)

By (λ : μ), we denote the class of matrices A such that A : λ → μ. Thus, A ∈ (λ : μ) if and
only if the series on the right side of (1.1) converges for each n ∈ N and every x ∈ λ, and we
have Ax = {(Ax)n}n∈N

∈ μ for all x ∈ λ. The matrix domain λA of an infinite matrix A in a
sequence space λ is defined by

λA = {x = (xk) ∈ w : Ax ∈ λ}. (1.2)
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If we take λ = c, then cA is called, convergence domain of A, and we write the limit of Ax as
limAx = limn→∞

∑

k ankxk. Further A is called regular if limAx = limx for each convergent
sequence x.

Let λ be a sequence space. Then λ is called solid if and only if �∞λ ⊂ λ, [1]. The
approach constructing a new sequence space by means of the matrix domain of a particular
limitation method has recently been employed by Altay and Başar [2], Başarir [3], Aydın and
Başar [4], Kirişçi and Başar [5], Şengönül and Başar [6], Polat and Başar [7], and Malkowsky
et al. [8]. Finally, the new technique for deducing certain topological properties, such as AB-,
KB-, and AD-properties, and solidity and monotonicity, and determining the α-, β- and γ-
duals of the domain of a triangle matrix in a sequence space is given by Altay and Başar
[9].

Furthermore, quite recently, Kirişçi and Başar [10] introduced the new sequence space
̂f derived from the space f of almost convergent sequences by means of the domain of the
generalized difference matrix B(r, s).

Define the sets f and f0 by

f =

{

x = (xk) ∈ w : ∃α ∈ C � lim
n→∞

n
∑

k=0

xk+p

n + 1
= α uniformly in p

}

,

f0 =

{

x = (xk) ∈ w : lim
n→∞

n
∑

k=0

xk+p

n + 1
= 0 uniformly in p

}

.

(1.3)

If x ∈ f , then x is said to be almost convergent to the generalized limit α. When x ∈ f , we
write f − limx = α.

Lorentz [11] introduced this concept and obtained the necessary and sufficient con-
ditions for an infinite matrix to contain f in its convergence domain. These conditions on an
infinite matrix A = (ank) consist of the standard Silverman Toeplitz conditions for regularity
plus the condition limn→∞

∑

k |ank − an,k+1| = 0. Such matrices are called strongly regular. One
of the best known strongly regular matrices is C, the Cesàro matrix of order one which is a
lower triangular matrix defined by

cnk =

⎧

⎨

⎩

1
n + 1

, 0 ≤ k ≤ n,

0, k > n,
(1.4)

for all n, k ∈ N.
A matrix U is called the generalized Cesàro matrix if it is obtained from C by shifting

rows. Let p : N → N. Then, U = (unk) is defined by

unk =

⎧

⎪

⎨

⎪

⎩

1
n + 1

, p(n) ≤ k ≤ p(n) + n,

0, otherwise,
(1.5)

for all n, k ∈ N.



Abstract and Applied Analysis 3

Let us suppose that G is the set of all such matrices obtained by using all possible
functions p. Now, right here, let us give a new definition for the set of almost convergent
sequences that was introduced by Butković et al. [12]:

Lemma 1.1. The set f of all almost convergent sequences is equal to the set
⋂

U∈G cU.

Other one of the best known regular matrices is R = (rnk), the Riesz matrix which is a
lower triangular matrix defined by

rnk =

⎧

⎨

⎩

rk
Rn

, 0 ≤ k ≤ n,

0, k > n,
(1.6)

for all n, k ∈ N, where (rk) is real sequence with rk ≥ 0 (k ∈ N) and Rn = r0 + r1 + · · · + rn.
Let K be a subset of N. The natural density δ of K is defined by

δ(K) = lim
n→∞

1
n
|{k ≤ n : k ∈ K}|, (1.7)

where the vertical bars indicate the number of elements in the enclosed set. The sequence x =
(xk) is said to be statistically convergent to the number l if, for every ε, δ({k : |xk − l| ≥ ε}) = 0
(see [13]). In this case, we write st − limx = l. We will also write S and S0 to denote the
sets of all statistically convergent sequences and statistically null sequences. The statistically
convergent sequences were studied by several authors (see [13, 14] and others).

Let us consider the following functionals defined on �∞:

l(x) = lim inf
k→∞

xk, L(x) = lim sup
k→∞

xk,

qσ(x) = lim sup
p→∞

sup
n∈N

1
p + 1

p
∑

i=0

xσi(n),

L∗(x) = lim sup
p→∞

sup
n∈N

1
p + 1

p
∑

i=0

xn+i.

(1.8)

In [15], the σ-core of a real bounded sequence x is defined as the closed interval
[−qσ(−x), qσ(x)] and also the inequalities qσ(Ax) ≤ L(x) (σ-core of Ax ⊆ K-core of x)
qσ(Ax) ≤ qσ(x) (σ-core of Ax ⊆ σ-core of x), for all x ∈ �∞, have been studied. Here the
Knopp core, in short K-core, of x is the interval [l(x), L(x)]. In particular, when σ(n) = n + 1,
since qσ(x) = L∗(x), σ-core of x is reduced to the Banach core, in short B-core, of x defined by
the interval [−L∗(−x), L∗(x)].

The concepts of B-core and σ-core have been studied by many authors [16, 17].
Recently, Fridy and Orhan [13] have introduced the notions of statistical boundedness,

statistical limit superior (or briefly st − lim sup), and statistical limit inferior (or briefly st −
lim inf), defined the statistical core (or briefly st-core) of a statistically bounded sequence
as the closed interval [st − lim inf x, st − lim supx], and also determined the necessary and
sufficient conditions for a matrix A to yield K-core(Ax) ⊆ st-core(x) for all x ∈ �∞.
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Let us write

T ∗(x) = lim sup
n→∞

sup
p∈N

n
∑

k=0

1
n + 1

k
∑

j=0

xj+p

k + 1
. (1.9)

Quite recently, BC-core of a sequence has been introduced by the closed intervals [−T ∗(−x),
T ∗(x)] and also the inequalities

T ∗(Ax) ≤ L(x), L(Ax) ≤ T ∗(x), T ∗(Ax) ≤ T ∗(x), T ∗(Ax) ≤ st − lim supx (1.10)

have been studied for all x ∈ �∞ in [18].

Definition 1.2. Let x ∈ �∞. Then, BR-core of x is defined by the closed interval [−τ∗(−x), τ∗(x)],
where

τ∗(x) = lim sup
n→∞

sup
p∈N

n
∑

j=0

1
n + 1

j
∑

i=0

rixi+p

Rj
,

−τ∗(−x) = lim inf
n→∞

sup
p∈N

n
∑

j=0

1
n + 1

j
∑

i=0

rixi+p

Rj
.

(1.11)

Therefore, it is easy to see that BR-core of x is � if and only if ̂f − limx = �.

As known, the method to obtain a new sequence space by using the convergence field
of an infinite matrix is an old method in the theory of sequence spaces. However, the study
of the convergence field of an infinite matrix in the space of almost convergent sequences is
new.

2. The Sequence Spaces ̂f and ̂f0

In this section we introduce the new spaces ̂f and ̂f0 as the sets of all sequences such that
their R-transforms are in the spaces f and f0, respectively, that is

̂f =

⎧

⎨

⎩

x = (xk) ∈ w : ∃α ∈ C � lim
n→∞

n
∑

j=0

1
n + 1

j
∑

i=0

rixi+p

Rj
= α uniformly in p

⎫

⎬

⎭

,

̂f0 =

⎧

⎨

⎩

x = (xk) ∈ w : lim
n→∞

n
∑

j=0

1
n + 1

j
∑

i=0

rixi+p

Rj
= α uniformly in p

⎫

⎬

⎭

.

(2.1)
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With the notation of (1.2), we can write ̂f = fR and ̂f0 = (f0)R. Define the sequence y = (yk),
which will be frequently used, as the R-transform of a sequence x = (xk), that is,

yn =
n
∑

k=0

rkxk

Rn
∀n ∈ N. (2.2)

If R = C, which is Cesàro matrix, order 1, then the space ̂f and ̂f0 correspond to the spaces ˜f

and ˜f0 (see [18]).
Suppose that G′ = {G : G = U ◦ R,U ∈ G and R is Riesz matrix}. Then we have the

following proposition.

Proposition 2.1. ̂f =
⋂

T∈G′ cT dir.

Proof. The proof is similar to the proof of Lemma 1.1 so we omit the details, (see [12]).

Consider the function ‖ · ‖
̂f : ̂f → R, and define

‖x‖
̂f = sup

n

∣

∣

∣

∣

∣

∣

n
∑

j=0

1
n + 1

j
∑

i=0

rixi+p

Rj

∣

∣

∣

∣

∣

∣

. (2.3)

The function ‖ · ‖
̂f is a norm and ( ̂f, ‖ · ‖

̂f) is BK-space. The proof of this is as follows.

Theorem 2.2. The sets ̂f and ̂f0 are linear spaces with the coordinate wise addition and scalar
multiplication that is the BK- space with the ‖x‖

̂f = ‖Rx‖f .

Proof. The first part of the theorem can be easily proved. We prove the second part of the
theorem. Since (1.2) holds and f and ̂f0 are the BK-spaces [1] with respect to their natural
norm, also the matrix R is normal and gives the fact that the spaces ̂f and ̂f0 are BK-spaces.

Theorem 2.3. The sequence spaces ̂f and ̂f0 are linearly isomorphic to the spaces f and f0,
respectively.

Proof. Since the fact “the spaces ̂f0 and f0 are linearly isomorphic” can also be proved in a
similar way, we consider only the spaces ̂f and f . In order to prove the fact that ̂f ∼= f , we
should show the existence of a linear bijection between the spaces ̂f and f . Consider the
transformation T defined, with the notation of (2.2), from ̂f to f by x �→ y = Tx. The linearity
of T is clear. Further, it is trivial that x = θ = (0, 0, . . .) whenever Tx = θ and hence T is
injective.

Let y = (yk) ∈ ̂f , and define the sequence x = (xk) by

xk =
1
rk

(

Rkyk − Rk−1yk−1
)

, (k ∈ N). (2.4)
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Then, we have

fR − limx = lim
n→∞

n
∑

j=0

1
n + 1

j
∑

i=0

rixi+p

Rj
uniformly in p

= lim
n→∞

n
∑

j=0

1
n + 1

j
∑

i=0

ri
(

(1/ri)
(

Riyi+p − Ri−1yi+p−1
))

Rj
uniformly in p

= lim
n→∞

1
n + 1

n
∑

j=0

yj+p uniformly in p

= f − lim y uniformly in p,

(2.5)

which shows that x ∈ ̂f . Consequently, we see that T is surjective. Hence, T is a linear
bijection that therefore shows that the spaces ̂f and f are linearly isomorphic, as desired.
This completes the proof.

Theorem 2.4. The spaces ̂f and ̂f0 are not solid sequence spaces.

Proof. If we take u = (uk) = (R0/r0,−(R0/r0 + R1/r1), (R1/r1 + R2/r2), . . . , (−1)k(Rk/rk +
Rk+1/rk+1), . . .) and v = (vk) = (1,−1, 1, . . . , (−1)k, . . .), then we see that u ∈ ̂f and v ∈
�∞. Let uv be t, that is, (uv)k = tk. Then, since (tk) = (R0/r0, (R0/r0 + R1/r1), (R1/r1 +
R2/r2), . . . , (Rk/rk + Rk+1/rk+1), . . .) and it is not hard to see by taking into account the
definition Riesz matrix that fR − lim t = limn→∞

∑n
j=0 1/(n + 1)

∑j

i=0(ri ti+p)/Rj = ∞. This

shows that the multiplication �∞ ̂f of the spaces �∞ and ̂f is not a subset of ̂f and therefore
the space ̂f is not solid. The proof for the space ̂f0 is similar to the proof of the space ̂f , so we
omit it.

Theorem 2.5. Let the spaces ̂f and ̂f0 be given. Then,

(1) the inclusion ̂f0 ⊂ ̂f holds and the space ̂f is not a subset of the space �∞,

(2) if (1/Rn) ∈ c and (rk) ∈ �1, then �∞ ⊂ ̂f strictly holds.

Proof. (1) Clearly, the inclusion ̂f0 ⊂ ̂f holds. Let us consider the sequence given by

uk =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
(

Rk

rk
+
Rk+1

rk+1

)

, k is odd,

Rk

rk
+
Rk+1

rk+1
, k is even,

(2.6)

Since (Rk) → ∞ (k → ∞), the sequence (uk) is not a bounded sequence. But clearly u ∈ ̂f .
This shows that to us, the space ̂f is not a subset of the space �∞.

(2) If (1/Rn) ∈ c and (rk) ∈ �1, then for all x ∈ �∞ we have Rx ∈ c. Therefore, since
lim(Rx) = f − lim(Rx), we see that x ∈ ̂f .
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In Theorem 2.6, we will use some similar techniques that are due to Móricz and
Rhoades [19].

Theorem 2.6. Define the sequences (αn) and (βn) by

αn = inf
p>0

n
∑

j=0

1
n + 1

j
∑

i=0

rixi+p

Rj
,

βn = sup
p>0

n
∑

j=0

1
n + 1

j
∑

i=0

rixi+p

Rj

(2.7)

for all n ∈ N. Then, αn ≤ βn for each n ∈ N and

(i) the sequence (α2n) is nondecreasing,

(ii) the sequence (β2n) is nonincreasing.

Proof. It is trivial that

αn = inf
p>0

n
∑

j=0

1
n + 1

j
∑

i=0

rixi+p

Rj
≤ sup

p>0

n
∑

j=0

1
n + 1

j
∑

i=0

rixi+p

Rj
= βn (2.8)

for each n ∈ N.
Since the part (ii) can be proved in a similar way, we prove only part (i)

α2n+1 = inf
p>0

p+2n+1
∑

j=p

1
2n+1 + 1

j
∑

i=0

rixi

Rj

= inf
p>0

1
2n+1 + 1

⎡

⎣

2n + 1
2n + 1

⎛

⎝

p+2n+1
∑

j=p

j
∑

i=0

rixi

Rj

⎞

⎠

⎤

⎦

= inf
p>0

1
2n+1 + 1

⎡

⎣

1
2n + 1

⎛

⎝

p+2n+1
∑

j=p

j
∑

i=0

rixi

Rj

⎞

⎠(2n + 1)

⎤

⎦

= inf
p>0

1
2n+1 + 1

⎡

⎣

1
2n + 1

⎛

⎝

p+2n
∑

j=p

j
∑

i=0

rixi

Rj

⎞

⎠(2n + 1)

+
1

2n + 1

⎛

⎝

p+2n+1
∑

j=p+2n+1

j
∑

i=0

rixi

Rj

⎞

⎠(2n + 1)

⎤

⎦

≥ 1
2n+1 + 1

[(2n + 1)α2n + (2n + 1)α2n] = α2n .

(2.9)

This step completes the proof.
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Theorem 2.7. limp→∞(β2p − α2p) = 0 if and only if x ∈ ̂f .

Proof. Suppose that limn→∞(β2n − α2n) = 0. For each n, choose r to satisfy 2r ≤ n ≤ 2r+1. We
may write n in a dyadic representation of the form n =

∑r
i=0 ni2i, where each ni is 0 or 1,

i = 0, 1, 2, . . . , r − 1, and nr = 1. Then,

1
n + 1

p+n
∑

j=p

j
∑

i=0

rixi

Rj
=

1
n + 1

p+
∑r

i=0 ni2i
∑

j=p

j
∑

i=0

rixi

Rj

=
1

n + 1

⎡

⎣

1
20 + 1

⎛

⎝

p+n020
∑

j=p

j
∑

i=0

rixi

Rj

⎞

⎠

(

20 + 1
)

+
1

21 + 1

⎛

⎝

n222
∑

j=n121

j
∑

i=0

rixi

Rj

⎞

⎠

(

21 + 1
)

+ · · · + 1
2r + 1

⎛

⎝

nr2r
∑

j=nr−12r−1

j
∑

i=0

rixi

Rj

⎞

⎠(2r + 1)

⎤

⎦

=
1

n + 1

[

(2r + 1)α2r +
(

2r−1 + 1
)

α2r−1 + · · · + 20α20
]

≥ 1
n + 1

r
∑

j=0

nj

(

2j + 1
)

αj

(2.10)

since nj ∈ {0, 1}, and hence

inf
p>0

p+n
∑

j=p

1
n + 1

j
∑

i=0

rixi

Rj
= αn ≥ 1

n + 1

r
∑

j=0

nj

(

2j + 1
)

α2j ,

sup
p>0

p+n
∑

j=p

1
n + 1

j
∑

i=0

rixi

Rj
= βn ≤ 1

n + 1

r
∑

j=0
nj

(

2j + 1
)

α2j .

(2.11)

Thus,

0 ≤ βn − αn ≤ 1
n + 1

r
∑

j=0

nj

(

2j + 1
)

(

β2j − α2j
)

. (2.12)

If T is the lower triangular matrix with nonzero entries tnk = nk(2k + 1)/(n + 1), then, T is a
regular matrix so that limr→∞(β2r −α2r ) = 0. From the equality (2.12), we see that limn→∞(βn−
αn) = 0.

Conversely, assume that x ∈ ̂f . Then, since

lim
n→∞

p+n
∑

j=p

1
n + 1

j
∑

i=0

rixi

Rj
= α (2.13)
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implies

lim
n→∞

αn = inf
p>0

lim
n→∞

p+n
∑

j=p

1
n + 1

j
∑

i=0

rixi

Rj
= α,

lim
n→∞

βn = sup
p>0

lim
n→∞

p+n
∑

j=p

1
n + 1

j
∑

i=0

rixi

Rj
= α,

(2.14)

we have

lim
n→∞

αn − lim
n→∞

βn = lim
n→∞

(

αn − βn
)

= 0. (2.15)

If we take n = 2p, then the proof of sufficiency is obtained. This step completes the proof.

3. Some Duals of the Spaces ̂f and ̂f0

In this section, by using techniques in [9], we have stated and proved the theorems
determining the β- and γ-duals of the spaces ̂f0 and ̂f . For the sequence spaces λ and μ,
define the set S(λ, μ) by

S
(

λ, μ
)

=
{

z = (zk) ∈ w : xz = (xkzk) ∈ μ ∀x = (xk) ∈ λ
}

. (3.1)

With the notation of (3.1), the α-, β-, and γ-duals of a sequence space λ, which are, res-
pectively, denoted by λα, λβ, and λγ , are defined by

λα = S(λ, �1), λβ = S(λ, cs), λγ = S(λ, bs). (3.2)

The following two lemmas are introduced in [20] which we need in proving Theorems 3.3
and 3.4.

Lemma 3.1. A ∈ (f : �∞) if and only if

sup
n∈N

∑

k

|ank| < ∞. (3.3)

Lemma 3.2. A ∈ (f : c) if and only if

lim
n→∞

∑

k

ank = a,

lim
n→∞

ank = ak; k ∈ N,

lim
n→∞

∑

k

|Δ(ank − ak)| = 0.

(3.4)
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Theorem 3.3. The γ-duals of the spaces ̂f and ̂f0 are the set d1 ∩ d2, where

d1 =

{

a = (ak) ∈ w :
∑

k

∣

∣

∣

∣

RkΔ
(

ak

rk

)∣

∣

∣

∣

< ∞
}

,

d2 =
{

a = (ak) ∈ w :
{

an

rn
Rn

}

∈ �∞

}

.

(3.5)

Proof. Define the matrix T = (tnk) via the sequence a = (ak) ∈ w by

tnk =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

RkΔ
(

ak

rk

)

, 0 ≤ k ≤ n − 1,

an

rn
Rn, n = k,

0, otherwise,

(3.6)

for all n, k ∈ N. Here, Δ(ak/rk) = (ak/rk − ak+1/rk+1). By using (2.2), we derive that

n
∑

k=0

akxk =
n−1
∑

k=0

RkΔ
(

ak

rk

)

yk +
an

rn
Rnyn

=
(

Ty
)

n, (n ∈ N).

(3.7)

From (3.7), we see that ax = (akxk) ∈ bs whenever x = (xk) ∈ ̂f if and only if Ty ∈ �∞ when-
ever y = (yk) ∈ f . Then, we derive by Lemma 3.1 that

n
∑

k=0

∣

∣

∣

∣

RkΔ
(

ak

rk

)∣

∣

∣

∣

< ∞,

{

an

rn
Rn

}

∈ �∞, (3.8)

which yields the desired result ̂fγ = ̂f
γ

0 = d1 ∩ d2.

Theorem 3.4. Define the set d3 by

d3 =

{

a = (ak) ∈ w :
∑

k

∣

∣

∣

∣

Δ
[

RkΔ
(

ak

rk

)

− ak

]∣

∣

∣

∣

< ∞
}

. (3.9)

Then, ̂fβ = d3 ∩ cs.

Proof. Consider equality (3.7), again. Thus, we deduce that ax = (akxk) ∈ cs whenever x =
(xk) ∈ ̂f if and only if Ty ∈ c whenever y = (yk) ∈ f . It is obvious that the columns of
that matrix T , defined by (3.6), are in the space c. Therefore, we derive the consequence from
Lemma 3.2 that ̂fβ = d3 ∩ cs.
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4. Some Matrix Mappings Related to the Spaces ̂f and ̂f0

In this section, we characterize the matrix mappings from ̂f into any given sequence space
via the concept of the dual summability methods of the new type introduced by Başar [21].

Note that some researchers, such as, Başar [21], Başar and Çolak [22], Kuttner [23],
and Lorentz and Zeller [24], worked on the dual summability methods. Now, following Başar
[21], we give a short survey about dual summability methods of the new type.

Let us suppose that the infinite matrices A = (ank) and B = (bnk) map the sequences
x = (xk) and y = (yk), which are connected by the relation (2.2) to the sequences z = (zn) and
t = (tn), respectively, that is,

zn = (Ax)n =
∑

k

ankxk, (n ∈ N),

tn =
(

By
)

n =
∑

k

bnkyk, (n ∈ N).
(4.1)

It is clear here that the method B is applied to the R-transform of the sequence x = (xk)while
the method A is directly applied to the entries of the sequence x = (xk). So, the methods A
and B are essentially different.

Let us assume that the matrix product BR exists, which is a much weaker assumption
than the conditions on the matrix B belonging to any matrix class, in general. The methodsA
and B in (4.1), (4.2) are called dual summability methods of the new type if zn reduces to tn (or tn
reduces to zn) under the application of formal summation by parts. This leads us to the fact
that BR exists and is equal to A and (BR)x = B(Rx) formally holds if one side exists. This
statement is equivalent to the following relation between the entries of the matricesA = (ank)
and B = (bnk):

ank :=
∞
∑

j=k

rj

Rj
bnj or bnk := Rk

(

ank

rk
− an,k+1

rk+1

)

= RkΔ
(

ank

rk

)

(4.2)

for all n, k ∈ N.
Now, we give the following theorem concerning the dual matrices of the new type.

Theorem 4.1. Let A = (ank) and B = (bnk) be the dual matrices of the new type and μ any given
sequence space. Then, A ∈ ( ̂f : μ) if and only if B ∈ (f : μ) and

{(

Rn

rn

)

ank

}

n∈N

∈ c0 (4.3)

for every fixed k ∈ N.

Proof. Suppose that A = (ank) and B = (bnk) are dual matrices of the new type, that is to
say (4.2) holds and μ is an any given sequence space. Since the spaces ̂f and f are linearly
isomorphic, now let A ∈ ( ̂f : μ) and y = (yk) ∈ f . Then, BR exists and (ank)k∈N

∈ d2 ∩ cs,
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which yields that (bnk)k∈N
∈ �1 for each n ∈ N. Hence, By exists for each y ∈ f , and thus

letting m → ∞ in the equality

m
∑

k=0

bnkyk =
m
∑

k=0

m
∑

j=k

rj

Rj
bnjxk (4.4)

for all m,n ∈ N, we have by (4.2) that By = Ax, which gives the result B ∈ (f : μ).
Conversely, let {ank}k∈N

∈ ̂fβ for each n ∈ N and B ∈ (f : μ) hold, and take any
x = (xk) ∈ ̂f . Then, Ax exists. Therefore, we obtain from the equality

m
∑

k=0

ankxk =
m−1
∑

k=0

RkΔ
ank

rk
yk +

anm

rn
ym

=
m
∑

k=0

bnkyk; (n ∈ N),

(4.5)

as n → ∞ that Ax = By, and this shows that A ∈ ( ̂f : μ). This completes the proof.

Theorem 4.2. Suppose that the entries of the infinite matricesD = (dnk) and E = (enk) are connected
with the relation

enk =
n
∑

j=0

rjdjk

Rj
, (n, k ∈ N) (4.6)

and μ is any given sequence space. Then, D ∈ (μ : ̂f) if and if only E ∈ (μ : f).

Proof. Let x = (xk) ∈ μ, and consider the following equality with (4.6):

n
∑

j=0

rj

Rj

m
∑

k=0

djkxk =
m
∑

k=0

enkxk; (m,n, k ∈ N), (4.7)

which yields as m → ∞ that Dx ∈ ̂f whenever x ∈ μ if and if only Ex ∈ f whenever x ∈ μ.
This step completes the proof.

Now, right here, we give the following propositions that are obtained from Lemmas 3.2
and 3.1 and Theorems 4.1 and 4.2.

Proposition 4.3. Let A = (ank) be an infinite matrix of real or complex numbers. Then,

A = (ank) ∈
(

̂f : �∞
)

⇐⇒

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(1) lim
n→∞

∑

k

∣

∣

∣

∣

∣

∣

Δ

⎛

⎝

∞
∑

j=k

rjanj

Rj
− ak

⎞

⎠

∣

∣

∣

∣

∣

∣

= 0,

(2) {ank} ∈ ̂fβ ∀n ∈ N.

(4.8)
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Proposition 4.4. Let A = (ank) be an infinite matrix of real or complex numbers. Then,

A = (ank) ∈
(

̂f : c
)

⇐⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(3) lim
n→∞

∑

k

∞
∑

j=k

rjanj

Rj
= a,

(4) lim
n→∞

∞
∑

j=k

rjanj

Rj
= ak for each k ∈ N,

(5) lim
n→∞

∑

k

∣

∣

∣

∣

∣

∣

Δ

⎛

⎝

∞
∑

j=k

rjanj

Rj
− ak

⎞

⎠

∣

∣

∣

∣

∣

∣

= 0,

(6) {ank}k∈N
∈ ̂fβ ∀n ∈ N.

(4.9)

Proposition 4.5. Let A = (ank) be an infinite matrix of real or complex numbers. Then,

A = (ank) ∈
(

�∞ : ̂f
)

⇐⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(7) sup
n∈N

∑

k

∣

∣

∣

∣

∣

∣

∞
∑

j=k

rjanj

Rj

∣

∣

∣

∣

∣

∣

< ∞,

(8) f − lim
n→∞

∞
∑

j=k

rjanj

Rj
= αk exists for each fixed k ∈ N,

(9) lim
m→∞

∑

k

∣

∣

∣

∣

∣

∣

m
∑

i=0

1
m + 1

∞
∑

j=k

rjan+i,j

Rj
− αk

∣

∣

∣

∣

∣

∣

= 0 uniformly in n.

(4.10)

Proposition 4.6. Let A = (ank) be an infinite matrix of real or complex numbers. Then,

A = (ank) ∈
(

c : ̂f
)

⇐⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(10) sup
n∈N

∑

k

∣

∣

∣

∣

∣

∣

∞
∑

j=k

rjanj

Rj

∣

∣

∣

∣

∣

∣

< ∞,

(11) f − lim
n→∞

∞
∑

j=k

rjanj

Rj
= αk exists for each fixed k ∈ N,

(12) f − lim
n→∞

∑

k

∞
∑

j=k

rjanj

Rj
= α.

(4.11)

5. Core Theorems

In this section, we give some core theorems related to the space ̂f . We need the following
lemma due to Das [25] for the proof of next theorem.

Lemma 5.1. Let ‖c‖ = ‖cnj(p)‖ < ∞ and limn→∞ supp∈N
|cnj(p)| = 0. Then, there is a y = (yj) ∈

�∞ such that ‖y‖ ≤ 1 and

lim sup
n→∞

sup
p∈N

∑

j

cnj
(

p
)

yj = lim sup
n→∞

sup
p∈N

∑

j

∣

∣cnj
(

p
)∣

∣. (5.1)
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Theorem 5.2. BR−core(Ax) ⊆ K−core(x) for all x ∈ �∞ if and only if A ∈ (c : ̂f)reg and

lim
n→∞

sup
p∈N

∑

k

1
n + 1

∣

∣

∣

∣

∣

∣

n
∑

j=0

1
Rj

j
∑

i=0

riai+p,k

∣

∣

∣

∣

∣

∣

= 1. (5.2)

Proof. Necessity: Suppose first that BR − core(Ax) ⊆ K − core(x) for all x ∈ �∞. If x ∈ ̂f , then
we have τ∗(Ax) = −τ∗(−Ax). By this hypothesis, we get

−L(−x) ≤ −τ∗(−Ax) ≤ τ∗(Ax) ≤ L(x). (5.3)

If x ∈ c, then L(x) = −L(−x) = limx. So, we have ̂f − limAx = τ∗(Ax) = −τ∗(−Ax) = limx,
which implies that A ∈ (c, ̂f)reg.

Now, let us consider the sequence C = (cnj(p)) of infinite matrices defined by

cnj
(

p
)

=
1

n + 1

n
∑

j=0

1
Rj

j
∑

i=0

riai+p,k ∀n, i, p ∈ N. (5.4)

Then, it is easy to see that the conditions of Lemma 5.1 are satisfied for the matrix sequence
C. Thus, by using the hypothesis, we can write

1 ≤ lim inf
n→∞

sup
p∈N

∑

j

∣

∣cnj
(

p
)∣

∣ ≤ lim sup
n→∞

sup
p∈N

∑

j

∣

∣cnj
(

p
)∣

∣

= lim sup
n→∞

sup
p∈N

∑

j

cnj
(

p
)

yj

= τ∗
(

Ay
) ≤ L

(

y
) ≤ ∥

∥y
∥

∥ ≤ 1.

(5.5)

This gives the necessity of (5.2).
Sufficiency: Conversely, let A ∈ (c : ̂f)reg and (5.2) hold for all x ∈ �∞. For any real

number ˜λ we write ˜λ+ = max{˜λ, 0} and ˜λ− = max{−˜λ, 0}; then |˜λ| = ˜λ+ + ˜λ− and ˜λ = ˜λ+ − ˜λ−.
Therefore, for any given ε > 0, there is a j0 ∈ N such that xj < L(x) + ε for all j > j0. Now, we
can write

∑

j

cnj
(

p
)

xj =
∑

j<j0

cnj
(

p
)

xj +
∑

j≥j0

(

cnj
(

p
))+

xj −
∑

j≥j0

(

cnj
(

p
))−

xj

≤ ‖x‖
∑

j<j0

∣

∣cnj
(

p
)∣

∣ + [L(x) + ε]
∑

j

∣

∣cnj
(

p
)∣

∣

+ ‖x‖
∑

j

[∣

∣cnj
(

p
)∣

∣ − cnj
(

p
)]

.

(5.6)

Thus, by applying lim supn→∞supp∈N
and using the hypothesis, we have τ∗(Ax) ≤ L(x) + ε.

This completes the proof since ε is arbitrary and x ∈ �∞.

In particular ri = 1 for all i since R is reduced to Cesàro matrix, see [18].
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Theorem 5.3. BC−core(Ax) ⊆ K−core(x) for all x ∈ �∞ if and only if A ∈ (c : ˜f)reg and

lim
n→∞

sup
p∈N

∑

i

1
n + 1

∣

∣

∣

∣

∣

∣

n
∑

k=0

1
k + 1

k
∑

j=0

aj+p,i

∣

∣

∣

∣

∣

∣

= 1. (5.7)

Theorem 5.4. A ∈ (S ∩ �∞ : ̂f)reg if and only if A ∈ (c : ̂f)reg and

lim
n→∞

∑

k∈E

1
n + 1

∣

∣

∣

∣

∣

∣

n
∑

j=0

1
Rj

j
∑

i=0

riai+p,k

∣

∣

∣

∣

∣

∣

= 0 uniformly in p (5.8)

for every E ⊆ N with natural density zero.

Proof. Necessity: Let A ∈ (S ∩ �∞, ̂f)reg. Then, A ∈ (c, ̂f)reg immediately follows from the fact
that c ⊂ S ∩ �∞. Now, define a sequence t = (tk) for x ∈ �∞ as

tk =

⎧

⎨

⎩

xk, k ∈ E,

0, k /∈ E,
(5.9)

where E is any subset of N with δ(E) = 0. Then, st − lim tk = 0 and t ∈ S0, and so we have
At ∈ ̂f0. On the other hand, since At =

∑

k∈E anktk, the matrix B = (bnk) defined by

bnk =

⎧

⎨

⎩

ank, k ∈ E,

0, k /∈ E,
(5.10)

for all n, must belong to the class (�∞, ̂f0). Hence, the necessity of (5.8) follows from
Proposition 4.5.

Sufficiency: Conversely, suppose that A ∈ (c, ̂f)reg and (5.8) holds. Let x ∈ S ∩ �∞ and

st−limx = �. Write E = {k : |xk−�| ≥ ε} for any given ε > 0 so that δ(E) = 0. SinceA ∈ (c, ̂f)reg
and ̂f − lim

∑

k ank = 1, we have

̂f − lim(Ax) = ̂f − lim

(

∑

k

ank(xk − �) + �
∑

k

ank

)

= ̂f − lim

(

∑

k

ank(xk − �) + �

)

= lim
n→∞

sup
p∈N

∑

k

1
n + 1

n
∑

j=0

1
Rj

j
∑

i=0

riai+p,k(xk − �) + �.

(5.11)
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On the other hand, since

∣

∣

∣

∣

∣

∣

∑

k

1
n + 1

n
∑

j=0

1
Rj

j
∑

i=0

riai+p,k(xk − �)

∣

∣

∣

∣

∣

∣

≤ ‖x‖
∑

k∈E

1
n + 1

∣

∣

∣

∣

∣

∣

n
∑

j=0

1
Rj

j
∑

i=0

riai+p,k

∣

∣

∣

∣

∣

∣

+ ε‖A‖, (5.12)

condition (5.8) implies that

lim
n→∞

∑

k

1
n + 1

n
∑

j=0

1
Rj

j
∑

i=0

riai+p,k(xk − �) = 0 uniformly in p. (5.13)

Hence, ̂f − lim(Ax) = st − limx; that is, A ∈ (S ∩m, ̂f)reg, which completes the proof.

Similarly, ri = 1 for all i since R is reduced to Cesàro matrix, see [18].

Theorem 5.5. A ∈ (S ∩ �∞ : ˜f)reg if and only if A ∈ (c : ˜f)reg and

lim
n→∞

∑

i∈E

1
n + 1

∣

∣

∣

∣

∣

∣

n
∑

k=0

1
k + 1

k
∑

j=0

aj+p,i

∣

∣

∣

∣

∣

∣

= 0 uniformly in p (5.14)

for every E ⊆ N with natural density zero.

Theorem 5.6. BR−core(Ax) ⊆ st−core(x) for all x ∈ �∞ if and only if A ∈ (S ∩ �∞ : ̂f)reg and
(5.2) holds.

Proof. Necessity: Let BR − core(Ax) ⊆ st − core(x) for all x ∈ �∞. Then, τ∗(Ax) ≤ β(x) for
all x ∈ �∞, where β(x) = st − lim supx. Hence, since β(x) = st − lim supx ≤ L(x) for all
x ∈ �∞ (see [13]), we have (5.2) from Theorem 5.2. Furthermore, one can also easily see that
−β(−x) ≤ −τ∗(−Ax) ≤ τ∗(Ax) ≤ β(x), that is,

st − lim infx ≤ −τ∗(−Ax) ≤ τ∗(Ax) ≤ st − lim supx. (5.15)

If x ∈ S ∩ �∞, then st − lim infx = st − lim supx = st − limx. Thus, the last inequality implies
that st − limx = −τ∗(−Ax) = τ∗(Ax) = ̂f − lim Ax, that is, A ∈ (S ∩ �∞ : ̂f)reg.

Sufficiency: Conversely, assume that A ∈ (S ∩ �∞ : ̂f)reg and (5.2) hold. If x ∈ �∞, then
β(x) is finite. Let E be a subset of N defined by E = {l : xi > β(x) + ε} for a given ε > 0. Then
it is obvious that δ(E) = 0 and xi ≤ β(x) + ε if l /∈ E.
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For any real number ˜λ we write ˜λ+ = max{˜λ, 0} and ˜λ− = max{−˜λ, 0} whence |˜λ| =
˜λ+ + ˜λ−, ˜λ = ˜λ+ − ˜λ− and |˜λ| − ˜λ = 2˜λ−. Now, we can write

∑

j

cnj
(

p
)

xj =
∑

j<j0

cnj
(

p
)

xj +
∑

j≥j0
cnj

(

p
)

xj

=
∑

j<j0

cnj
(

p
)

xj +
∑

j≥j0
c+nj

(

p
)

xj −
∑

j≥j0
c−nj

(

p
)

xj

≤ ‖x‖
∑

j<j0

∣

∣cnj
(

p
)∣

∣ +
∑

j≥j0
j/∈E

c+nj
(

p
)

xj +
∑

j≥j0
j∈E

c+nj
(

p
)

xj

+ ‖x‖
∑

j≥j0

[∣

∣cnj
(

p
)∣

∣ − cnj
(

p
)] ≤ ‖x‖

∑

j<j0

∣

∣cnj
(

p
)∣

∣

+
[

β(x) + ε
]
∑

j≥j0
j/∈E

∣

∣cnj
(

p
)∣

∣ + ‖x‖
∑

j≥j0
j∈E

∣

∣cnj
(

p
)∣

∣

+ ‖x‖
∑

j≥j0

[∣

∣cnj
(

p
)∣

∣ − cnj
(

p
)]

.

(5.16)

By applying the operator lim supn→∞ supp∈N
and using the hypothesis, we obtained that

τ∗(Ax) ≤ β(x) + ε. Since ε is arbitrary, we conclude that τ∗(Ax) ≤ β(x) for all x ∈ �∞, that is,
BR − core(Ax) ⊆ st − core(x) for all x ∈ �∞ and the proof is complete. Now if ri = 1 for all i,
then R is reduced to Cesàro matrix and we have

BC − core(Ax) ⊆ st − core(x), ∀x ∈ �∞ if and only if A ∈
(

S ∩ �∞ : ˜f
)

reg
(5.17)

and (5.7) holds, see [18].
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[4] C. Aydın and F. Başar, “Some generalizations of the sequencespace a

p
r ,” Iranian Journal of Science and

Technology, vol. 20, no. 2, pp. 175–190, 2006.
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