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The purpose of this paper is to introduce new spaces f and f; that consist of all sequences whose
Riesz transforms of order one are in the spaces f and fy, respectively. We also show that f and fo
are linearly isomorphic to the spaces f and fo, respectively. The - and y-duals of the spaces f and

fo are computed. Furthermore, the classes ( f tp)and (p: f ) of infinite matrices are characterized
for any given sequence space y and determine the necessary and sufficient conditions on a matrix
A to satisfy Bg — core(Ax) C K — core(x), Bg — core(Ax) C st — core(x) for all x € €.

1. Introduction and Preliminaries

Let w be the space of all real or complex valued sequences. Then, each linear subspace of
w is called a sequence space. For example, the notations ¢, ¢, co, ¢1, cs, and bs are used
for the sequence spaces of all bounded, convergent, and null sequences, absolutely conver-
gent series, convergent series, and bounded series, respectively. Let A and y be two sequence
spaces and A = (auk) an infinite matrix of real or complex numbers a,i, where n,k € N =
{0,1,2,...}. Then, A defines a matrix mapping from A to y and is denoted by A : A\ — p if for
every sequence x = (xi) € A the sequence Ax = {(Ax), }, the A-transform of x, is in y where

(Ax), = D anxi, (neN). (1.1)
k

By (A : u), we denote the class of matrices A such that A : A — pu. Thus, A € (A : p) if and
only if the series on the right side of (1.1) converges for each n € N and every x € A, and we
have Ax = {(Ax),},cy € p for all x € A. The matrix domain A4 of an infinite matrix A in a
sequence space . is defined by

Ag={x=(xx) ew: Ax € \}. (1.2)
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If we take A = ¢, then cy is called, convergence domain of A, and we write the limit of Ax as
limax = limy,—, o >; ankxk. Further A is called regular if limsx = lim x for each convergent
sequence X.

Let A be a sequence space. Then . is called solid if and only if A C A, [1]. The
approach constructing a new sequence space by means of the matrix domain of a particular
limitation method has recently been employed by Altay and Basar [2], Basarir [3], Aydmn and
Basar [4], Kirisci and Basar [5], Sengoniil and Basar [6], Polat and Basar [7], and Malkowsky
et al. [8]. Finally, the new technique for deducing certain topological properties, such as AB-,
KB-, and AD-properties, and solidity and monotonicity, and determining the a-, p- and -
duals of the domain of a triangle matrix in a sequence space is given by Altay and Basar
[9].

Furthermore, quite recently, Kirigci and Basar [10] introduced the new sequence space
f derived from the space f of almost convergent sequences by means of the domain of the
generalized difference matrix B(r, s).

Define the sets f and fy by

X
f= {x:(xk)ew:Elzxe(CB lim Zﬂ:auniformlyinp},
n—wign+1
(1.3)

X
fo= {x = (xx) €Ew: lim Z k+pl = 0 uniformly in p}.
n—>ook:On+

If x € f, then x is said to be almost convergent to the generalized limit «. When x € f, we
write f —limx = a.

Lorentz [11] introduced this concept and obtained the necessary and sufficient con-
ditions for an infinite matrix to contain f in its convergence domain. These conditions on an
infinite matrix A = (auk) consist of the standard Silverman Toeplitz conditions for regularity
plus the condition lim,, .o, > |@nk — @nk+1| = 0. Such matrices are called strongly reqular. One
of the best known strongly regular matrices is C, the Cesaro matrix of order one which is a
lower triangular matrix defined by

1
, 0<k<mn,
0, k>n,

foralln,k € N.
A matrix U is called the generalized Cesaro matrix if it is obtained from C by shifting
rows. Let p : N — N. Then, U = (uyx) is defined by

, p(n)<k<pn)+n,
P e P (15)

0, otherwise,

for all n, k € N.
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Let us suppose that G is the set of all such matrices obtained by using all possible
functions p. Now, right here, let us give a new definition for the set of almost convergent
sequences that was introduced by Butkovi¢ et al. [12]:

Lemma 1.1. The set f of all almost convergent sequences is equal to the set (\ec Cu-

Other one of the best known regular matrices is R = (r,x), the Riesz matrix which is a
lower triangular matrix defined by

Ik 0<k<n,
Tk = Ry (1.6)
0, k>n,

for all n, k € N, where (%) is real sequence withre >0 (k e N)and R, =rg+ 11 + -+ + 1.
Let K be a subset of N. The natural density 6 of K is defined by

5(K) = lim%|{k§n:keK}|, (1.7)

where the vertical bars indicate the number of elements in the enclosed set. The sequence x =
(x) is said to be statistically convergent to the number [ if, for every ¢, 6({k : [xx—I| > €}) =0
(see [13]). In this case, we write st — limx = [. We will also write S and .Sy to denote the
sets of all statistically convergent sequences and statistically null sequences. The statistically
convergent sequences were studied by several authors (see [13, 14] and others).

Let us consider the following functionals defined on £:

I(x) = lilzninka, L(x) = lim sup x,
—® k— oo
(x) = li 1 z”:
o(x) = limsupsup —— > Xsi(n),
q pﬂop nel\lla 14 (n) (1.8)

1 P
L*(x) = limsup sup—— » Xu4i.
p%oop nel\ll)p+1ig(; "

In [15], the o-core of a real bounded sequence x is defined as the closed interval
[-g5(—x),qs(x)] and also the inequalities g,(Ax) < L(x) (o-core of Ax C K-core of x)
Go(Ax) < go(x) (o-core of Ax C o-core of x), for all x € £, have been studied. Here the
Knopp core, in short K-core, of x is the interval [I(x), L(x)]. In particular, when o(n) = n + 1,
since g5 (x) = L*(x), o-core of x is reduced to the Banach core, in short B-core, of x defined by
the interval [-L*(-x), L*(x)].

The concepts of B-core and o-core have been studied by many authors [16, 17].

Recently, Fridy and Orhan [13] have introduced the notions of statistical boundedness,
statistical limit superior (or briefly st — lim sup), and statistical limit inferior (or briefly st —
liminf), defined the statistical core (or briefly st-core) of a statistically bounded sequence
as the closed interval [st — liminf x, st — limsup x], and also determined the necessary and
sufficient conditions for a matrix A to yield K-core(Ax) C st-core(x) for all x € ..
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Let us write

x1+p

(1.9)

Mw‘

T*(x) = limsup supz

n—oo peN ko™ =o

Quite recently, Bc-core of a sequence has been introduced by the closed intervals [-T*(-x),
T*(x)] and also the inequalities

T*(Ax) < L(x),L(Ax) < T*(x), T*(Ax) < T*(x),T*(Ax) < st —limsup x (1.10)

have been studied for all x € Z, in [18].

Definition 1.2. Let x € €.,. Then, Bg-core of x is defined by the closed interval [-7*(-x), 7*(x)],
where

7" (x) = limsup supZ

n—o peN j:O

]
ti 1+p

(1.11)

j
Ti 1+p

—7*(-x) = liminf supz
n— oo peN § 0

Therefore, it is easy to see that Br-core of x is € if and only if f —limx=2¢.

As known, the method to obtain a new sequence space by using the convergence field
of an infinite matrix is an old method in the theory of sequence spaces. However, the study
of the convergence field of an infinite matrix in the space of almost convergent sequences is
new.

2. The Sequence Spaces f and f;

In this section we introduce the new spaces f and on as the sets of all sequences such that
their R-transforms are in the spaces f and f, respectively, that is

TriXi

. L T
f:{x—(xk)ew Esze(CBh Zn+1z lep

j=0 i=0 ]

= a uniformly in p

(2.1)

= u ] iAi
fo= {x: (xk) Ew: lim Znilz R+p = a uniformly in p}.

=0 =0 Y
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With the notation of (1.2), we can write f = frand fg = (fo)g- Define the sequence y = (yx),
which will be frequently used, as the R-transform of a sequence x = (xy), that is,

n

yn= > K ynen. (2.2)

If R = C, which is Cesaro matrix, order 1, then the space f and J?o correspond to the spaces f
and fo (see [18]).

Suppose that G' = {G : G = U o R,U € G and R is Riesz matrix}. Then we have the
following proposition.
Proposition 2.1. f = Nreg Cr dir.

Proof. The proof is similar to the proof of Lemma 1.1 so we omit the details, (see [12]). O

Consider the function || - || P f — R, and define

1
n+1

TiXivp
R;

. (2.3)

j
il = sup
n i=0

n
=0

The function || - || 7isanorm and ( f Al f) is BK-space. The proof of this is as follows.

Theorem 2.2. The sets f and fo are linear spaces with the coordinate wise addition and scalar
multiplication that is the BK- space with the || x|| 7= || Rx|| 5

Proof. The first part of the theorem can be easily proved. We prove the second part of the
theorem. Since (1.2) holds and f and f, are the BK-spaces [1] with respect to their natural

norm, also the matrix R is normal and gives the fact that the spaces f and ]?0 are BK-spaces.
O

Theorem 2.3. The sequence spaces f and fo are linearly isomorphic to the spaces f and f,
respectively.

Proof. Since the fact “the spaces fo and fy are linearly isomorphic” can also be proved in a
similar way, we consider only the spaces f and f. In order to prove the fact that f = f, we
should show the existence of a linear bijection between the spaces f and f. Consider the
transformation T defined, with the notation of (2.2), from f to f by x - y = Tx. The linearity
of T is clear. Further, it is trivial that x = 8 = (0,0,...) whenever Tx = 0 and hence T is
injective.

Lety = (yx) € f , and define the sequence x = (xi) by

1
%= —(Reye = Reayia), (k€N (2.4)



6 Abstract and Applied Analysis

Then, we have

L L rixi
fr—limx = lim Z 1 Z P uniformly in p
n— oo "

=0 n+1 P R]
Z L ri((1/71) (RilYisp — Ric1Yip-
= nlgI;[oZ _1|_1 Z ! (( /7i) ( y;;_ LYisp l)) uniformly in p
=0 n i—0 Ji (25)

n
nlgr;to p— g(; Yj+p uniformly in p

= f —lim y uniformly in p,

which shows that x € f. Consequently, we see that T is surjective. Hence, T is a linear

bijection that therefore shows that the spaces f and f are linearly isomorphic, as desired.
This completes the proof. O

Theorem 2.4. The spaces f and fo are not solid sequence spaces.

Proof. If we take u = (ux) = (Ro/r0,—(Ro/1o + Ri/m1), (Ri/r + Rz/rz),...,(—l)k(Rk/rk +
Ry1/7k41),-..) and v = (vg) = (1,—1,1,...,(—1)k,...), then we see that u € f and v €
Z. Let uv be t, that is, (uv), = tr. Then, since (tx) = (Ro/r0, (Ro/7r0 + Ri/m1), (Ri/r +
Ry/13),...,(Rk/1x + Rks1/7k41),...) and it is not hard to see by taking into account the
definition Riesz matrix that fg — lim¢ = lim,_, 27:0 1/(n+1) Z,Z:o(ri tiip)/Rj = oo. This
shows that the multiplication £, f of the spaces ¢, and f is not a subset of f and therefore

the space f is not solid. The proof for the space f; is similar to the proof of the space f, so we
omit it. O

Theorem 2.5. Let the spaces f and fo be given. Then,

(1) the inclusion fo C f holds and the space f is not a subset of the space £,
(2) if (1/Ry,) € cand (ri) € €1, then €4, C fstrictly holds.

Proof. (1) Clearly, the inclusion f; C f holds. Let us consider the sequence given by

R
-(ﬂ + "”), k is odd,
Tk Tk+1

& 4 Rk+l

Tk Tk+1

k is even,

Since (Rx) — oo (k — o0), the sequence (u) is not a bounded sequence. But clearly u € f .
This shows that to us, the space f is not a subset of the space £...

(2) If (1/R,) € c and (rx) € ¢, then for all x € ¢, we have Rx € c. Therefore, since
lim(Rx) = f — lim(Rx), we see that x € f O
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In Theorem 2.6, we will use some similar techniques that are due to Méricz and
Rhoades [19].

Theorem 2.6. Define the sequences (a,) and (f3,) by

n [
a, = inf ! ——
p>0 =0 n+1 P R]'
A (2.7)
1 1 / TiXivp
Pn = sup
n p>0]§n+1i:0 R]
forall n € N. Then, a, < By, for each n € N and
(i) the sequence (apn) is nondecreasing,
(ii) the sequence (fon) is nonincreasing.
Proof. 1t is trivial that
ay, = inf 1 iy <sup P L =p (2.8)
n — - - Fn .
p>0 =0 n+1 o0 R] p>0 520 n+1 o0 R]
for each n € N.
Since the part (ii) can be proved in a similar way, we prove only part (i)
p+2n+l 1 ] ri%;
a n+ = inf - . e—
on+l >0 % 2n+1+1 ; R]
1 2 41 ”*ﬁ i rix;
S0 2ml 1 [ 27+ 1 perelie LY,
IR T E]] %) (2n 1 1)
Cp02mlilf2n+1\ & &R
| j=p =0 (2.9)
1 [ 1 PE L rxi
=inf —— | —— )@ +1
p20 2741 4 1 _2n+1<1=F”§ R; ( )

1 p2t riXi
+ — ](2"+1)
2n+1 <j—p+2"+1 ; i

2 m[(zn + 1)a2n + (271 + 1)“271] = aon.

This step completes the proof. O
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Theorem 2.7. lim, _ o, (B — ax) = 0 ifand only if x € f.

Proof. Suppose that lim,,_, o, (f2rn — az«) = 0. For each n, choose r to satisfy 2" < n < 2"*1. We
may write 7 in a dyadic representation of the form n = Y!_,n;2!, where each n; is 0 or 1,
i=0,1,2,...,r—1,and n, = 1. Then,

AR | P+ mi2 Z]: rix;
n+l]= = R T n+1 = SR
1 1 P2 J X
= 20+1
n+1[20+1< - Zo R; < " )
j=p i=
1 naz z]: TiX; < 1 )
2°+1
1 ;
20 +1 j=m21 =0 R (2.10)

+1
1 ;
> (2]
] ]Zon]<2 +1>a]
since n; € {0,1}, and hence
g d TiX; 1 .
i (0i ,
;r;g z=pn+1§ ! n+1].=0n7<2 +1>a2]’
(2.11)
p+n j 7iX; r )
T By < —— S (2 + 1)y
itingi)nHZ =<~ 1j=210n;( + Dz
Thus,
1 .
0<pu—an< — > ni(2+1) (By - a). (2.12)

If T is the lower triangular matrix with nonzero entries t,; = k(2K +1)/(n + 1), then, T is a
regular matrix so that lim, _, . (for —a2r) = 0. From the equality (2.12), we see that lim,, . o (. —
ap) =

Conversely, assume that x € f. Then, since

p+n

j
Tim Z Z Fx - (2.13)

:p =0
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implies
ptn 1 ]
lim a,, = inf lim Z hixi a,
n— oo p>0n—w“= n+1 -0 1N
(2.14)
1 orx
lim f,, = sup lim =g,
n Ooﬂn p>€nﬂw;n+1§ i
we have
Jim = fim o = fim (2~ ) =0 215)

If we take n = 27, then the proof of sufficiency is obtained. This step completes the proof. O

3. Some Duals of the Spaces f and fo

In this section, by using techniques in [9], we have stated and proved the theorems
determining the p- and y-duals of the spaces fy and f. For the sequence spaces A and p,
define the set S(\, u) by

S(hp) ={z=(zk) ew:xz = (x)zx) € p Vx = (x) € 1}. (3.1)

With the notation of (3.1), the a-, -, and y-duals of a sequence space A, which are, res-
pectively, denoted by A%, AP, and A7, are defined by

A =S\ ¢), A =S0\cs), A =S(\bs). (3.2)

The following two lemmas are introduced in [20] which we need in proving Theorems 3.3
and 3.4.

Lemma 3.1. A € (f : &) if and only if

sup . |ank| < oo. (3.3)

neN

Lemma 3.2. A € (f : ¢) if and only if
lim Za"k =a,
n—oo K
lim aye = ax; keN, (3.4)

n—oo

nlg{}oglA(ank —ay)| = 0.
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Theorem 3.3. The y-duals of the spaces f and fo are the set dy N dy, where

di = {a =(ax) ew: Z RkA<[:—:> < oo},
k
(3.5)

dy = {a: (a) € w {‘;—:Rn} eéw}.

Proof. Define the matrix T = (t,x) via the sequence a = (ax) € w by

RkA<ﬂ), 0<k<n-1,

Tk
tae =14 2R n=k, (3.6)
n
0, otherwise,

for all n, k € N. Here, A(ax/rx) = (ax/7x — ax+1/7x+1). By using (2.2), we derive that

n n-1 ar a,
Z Xy = Z RiA| — )y + —Ruyn
k=0 k=0 Tk Tn

=(Ty),, (neN).

(3.7)

From (3.7), we see that ax = (axxx) € bs whenever x = (xi) € fif and only if Ty € ¢,, when-
ever i = (yx) € f. Then, we derive by Lemma 3.1 that

D RkA<%) < 0, {@Rn} ce,, (3.8)
Tk Tn
k=0
which yields the desired result f7 = ﬂ =dNd,. O

Theorem 3.4. Define the set dz by

dgz{az(ak)Ew:Z

k

A [RkA<ﬂ) —a
Tk

< oo } (3.9)

Then, fP = d3 N cs.

Proof. Consider equality (3.7), again. Thus, we deduce that ax = (axxx) € cs whenever x =
(xx) € f if and only if Ty € c whenever y = (yx) € f. It is obvious that the columns of
that matrix T, defined by (3.6), are in the space c. Therefore, we derive the consequence from
Lemma 3.2 that f# = d3 N cs. O
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4. Some Matrix Mappings Related to the Spaces ]? and on

In this section, we characterize the matrix mappings from f into any given sequence space
via the concept of the dual summability methods of the new type introduced by Basar [21].

Note that some researchers, such as, Basar [21], Basar and Colak [22], Kuttner [23],
and Lorentz and Zeller [24], worked on the dual summability methods. Now, following Basar
[21], we give a short survey about dual summability methods of the new type.

Let us suppose that the infinite matrices A = (aux) and B = (b,) map the sequences
x = (xx) and y = (yx), which are connected by the relation (2.2) to the sequences z = (z,) and
t = (t,), respectively, that is,

zp = (Ax), = Zankxk, (neN),
k

4.1)
tv = (By), = D bukyr, (n€N).
k

It is clear here that the method B is applied to the R-transform of the sequence x = (xx) while
the method A is directly applied to the entries of the sequence x = (xx). So, the methods A
and B are essentially different.

Let us assume that the matrix product BR exists, which is a much weaker assumption
than the conditions on the matrix B belonging to any matrix class, in general. The methods A
and B in (4.1), (4.2) are called dual summability methods of the new type if z, reduces to t,, (or t,
reduces to z,) under the application of formal summation by parts. This leads us to the fact
that BR exists and is equal to A and (BR)x = B(Rx) formally holds if one side exists. This
statement is equivalent to the following relation between the entries of the matrices A = (ayx)
and B = (byk):

T

Q= 3 by OF bk i Rk<% - “""‘”) = RkA<%> (4.2)

ik N Tk T+l Tk

for all n, k € N.
Now, we give the following theorem concerning the dual matrices of the new type.

Theorem 4.1. Let A = (ank) and B = (byx) be the dual matrices of the new type and p any given
sequence space. Then, A € (f: w) ifand only if B € (f : p) and

()]

for every fixed k € N.

Proof. Suppose that A = (auk) and B = (b,k) are dual matrices of the new type, that is to
say (4.2) holds and p is an any given sequence space. Since the spaces f and f are linearly
isomorphic, now let A € (f : u) and y = (yx) € f. Then, BR exists and (auk)iey € d2 N cs,
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which yields that (buk) ey € €1 for each n € N. Hence, By exists for each vy € f, and thus
letting m — oo in the equality

m

m
> buyk =,
k=0

Ebnjxk (44)
k=0 j=k '
for all m,n € N, we have by (4.2) that By = Ax, which gives the result B € (f : p).
Conversely, let {auk} ey € fﬂ for each n € Nand B € (f : p) hold, and take any
x = (xx) € f. Then, Ax exists. Therefore, we obtain from the equality

n anm
Z Apk X = Z RkA—ky + Ym
k=0 k=0
(4.5)
= Z bnk]/k/ (n e N)/
k=0
asn — oo that Ax = By, and this shows that A € (f : y). This completes the proof. O

Theorem 4.2. Suppose that the entries of the infinite matrices D = (dnx) and E = (e, ) are connected
with the relation

ridjk
7
R;

enk = (n, k € N) (4.6)

j=0
and p is any given sequence space. Then, D € (u : f) ifand if only E € (u : f).

Proof. Let x = (xx) € p, and consider the following equality with (4.6):

T m m
= > djexi = > ewcxi;  (m,n,k €N), (4.7)
k=0

n
j=0 R 3

which yields as m — oo that Dx € f whenever x € p if and if only Ex € f whenever x € pu.
This step completes the proof. O

Now, right here, we give the following propositions that are obtained from Lemmas 3.2
and 3.1 and Theorems 4.1 and 4.2.

Proposition 4.3. Let A = (anx) be an infinite matrix of real or complex numbers. Then,

X Tilni
A Z% — dy = 0,
j=k (4.8)

2) {aw}e fPVneN.

- 1) lim >
A=(aw) € (f:ln) = noe



Abstract and Applied Analysis 13

Proposition 4.4. Let A = (ank) be an infinite matrix of real or complex numbers. Then,

( 7j “nJ

@ Jim S5 -

. Tjanj
(4) lim Z R - Ok for each k € N,
A= (an) € (f c> = 4 j=k = (4.9)

5) <z”% @>
j=k ]

(6) {a"k}keN S fﬂ Vn e N.

=0,

n— oo

Proposition 4.5. Let A = (auk) be an infinite matrix of real or complex numbers. Then,

(7) supZZ]nJ < oo,
neN k| j=k R;
; 8 lim S 2% _ g, exists for each fixed k € N
A:(ank)e<€w:f><=)<() f_nl_r%, R, = ay exists for each fixed k € N,
j=

M§

= 0 uniformly in 7.

© Jim 3

1 & jansi,
i R
j=k

1]
o

i

(4.10)

Proposition 4.6. Let A = (anx) be an infinite matrix of real or complex numbers. Then,

.
7"]‘ an]-

7

j=k j

(10) sup Z

neN

7

A= (auy) € (c : f) = 4q(11) f _;}I—IEOZ]TW = ay exists for each fixed k e N, (4.11)
ik Y

T an}

(12) f- 1gI;OZZ =

5. Core Theorems

In this section, we give some core theorems related to the space f . We need the following
lemma due to Das [25] for the proof of next theorem.

Lemma 5.1. Let ||c|| = [|cqj(p)|| < oo and limy, . o SUP ey Icnj(p)| = 0. Then, thereisay = (y;) €
Oy such that |ly|| < 1 and

lim sup suchn] (p)y;j = limsup supZ lcni(p) |- (5.1)

n—oo peN n—o peN
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Theorem 5.2. Br—core(Ax) C K—core(x) for all x € £y, ifand only if A € (c: f)

reg

n 1 I
Z R Z ¥iQitp,k

=0 %7 =0

=1. (5.2)

1
S DY
Proof. Necessity: Suppose first that Bg — core(Ax) C K — core(x) for all x € £,,. If x € f, then
we have 7*(Ax) = —1*(-Ax). By this hypothesis, we get

-L(-x) < -1*(-Ax) < 7" (Ax) < L(x). (5.3)

If x € ¢, then L(x) = —L(-x) = lim x. So, we have f— lim Ax = 7*(Ax) = -7*(-Ax) = limx,
which implies that A € (c, f) reg”
Now, let us consider the sequence C = (c,j(p)) of infinite matrices defined by

Cn] (p) n+ 1 Z ] ZO rlal+p k Vn/l p € N (54)

Then, it is easy to see that the conditions of Lemma 5.1 are satisfied for the matrix sequence
C. Thus, by using the hypothesis, we can write

1 <liminfsup > |cuj(p)| < limsup supZ|cn]- (p)]
TR peN n—o peN;

lim sup suchnJ (p)y; (5.5)

n—o  peN

™(Ay) <L(y) < |ly| < 1.

This gives the necessity of (5.2).

Sufficiency: Conversely, let A € (c: f )reg and (5.2) hold for all x € #. For any real
number 1 we write A* = max{},0} and 1~ = max{-A,0}; then [X| = A* + A~ and X = X1* — X".
Therefore, for any given £ > 0, there is a jo € N such that x; < L(x) + ¢ for all j > jo. Now, we
can write

chf(p)x] chJ(P)x1+Z(CﬂJ(P)) Xj = Z(an(P))ixf

j<jo j=jo Jj2jo

< x> |eni (p) | + [L(x) + s]ZICn; 2] (5.6)

Jj<jo

+ llxll 2 leni ()| = e (p)]-

Thus, by applying limsup,,_, sup,.y and using the hypothesis, we have 7*(Ax) < L(x) +&.
This completes the proof since ¢ is arbitrary and x € .. O

In particular 7; = 1 for all i since R is reduced to Cesaro matrix, see [18].
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Theorem 5.3. Bc—core(Ax) € K—core(x) for all x € €4, if and only if A € (c: f)reg

n k
li iapi| = 1. 7
Jm sup3 |2 Z 57)
Theorem 5.4. A € (SN &u, : f),, if and only if A € (c: f),o an
n j
lim Z Z Tidispk| = 0 uniformly in p (5.8)
noofgn+1 =0 R

for every E C N with natural density zero.

Proof. Necessity: Let A € (SN ¥, f )reg- Then, A € (c, f )reg immediately follows from the fact
that ¢ € SN 4. Now, define a sequence t = (t) for x € ¢, as

Xk, ke E,
b = (5.9)
0, k¢€E,

where E is any subset of N with 6(E) = 0. Then, st —limt, = 0 and ¢t € Sy, and so we have
At € fo. On the other hand, since At = > ;. auktk, the matrix B = (b,) defined by

Ank, ke E,
bk = (5.10)
0, ké&E,

for all n, must belong to the class (¢, ﬁ)). Hence, the necessity of (5.8) follows from
Proposition 4.5.

Sufficiency: Conversely, suppose that A € (c, f )reg and (5.8) holds. Let x € SN £, and
st—=limx = . Write E = {k : |x,—¢| > €} for any given £ > 0 so that 6(E) = 0.Since A € (c,f)

and f— lim 3 anx =1, we have

reg

f-lim(Ax) = f - lim<Zank (xk — ) + eZank>
k k
= f—hm<2ank(xk—e) +e> (5.11)
k

- i sp S

1 &1
1 Z Ezriai-%—p,k(xk -0)+¢.
=0 N

peN T T i=0
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On the other hand, since

n j
Z Z TiQi+p,k

M\.

1 &1
Z 1 Z rlal+pk Xk — < ”x”Z + 5||A”/ (512)
kn+ j=0 ]1:0 keE j=0 ]1:0
condition (5.8) implies that

1 &1
lim Z Z — Z 7i@iwp k (Xk — €) = 0 uniformly in p. (5.13)

n— w4 n+1 =0 R]' 20
Hence, f —lim(Ax) = st —lim x; thatis, A € (SNnm, f )reg, which completes the proof. O

Similarly, r; = 1 for all i since R is reduced to Cesaro matrix, see [18].

Theorem 5.5. A€ (SN, : f)reg ifand only if A € (c: f)reg and

,}E“Z

k
Z Ajipi
E 7=0

= 0 uniformly in p (5.14)

for every E C N with natural density zero.

Theorem 5.6. Br—core(Ax) C st—core(x) for all x € €y, if and only if A € (SN &y : f)reg and
(5.2) holds.

Proof. Necessity: Let Bg — core(Ax) C st — core(x) for all x € . Then, 7*(Ax) < p(x) for
all x € ¢, where (x) = st — limsup x. Hence, since ff(x) = st — limsupx < L(x) for all
x € €, (see [13]), we have (5.2) from Theorem 5.2. Furthermore, one can also easily see that
—p(—x) < -1*(—Ax) < 7 (Ax) < p(x), that is,

st —liminfx < —7*(-Ax) < 7" (Ax) < st — limsup x. (5.15)

If x € SN ¥, then st —liminf x = st — limsup x = st — lim x. Thus, the last inequality implies
that st —limx = —7*(-Ax) = 7*(Ax) = f —lim Ax, thatis, A€ (SN, f)reg.
Sufficiency: Conversely, assume that A € (SN €., : f )reg and (5.2) hold. If x € €, then

P(x) is finite. Let E be a subset of N defined by E = {I : x; > p(x) + ¢} for a given € > 0. Then
it is obvious that 6(E) =0 and x; < f(x) + €if [ € E.
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For any real number 1 we write 1t = maX{X,O} and A~ = max{—X,O} whence |X| =
A+, A=At - 1" and |A\| - L = 21~. Now, we can write

e (P)xj = Dienj(p)xj + Xicni(P)x;

J<jo JZjo

= Yeni(p)x; + Xen (p)x; = X (p)x;

Jj<jo j2jo jZjo

<%l leni ()| + Dcii()xj + Dcni (P)x;

Jj<jo jZjo Jj2jo
j¢E jeE

+ 11l 22 len; ()] = €0 (P)] < Il X ()]

JjZjo Jj<jo

+ [BC) + €] Ylew (p)] + 112l X enj ()]
ot o

+ 1% [leni () | = eni (P)]-

j=jo

(5.16)

By applying the operator limsup, , sup,y and using the hypothesis, we obtained that
T*(Ax) < B(x) + €. Since ¢ is arbitrary, we conclude that 7*(Ax) < f(x) for all x € ¢, that is,
Br — core(Ax) C st — core(x) for all x € €, and the proof is complete. Now if ; = 1 for all 4,
then R is reduced to Cesaro matrix and we have

Bc — core(Ax) C st —core(x), Vx € ¥, if and only if A € (S Néy : f) (5.17)
reg
and (5.7) holds, see [18]. O
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