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For fixed s ≥ 1 and any t1, t2 ∈ (0, 1/2) we prove that the double inequality Gs(t1a + (1 − t1)b, t1b +
(1 − t1)a)A1−s(a, b) < P(a, b) < Gs(t2a + (1 − t2)b, t2b + (1 − t2)a)A1−s(a, b) holds for all a, b > 0

with a/= b if and only if t1 ≤ (1 −
√
1 − (2/π)2/s)/2 and t2 ≥ (1 − 1/

√
3s)/2. Here, P(a, b), A(a, b)

and G(a, b) denote the Seiffert, arithmetic, and geometric means of two positive numbers a and b,
respectively.

1. Introduction

The Seiffert mean P(a, b) [1] of two distinct positive numbers a and b is defined by

P(a, b) =
a − b

4 arctan
(√

a/b
)
− π

. (1.1)

Recently, the Seiffert mean P(a, b) has been the subject of intensive research. In
particular, many remarkable inequalities for P(a, b) can be found in the literature [2–17].
The Seiffert mean P(a, b) can be rewritten as (see [6, (2.4)])

P(a, b) =
a − b

2 arcsin((a − b)/(a + b))
. (1.2)
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Let A(a, b) = (a + b)/2, G(a, b) =
√
ab and H(a, b) = 2ab/(a + b) be the classical

arithmetic, geometric, and harmonic means of two positive numbers a and b, respectively.
Then it is well known that inequalities H(a, b) < G(a, b) < P(a, b) < A(a, b) hold for all
a, b > 0 with a/= b.

For α, β, λ, μ ∈ (0, 1/2), Chu et al. [18, 19] proved that the double inequalities

G(αa + (1 − α)b, αb + (1 − α)a) < P(a, b) < G
(
βa +

(
1 − β

)
b, βb +

(
1 − β

)
a
)
,

H(λa + (1 − λ)b, λb + (1 − λ)a) < P(a, b) < H
(
μa +

(
1 − μ

)
b, μb +

(
1 − μ

)
a
) (1.3)

hold for all a, b > 0 with a/= b if and only if α ≤ (1 −
√
1 − 4/π2)/2, β ≥ (3 − √

3)/6, λ ≤
(1 −

√
1 − 2/π)/2 and μ ≥ (6 − √

6)/12.
Let t ∈ (0, 1/2), s ≥ 1 and

Qt,s(a, b) = Gs(ta + (1 − t)b, tb + (1 − t)a)A1−s(a, b), (1.4)

then it is not difficult to verify that

Qt,1(a, b) = G(ta + (1 − t)b, tb + (1 − t)a),

Qt,2(a, b) = H(ta + (1 − t)b, tb + (1 − t)a)
(1.5)

and Qt,s(a, b) is strictly increasing with respect to t ∈ (0, 1/2) for fixed a, b > 0 with a/= b.
It is natural to ask what are the largest value t1 = t1(s) and the least value t2 = t2(s) in

(0, 1/2) such that the double inequality Qt1,s(a, b) < P(a, b) < Qt2,s(a, b) holds for all a, b > 0
with a/= b and s ≥ 1. The main purpose of this paper is to answer this question.

2. Main Result

In order to establish our main result we need two lemmas, which we present in the following.

Lemma 2.1. If s ≥ 1, then 1/(3s) + (2/π)2/s < 1.

Proof. Consider the following:

f(s) =
1
3s

+
(
2
π

)2/s

. (2.1)
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Then simple computations lead to

lim
s→+∞

f(s) = 1, (2.2)

f ′(s) =
2
s2

log
π

2

[(
2
π

)2/s

− 1
6 log(π/2)

]

≥ 2
s2

log
π

2

[(
2
π

)2

− 1
6 log(π/2)

]

=
24 log(π/2) − π2

3π2s2

(2.3)

for s ≥ 1.
Computational and numerical experiments show that

24 log
(π
2

)
− π2 = 0.968 · · · > 0. (2.4)

Inequalities (2.3) and (2.4) imply that f(s) is strictly increasing in [1,+∞). Therefore,
Lemma 2.1 follows from (2.1) and (2.2) together with the monotonicity of f(s).

Lemma 2.2. Let 0 ≤ u ≤ 1, s ≥ 1 and

fu,s(x) =
s

2
log

(
1 − ux2

)
− logx + log(arcsinx). (2.5)

Then inequality fu,s(x) > 0 holds for all x ∈ (0, 1) if and only if 3su ≤ 1, and inequality fu,s(x) < 0
holds for all x ∈ (0, 1) if and only if u + (2/π)2/s ≥ 1.

Proof. If u = 0, then we clearly see that 3su ≤ 1, u + (2/π)2/s < 1 and f0,s(x) =
log[(arcsinx)/x] > 0 for all s ≥ 1 and x ∈ (0, 1). In the following discussion, we assume
that 0 < u ≤ 1.

From (2.5) and simple computations we have

lim
x→ 0+

fu,s(x) = 0, (2.6)

f ′
u,s(x) =

1√
1 − x2 arcsinx

− 1 + u(s − 1)x2

x(1 − ux2)
=

1 + u(s − 1)x2

x(1 − ux2) arcsinx
gu,s(x), (2.7)
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where

gu,s(x) =
x
(
1 − ux2)

√
1 − x2[1 + u(s − 1)x2]

− arcsinx, (2.8)

gu,s(0) = 0, (2.9)

g ′
u,s(x) =

x2

(1 − x2)3/2[1 + u(s − 1)x2]2
hu,s(x), (2.10)

where

hu,s(x) = u2(s − 1)2x4 + u
(
−s2u + us + 4s − 2

)
x2 + 1 − 3su, (2.11)

hu,s(0) = 1 − 3su, (2.12)

hu,s(1) = us(1 − u) + (1 − u)2. (2.13)

We divide the proof into four cases.
Case 1 (3su ≤ 1). Then from (2.11) and (2.12) together with the fact that

−us2 + us + 4s − 2 = 2(s − 1) + s(u + 2su + 1) + s(1 − 3su) > 0, (2.14)

we clearly see that

hu,s(0) ≥ 0, (2.15)

and hu,s(x) is strictly increasing in [0, 1].
Equation (2.12) and the monotonicity of hu,s(x) imply that

hu,s(x) > 0 (2.16)

for x ∈ (0, 1].
Equation (2.10) and inequality (2.16) lead to the conclusion that gu,s(x) is strictly

increasing in [0, 1). Then from (2.9)we know that

gu,s(x) > 0 (2.17)

for x ∈ (0, 1).
It follows from (2.7) and inequality (2.17) that fu,s(x) is strictly increasing in (0, 1].
Therefore, fu,s(x) > 0 for all x ∈ (0, 1) follows from (2.6) and the monotonicity of

fu,s(x).
Case 2 (3su > 1). Then (2.12) and the continuity of hu,s(x) imply that there exists 0 < λ < 1
such that

hu,s(x) < 0 (2.18)

for x ∈ [0, λ).
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Therefore, fu,s(x) < 0 for x ∈ (0, λ) follows easily from (2.6), (2.7), (2.9) and (2.10)
together with inequality (2.18).

Case 3 (u + (2/π)2/s ≥ 1). Then Lemma 2.1 and (2.12) lead to

hu,s(0) = 1 − 3su ≤ 1 − 3s

[
1 −

(
2
π

)2/s
]

< 0. (2.19)

We divide the proof into two subcases.

Subcase 3.1 (u = 1). Then (2.13) becomes

hu,s(1) = 0. (2.20)

Let t = x2, then from (2.11) we clearly see that the function hu,s is a quadratic function
of variable t. It follows from inequality (2.19) and (2.20) that

hu,s(x) < 0 (2.21)

for all x ∈ [0, 1).
Therefore, fu,s(x) < 0 for x ∈ (0, 1) follows easily from (2.6), (2.7), (2.9) and (2.10)

together with inequality (2.21).

Subcase 3.2 (0 < u < 1). Then from (2.5), (2.8), and (2.13) we have

fu,s(1) = log
[π
2
(1 − u)s/2

]
≤ 0, (2.22)

lim
x→ 1−

gu,s(x) = +∞, (2.23)

hu,s(1) > 0. (2.24)

From (2.11), (2.19), and (2.24) we clearly see that there exists 0 < λ1 < 1 such that
hu,s(x) < 0 for x ∈ [0, λ1) and hu,s(x) > 0 for x ∈ (λ1, 1]. Then (2.10) implies that gu,s(x) is
strictly decreasing in [0, λ1] and strictly increasing in [λ1, 1).

From (2.9) and (2.23) together with the piecewise monotonicity of gu,s(x) we clearly
see that there exists 0 < λ2 < 1 such that gu,s(x) < 0, for x ∈ (0, λ2) and gu,s(x) > 0 for
x ∈ (λ2, 1). Then (2.7) implies that fu,s(x) is strictly decreasing in (0, λ2] and strictly increasing
in [λ2, 1].

Therefore, fu,s(x) < 0 for x ∈ (0, 1) follows from (2.6) and (2.22) together with the
piecewise monotonicity of fu,s(x).

Case 4 (u + (2/π)2/s < 1). Then (2.5) leads to

fu,s(1) = log
[π
2
(1 − u)s/2

]
> 0. (2.25)

From inequality (2.25) and the continuity of fu,s(x)we know that there exists 0 < μ < 1
such that fu,s(x) > 0 for x ∈ (μ, 1].
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Theorem 2.3. If t1, t2 ∈ (0, 1/2) and s ≥ 1, then the double inequality

Qt1,s(a, b) < P(a, b) < Qt2,s(a, b) (2.26)

holds for all a, b > 0 with a/= b if and only if t1 ≤ (1 −
√
1 − (2/π)2/s)/2 and t2 ≥ (1 − 1/

√
3s)/2.

Proof. Since bothQt,s(a, b) and P(a, b) are symmetric and homogeneous of degree 1. Without
loss of generality, we assume that a > b. Let x = (a − b)/(a + b) ∈ (0, 1). Then from (1.2) and
(1.4) we have

log
(
Qt,s(a, b)
P(a, b)

)
= log

(
Qt,s(a, b)
A(a, b)

)
− log

(
P(a, b)
A(a, b)

)

=
s

2
log

[
1 − (1 − 2t)2x2

]
− logx + log(arcsinx).

(2.27)

Therefore, Theorem 2.3 follows easily from Lemma 2.2 and (2.27).
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[7] P. A. Hästö, “Optimal inequalities between Seiffert’s mean and power means,” Mathematical

Inequalities & Applications, vol. 7, no. 1, pp. 47–53, 2004.
[8] Y. M. Chu, Y. F. Qiu, and M. K. Wang, “Sharp power mean bounds for the combination of Seiffert and

geometric means,” Abstract and Applied Analysis, vol. 2010, Article ID 108920, 12 pages, 2010.
[9] Y. M. Chu, Y. F. Qiu, M. K. Wang, and G. D. Wang, “The optimal convex combination bounds of

arithmetic and harmonic means for the Seiffert’s mean,” Journal of Inequalities and Applications, vol.
2010, Article ID 436457, 7 pages, 2010.

[10] S. S. Wang and Y. M. Chu, “The best bounds of the combination of arithmetic and harmonic means
for the Seiffert’s mean,” International Journal of Mathematical Analysis, vol. 4, no. 21–24, pp. 1079–1084,
2010.

[11] C. Zong and Y. M. Chu, “An inequality among identric, geometric and Seiffert’s means,” International
Mathematical Forum, vol. 5, no. 25–28, pp. 1297–1302, 2010.

[12] M. K. Wang, Y. F. Qiu, and Y. M. Chu, “Sharp bounds for Seiffert means in terms of Lehmer means,”
Journal of Mathematical Inequalities, vol. 4, no. 4, pp. 581–586, 2010.

[13] H. Liu and X. J. Meng, “The optimal convex combination bounds for Seiffert’s mean,” Journal of
Inequalities and Applications, vol. 2011, Article ID 686834, 9 pages, 2011.

[14] Y. M. Chu, M. K. Wang, and W. M. Gong, “Two sharp double inequalities for Seiffert mean,” Journal
of Inequalities and Applications, vol. 2011, article 44, 7 pages, 2011.



Abstract and Applied Analysis 7

[15] H. N. Hu, S. W. Hou, Y. W. Xu, and Y. M. Chu, “Optimal convex combination bounds of root-square
and harmonic root-square means for Seiffert mean,” International Mathematical Forum, vol. 6, no. 57–
60, pp. 2823–2831, 2011.

[16] Y. F. Qiu, M. K. Wang, and Y. M. Chu, “The sharp combination bounds of arithmetic and logarithmic
means for Seiffert’s mean,” International Journal of Pure and Applied Mathematics, vol. 72, no. 1, pp.
11–18, 2011.

[17] S. Q. Gao, “Inequalities for the Seiffert’s means in terms of the identric mean,” Journal of Mathematical
Sciences, Advances and Applications, vol. 10, no. 1-2, pp. 23–31, 2011.

[18] Y. M. Chu, M. K. Wang, and Z. K. Wang, “An optimal double inequality between Seiffert and
geometric means,” Journal of Applied Mathematics, vol. 2011, Article ID 261237, 6 pages, 2011.

[19] Y. M. Chu, M. K. Wang, and Z. K. Wang, “A best-possilbe double inequality between Seiffert and
harmonic means,” Journal of Inequalities and Applications, vol. 2011, article 94, 7 pages, 2011.


