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We study the stability of cubic ∗-derivations on Banach ∗-algebras. We also prove the superstability
of cubic ∗-derivations on a Banach ∗-algebra A, which is left approximately unital.

1. Introduction

In [1], Ulam proposed the stability problems for functional equations concerning the stability
of group homomorphisms. In fact, a functional equation is called stable if any approximately
solution to the functional equation is near a true solution of that functional equation and is
superstable if every approximate solution is an exact solution to it. In [2], Hyers considered the
case of approximate additivemappings in Banach spaces and satisfying thewell-knownweak
Hyers inequality controlled by a positive constant. Bourgin [3]was the second author to treat
this problem for additive mappings (see also [4]). In [5], Rassias provided a generalization
of Hyers Theorem, which allows the Cauchy difference to be unbounded. Găvruţa then
generalized the Rassias’ result in [6] for the unbounded Cauchy difference. Subsequently,
various approaches to the problem have been studied by a number of authors (see, e.g., [7–
11]).

Recall that a Banach ∗-algebra is a Banach algebra (complete normed algebra) which
has an isometric involution. For a locally compact groupG, the algebraic group algebra L1(G)
is a Banach ∗-algebra. The bounded operators on Hilbert space H is also a Banach ∗-algebra.
In general, allC∗-algebras are Banach ∗-algebra. A left- (right-) bounded approximate identity
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for a normed algebra A is a bounded net (ej)j in A such that limjeja = a (limjaej = a) for
each a ∈ A. A bounded approximate identity for A is a bounded net (ej)j , which is both
a left- and a right-bounded approximate identity. Every group algebra and every C∗-algebra
has a bounded approximate identity.

The stability of functional equations of ∗-derivations and of quadratic ∗-derivations
with the Cauchy functional equation and the Jensen functional equation on Banach ∗-algebras
is investigated in [12]. The author also proved the superstability of ∗-derivations and of
quadratic ∗-derivations on C∗-algebras.

In 2003, Cădariu and Radu employed the fixed point method to the investigation of
the Jensen functional equation. They presented a short and a simple proof (different from the
“direct method,” initiated by Hyers in 1941) for the Cauchy functional equation [13] and for
the quadratic functional equation [14] (see also [15–18]).

The functional equation

f
(
2x + y

)
+ f

(
2x − y

)
= 2f

(
x + y

)
+ 2f

(
x − y

)
+ 12f(x) (1.1)

which is called cubic functional equation. In addition, every solution of functional equation
(1.1) is said to be a cubic mapping. It is easy to check that function f(x) = ax3 is a solution of
(1.1).

In [19], Bodaghi et al. proved the generalized Hyers-Ulam stability and the super-
stability for the functional equation (1.1) by using the alternative fixed point (Theorem 3.1)
under certain conditions on Banach algebras. Also, the stability and the superstability of
homomorphisms on C∗-algebras by using the same fixed point method was proved in
[20]. The generalized Hyers-Ulam-Rassias stability of ∗-homomorphisms between unital C∗-
algebras associated with the Trif functional equation and of linear ∗-derivations on unital
C∗-algebras has earlier been proved by Park and Hou in [21].

In this paper, we prove the stability and the superstability of cubic ∗-derivations
on Banach ∗-algebras. We also show that these functional equations, under some mild
conditions, are superstable. We also establish the stability and the superstability of cubic ∗-
derivations on a Banach ∗-algebra with a left-bounded approximate identity.

2. Stability of Cubic ∗-Derivation

Throughout this paper, we assume that A is a Banach ∗-algebra. A mapping D : A → A is a
cubic derivation ifD is a cubic homogeneousmapping, that is,D is cubic andD(μa) = μ3D(a)
for all a ∈ A and μ ∈ C, andD(ab) = D(a)b3+a3D(b) for all a, b ∈ A. In addition, ifD satisfies
in condition D(a∗) = D(a)∗ for all a ∈ A, then it is called the cubic ∗-derivation. An example
of cubic derivations on Banach algebras is given in [22].

Let μ ∈ C. For the given mapping f : A → A, we consider

Dμf(a, b) := f
(
2μa + μb

)
+ f

(
2μa − μb

)
− 2μ3f(a + b) − 2μ3f(a − b) − 12μ3f(a),

Df(a, b) = f(ab) − f(a)b3 − a3f(b)
(2.1)

for all a, b ∈ A.
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Theorem 2.1. Suppose that f : A → A is a mapping with f(0) = 0 for which there exists a function
ϕ : A5 → [0,∞) such that

ϕ̃
(
a, b, x, y, z

)
:=

∞∑

k=0

1
8k
ϕ
(
2ka, 2kb, 2kx, 2ky, 2kz

)
<∞, (2.2)

∥
∥Dμf(a, b)

∥
∥ ≤ ϕ(a, b, 0, 0, 0), (2.3)

∥
∥Df

(
x, y

)
+ f(z∗) − f(z)∗

∥
∥ ≤ ϕ

(
0, 0, x, y, z

)
, (2.4)

for all μ ∈ T
1
1/n0

= {eiθ : 0 ≤ θ ≤ 2π/n0} and all a, b, x, y, z ∈ A in which n0 ∈ N. Also, if for
each fixed a ∈ A the mapping t �→ f(ta) from R to A is continuous, then there exists a unique cubic
∗-derivation D on A satisfying

∥∥f(a) −D(a)
∥∥ ≤ 1

16
ψ̃(a), (a ∈ A) , (2.5)

in which ψ̃(a) = ϕ̃(a, 0, 0, 0, 0).

Proof. Putting b = 0 and μ = 1 in (2.3), we have

∥∥∥∥
1
8
f(2a) − f(a)

∥∥∥∥ ≤ 1
16
ψ(a) (2.6)

for all a ∈ A in which ψ(a) = ϕ(a, 0, 0, 0, 0). We can use induction to show that

∥∥∥∥
f(2na)
8n

−
f(2ma)
8m

∥∥∥∥ ≤ 1
16

n−1∑

k=m

ψ
(
2ka

)

8k
(2.7)

for all a ∈ A and n > m ≥ 0. On the other hand,

∥∥∥∥
f(2na)
8n

− f(a)
∥∥∥∥ ≤ 1

16

n−1∑

k=0

ψ
(
2ka

)

8k
(2.8)

for all a ∈ A and n > 0. It follows from (2.2) and (2.7) that the sequence {f(2na)/8n} is a
Cauchy sequence. Since A is a Banach algebra, this sequence converges to the mapD, that is,

lim
n→∞

f(2na)
8n

= D(a). (2.9)

Thus the inequalities (2.2) and (2.8) show that (2.5) holds. Substituting a, b by 2na, 2nb,
respectively, in (2.3), we get

∥∥DμD(a, b)
∥∥ = lim

n→∞

1
8n

∥∥Dμf(2na, 2nb)
∥∥ ≤ lim

n→∞

ϕ(2na, 2nb, 0, 0, 0)
8n

= 0 (2.10)
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for all a, b ∈ A and μ ∈ T
1
1/n0

. Since D1D(a, b) = 0, the mapping D is cubic. The equality
DμD(a, 0) = 0 implies that D(μa) = μ3D(a) for all a ∈ A and μ ∈ T

1
1/n0

. Now, let μ ∈ T
1 =

{λ ∈ C : |λ| = 1} such that μ = eiθ in which 0 ≤ θ < 2π . We set μ1 = eiθ/n0 , thus μ1 belongs to
T
1
1/n0

and D(μa) = D(μn01 a) = μ3n0
1 D(a) = μ3D(a) for all a ∈ A. Now, suppose that F is any

continuous linear functional on A and a is a fixed element in A. Define the mapping g : R →
R via g(μ) = F[D(μa)] for each μ ∈ R. Obviously, g is a cubic function. Under the hypothesis
that f(ta) is continuous in t ∈ R for each fixed a ∈ A, the function g is the pointwise limit
of the sequence of measurable functions {gn} in which gn(μ) = F(2nμa)/8n, n ∈ N, μ ∈ R.
Hence, g is a continuous function and has the form g(μ) = μ3g(1) for all μ ∈ R. Therefore,

F
[
D
(
μa

)]
= g

(
μ
)
= μ3g(1) = μ3F[D(a)] = F

[
μ3D(a)

]
. (2.11)

Since F is an arbitrary continuous linear functional on A, D(μa) = μ3D(a) for all μ ∈ R and
a ∈ A. Thus

D
(
μa

)
= D

(
μ
∣∣μ
∣∣
∣∣μ
∣∣a

)

=
μ3

∣∣μ
∣∣3
D
(∣∣μ

∣∣a
)
=

μ3

∣∣μ
∣∣3
∣∣μ
∣∣3D(a) = μ3D(a) (2.12)

for all a ∈ A and μ ∈ C (μ/= 0). Therefore, D is a cubic homogeneous. If we replace x, y by
2nx, 2ny, respectively, and put z = 0 in (2.4), we have

1
82n

∥∥Df
(
2nx, 2ny

)∥∥ ≤
ϕ
(
0, 0, 2nx, 2ny, 0

)

82n
≤
ϕ
(
0, 0, 2nx, 2ny, 0

)

8n
(2.13)

for all x, y ∈ A. Taking the limit as n tends to infinity, we get DD(x, y) = 0, for all x, y ∈ A.
Putting x = y = 0 and substituting z by 2nz in (2.4) and then dividing the both sides of the
obtained inequality by 8n, then we get

∥∥∥∥
f(2nz∗)

8n
−
f(2nz)∗

8n

∥∥∥∥ ≤
ϕ(0, 0, 0, 0, 2nz)

8n
(2.14)

for all z ∈ A. Passing to the limit as n → ∞ in (2.14), we getD(z∗) = D(z)∗ for all z ∈ A. This
shows that D is a cubic ∗-derivation.

Now, let D′ : A → A be another cubic ∗-derivation satisfying (2.5). Then we have

∥∥D(a) −D′(a)
∥∥ =

1
8n

∥∥D(2na) −D′(2na)
∥∥

≤ 1
8n

(∥∥D(2na) − f(2na)
∥∥ +

∥∥f(2na) −D′(2na)
∥∥)

≤ 1
8n+1

ψ̃(2na) =
1
8

∞∑

k=n

1
8k
ψ
(
2ka

)
,

(2.15)

which tends to zero as n → ∞ for all a ∈ A. So we can conclude that D(a) = D′(a) for all
a ∈ A. This proves the uniqueness of D.
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We have the following theorem, which is analogous to Theorem 2.1. Since the proof is
similar, it is omitted.

Theorem 2.2. Suppose that f : A → A is a mapping with f(0) = 0 for which there exists a function
ϕ : A5 → [0,∞) satisfying (2.3), (2.4), and

ϕ̃
(
a, b, x, y, z

)
:=

∞∑

k=1

8kϕ
(
2−ka, 2−kb, 2−kx, 2−ky, 2−kz

)
<∞ (2.16)

for all a, b, x, y, z ∈ A. Also, if for each fixed a ∈ A the mappings t �→ f(ta) from R to A is
continuous, then there exists a unique cubic ∗-derivation D on A satisfying

∥∥f(a) −D(a)
∥∥ ≤ 1

16
ψ̃(a), (a ∈ A), (2.17)

where ψ̃(a) = ϕ̃(a, 0, 0, 0, 0).

Corollary 2.3. Let θ, r be positive real numbers with r /= 3, and let f : A → A be a mapping with
f(0) = 0 such that

∥∥Dμf(a, b)
∥∥ ≤ θ

(
‖a‖r + ‖b‖r

)
,

∥∥Df
(
x, y

)
+ f(z∗) − f(z)∗

∥∥ ≤ θ
(
‖x‖r +

∥∥y
∥∥r + ‖z‖r

)
,

(2.18)

for all μ ∈ T
1
1/n0

and all a, b, x, y, z ∈ A. Then there exists a unique cubic ∗-derivation D on A
satisfying

∥∥f(a) −D(a)
∥∥ ≤ θ‖a‖r

|16 − 2r+1|
, (2.19)

for all a ∈ A.

Proof. We can obtain the result from Theorem 2.1 and Theorem 2.2 by taking

ϕ
(
a, b, x, y, z

)
= θ

(
‖a‖r + ‖b‖r + ‖x‖r +

∥∥y
∥∥r + ‖z‖r

)
(2.20)

for all a, b, x, y, z ∈ A.

In the next theorem, we investigate the superstability of cubic ∗-derivations of Banach
∗-algebras with a left-bounded approximate identity.
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Theorem 2.4. Suppose that A is a Banach ∗-algebra with a left-bounded approximate identity and
s ∈ {−1, 1}. Let f : A → A be a mapping for which there exists a function ψ : A×A → [0,∞) such
that

lim
n→∞

n−3sψ(nsa, b) = lim
n→∞

n−3sψ(a, nsb) = 0, (2.21)
∥
∥
∥a3f(b) − f(a)b3

∥
∥
∥ ≤ ψ(a, b), (2.22)

∥
∥
∥f(c)(ab)3 − c3

[
f(a)b3 + a3f(b)

]∥∥
∥ ≤ ψ(c, ab), (2.23)

∥
∥
∥a3f(b∗) − f(a)

(
b3
)∗∥∥
∥ ≤ ψ(a, b) (2.24)

for all a, b, c ∈ A. Then f is a cubic ∗-derivation on A.

Proof. First, we show that f is cubic. For each a, b, c ∈ A, we have

∥∥∥c3
[
f(2a + b) + f(2a − b) − 2f(a + b) − 2f(a − b) − 12f(a)

]∥∥∥

= n−3s
∥∥∥n3sc3f(2a + b) + n3sc3f(2a − b) − 2n3sc3f(a + b) − 2n3sc3f(a − b) − 12n3sc3f(a)

∥∥∥

≤ n−3s
[∥∥∥n3sc3f(2a + b) − f

(
n3sc3

)
(2a + b)3

∥∥∥ +
∥∥∥n3sc3f(2a − b) − f

(
n3sc3

)
(2a − b)3

∥∥∥

+ 2
∥∥∥n3sc3f(a + b) − f

(
n3sc3

)
(a + b)3

∥∥∥

+ 2
∥∥∥n3sc3f(a − b) − f

(
n3sc3

)
(a − b)3

∥∥∥

+12
∥∥∥n3sc3f(a) − f

(
n3sc3

)
a3
∥∥∥
]

≤ n−3s
[
ψ(nsc, 2a + b) + ψ(nsc, 2a − b) + 2ψ(nsc, a + b) + 2ψ(nsc, a − b) + 12ψ(nsc, a)

]
.

(2.25)

Taking the limit from the right side as n tends to infinity and using (2.21), we get

c3
[
f(2a + b) + f(2a − b) − 2f(a + b) − 2f(a − b) − 12f(a)

]
= 0 (2.26)

for all a, b, c ∈ A. If (ej) is a left-bounded approximate identity for A, then so is (e3j ). Now, it
follows from (2.26) that f is cubic. For being cubic homogeneous of f , we have

∥∥∥n3sb3
[
f
(
μa

)
− μ3f(a)

]∥∥∥ ≤
∥∥∥n3sb3f

(
μa

)
− f(nsb)

(
μa

)3∥∥∥

+
∥∥∥
(
μa

)3
f(nsb) − n3s

(
μb

)3
f(a)

∥∥∥

≤ ψ
(
nsb, μa

)
+
∣∣μ
∣∣3ψ(nsb, a).

(2.27)
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Thus ‖b3[f(μa) − μ3f(a)]‖ ≤ n−3sψ(nsb, μa) + n−3s|μ|3ψ(nsb, a). By the same reasoning as in
the above, f is cubic homogeneous. For each a, b, c ∈ A, we have

∥
∥
∥c3

[
f(ab) − f(a)b3 − a3f(b)

]∥∥
∥ = n−3s

∥
∥
∥n3sc3

[
f(ab) − f(a)b3 − a3f(b)

]∥∥
∥

≤ n−3s
∥
∥
∥n3sc3f(ab) − f(nsc)(ab)3

∥
∥
∥

+ n−3s
∥
∥
∥f(nsc)(ab)3 − n3sc3f(a)b3 − n3sc3a3f(b)

∥
∥
∥

≤ 2n−3sψ(nsc, ab).

(2.28)

The above inequality and (2.21), (2.22), and (2.23) show that f(ab) = f(a)b3 + a3f(b) for all
a, b ∈ A. Finally, we have

∥∥∥b3
[
f(a∗) − f(a)∗

]∥∥∥ = n−3s
∥∥∥n3sb3f(a∗) − n3sb3f(a)∗

∥∥∥

≤ n−3s
∥∥∥n3sb3f(a∗) − f(nsb)

(
a3
)∗∥∥∥

+ n−3s
∥∥∥f(nsb)

(
a3
)∗

− n3sb3f(a)∗
∥∥∥

≤ n−3sψ(nsb, a∗) + n−3sψ(nsb, a)

(2.29)

for all a, b ∈ A. Note that in the last inequality we have used (2.22) and (2.24). This completes
the proof.

Corollary 2.5. Let r, δ be the nonnegative real numbers with r /= 3, and let A be a Banach ∗-algebra
with a left bounded approximate identity. Suppose that f : A → A is a mapping satisfying

∥∥∥a3f(b) − f(a)b3
∥∥∥ ≤ δ

(
‖a‖r‖b‖r

)
,

∥∥∥f(c)(ab)3 − c3
[
f(a)b3 + a3f(b)

]∥∥∥ ≤ δ
(
‖ab‖r‖c‖r

)
,

∥∥∥a3f(b∗) − f(a)
(
b3
)∗∥∥∥ ≤ δ

(
‖a‖r‖b‖r

)

(2.30)

for all all a, b, c ∈ A. Then f is a cubic ∗-derivation on A.

Proof. Using Theorem 2.4 with ψ(a, b) = δ(‖a‖r‖b‖r), we get the desired result.

3. A Fixed Point Approach

Before proceeding to the main results in this section, we bring the upcoming theorem, which
is useful to our purpose (For an extension of the result see [23]).

Theorem 3.1 (The fixed point alternative [24]). Let (Ω, d) be a complete generalized metric space
and T : Ω → Ω a mapping with Lipschitz constant L < 1. Then, for each element α ∈ Ω, either
d(Tnα,Tn+1α) = ∞ for all n ≥ 0, or there exists a natural number n0 such that:

(i) d(Tnα,Tn+1α) <∞ for all n ≥ n0;
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(ii) the sequence {Tnα} is convergent to a fixed point β∗ of T;

(iii) β∗ is the unique fixed point of T in the set Λ = {β ∈ Ω : d(Tn0α, β) <∞};

(iv) d(β, β∗) ≤ 1/(1 − L)d(β,Tβ) for all β ∈ Λ.

Theorem 3.2. Let f : A → A be a continuous mapping with f(0) = 0, and let ϕ : A4 → [0,∞) be
a continuous function such that

∥
∥Dμf(a, b) +Df(c, d)

∥
∥ ≤ ϕ(a, b, c, d), (3.1)

∥
∥f(a∗) − f(a)∗

∥
∥ ≤ ϕ(a, a, a, a) (3.2)

for all μ ∈ T
1
1/n0

and all a, b, c, d ∈ A. If there exists a constant k ∈ (0, 1) such that

ϕ(2a, 2b, 2c, 2d) ≤ 8kϕ(a, b, c, d) (3.3)

for all a, b, c, d ∈ A, then there exists a unique cubic ∗-derivation D on A satisfying

∥∥f(a) −D(a)
∥∥ ≤ 1

16(1 − k) ϕ̃(a) (a ∈ A), (3.4)

in which ϕ̃(a) = ϕ(a, 0, 0, 0).

Proof. First, we wish to provide the conditions of Theorem 3.1. We consider the set

Ω =
{
g : A −→ A | g(0) = 0

}
(3.5)

and define the mapping d on Ω ×Ω as follows:

d
(
g1, g2

)
:= inf

{
C ∈ (0,∞) :

∥∥g1(a) − g2(a)
∥∥ ≤ Cϕ̃(a), (∀a ∈ A)

}
(3.6)

if there exist such constant C and d(g1, g2) = ∞, otherwise. It is easy to check that d(g, g) = 0
and d(g1, g2) = d(g2, g1), for all g, g1, g2 ∈ Ω. For each g1, g2, g3 ∈ Ω, we have

inf
{
C ∈ (0,∞) :

∥∥g1(a) − g2(a)
∥∥ ≤ Cϕ̃(a) ∀a ∈ A

}

≤ inf
{
C ∈ (0,∞) :

∥∥g1(a) − g3(a)
∥∥ ≤ Cϕ̃(a) ∀a ∈ A

}

+ inf
{
C ∈ (0,∞) :

∥∥g3(a) − g2(a)
∥∥ ≤ Cϕ̃(a) ∀a ∈ A

}
.

(3.7)

Hence d(g1, g2) ≤ d(g1, g3) + d(g3, g2). If d(g1, g2) = 0, then for every fixed a0 ∈ A, we
have ‖g1(a0) − g2(a0)‖ ≤ Cϕ̃(a0) for all C > 0. This implies g1 = g2. Let {gn} be a d-Cauchy
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sequence in Ω. Then d(gm, gn) → 0, and thus ‖gm(a) − gn(a)‖ → 0 for all a ∈ A. Since A is

complete, then there exists g ∈ Ω such that gn
d→ g in Ω. Therefore, d is a generalized metric

on Ω and the metric space (Ω, d) is complete. Now, we define the mapping T : Ω → Ω by

Tg(a) = 1
8
g(2a), (a ∈ A). (3.8)

If g1, g2 ∈ Ω such that d(g1, g2) < C, by definition of d and T, we have

∥
∥
∥
∥
1
8
g1(2a) −

1
8
g2(2a)

∥
∥
∥
∥ ≤ 1

8
Cϕ(2a, 0, 0, 0) (3.9)

for all a ∈ A. By using (3.3), we get

∥∥∥∥
1
8
g1(2a) −

1
8
g2(2a)

∥∥∥∥ ≤ Ckϕ(a, 0, 0, 0) (3.10)

for all a ∈ A. The above inequality shows that d(Tg1,Tg2) ≤ kd(g1, g2) for all g1, g2 ∈ Ω.
Hence, T is a strictly contractive mapping on Ω with a Lipschitz constant k. To achieve
inequality (3.4), we prove that d(Tf, f) < ∞. Putting b = c = d = 0 and μ = 1 in (3.1),
we obtain

∥∥2f(2a) − 16f(a)
∥∥ ≤ ϕ̃(a) (3.11)

for all a ∈ A. Hence

∥∥∥∥
1
8
f(2a) − f(a)

∥∥∥∥ ≤ 1
16
ϕ̃(a) (3.12)

for all a ∈ A. We conclude from (3.12) that d(Tf, f) ≤ 1/16. It follows from Theorem 3.1 that
d(Tng,Tn+1g) < ∞ for all n ≥ 0, and thus in this theorem we have n0 = 0. Therefore, the
parts (iii) and (iv) of Theorem 3.1 hold on the wholeΩ. Hence there exists a unique mapping
D : A → A such that D is a fixed point of T and that Tnf → D as n → ∞. Thus

lim
n→∞

f(2na)
8n

= D(a) (3.13)

for all a ∈ A, hence

d
(
f,D

)
≤ 1

1 − kd
(
Tf, f

)
≤ 1

16(1 − k) . (3.14)

The above equalities show that (3.4) is true for all a ∈ A. It follows from (3.3) that

lim
n→∞

ϕ(2na, 2nb, 2nc, 2nd)
8n

= 0. (3.15)
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Putting c = d = 0 and substituting a, b by 2na, 2nb, respectively, in (3.1), we get

1
8n

∥
∥Dμf(2na, 2nb)

∥
∥ ≤

ϕ(2na, 2nb, 0, 0)
8n

. (3.16)

Taking the limit as n tend to infinity, we obtainDμD(a, b) = 0 for all a, b ∈ A and all μ ∈ T
1
1/n0

.
Similar to the proof of Theorem 2.1, we have D(μa) = μ3D(a) for all a ∈ A and μ ∈ T

1. Since
D1D(a, b) = 0, we can show that D(ra) = r3D(a) for any rational number r. The continuity
of f and ϕ imply that D(μa) = μ3D(a), for all a ∈ A and μ ∈ R. Hence D(μa) = μ3D(a), for
all a ∈ A and μ ∈ C (μ/= 0). Therefore, D is a cubic homogeneous. If we put a = b = 0 and
replace c, d by 2nc, 2nd, respectively, in (3.1), we have

1
82n

∥
∥Df(2nc, 2nd)

∥
∥ ≤

ϕ(0, 0, 2nc, 2nd)
82n

≤
ϕ(0, 0, 2nc, 2nd)

8n
(3.17)

for all c, d ∈ A. By letting n → ∞ in the preceding inequality, we find DD(c, d) = 0 for all
c, d ∈ A. Substituting a by 2na in (3.2) and then dividing the both sides of the obtained
inequality by 8n, we get

∥∥∥∥
f(2na∗)

8n
−
f(2na)∗

8n

∥∥∥∥ ≤
ϕ(2na, 2na, 2na, 2na)

8n
(3.18)

for all a ∈ A. Passing to the limit as n → ∞ in (3.18) and applying (3.13), we conclude that
D(a∗) = D(a)∗ for all a ∈ A. This shows that D is a unique cubic ∗-derivation.

Corollary 3.3. Let θ, r be positive real numbers with r < 3, and let f : A → A be a mapping with
f(0) = 0 such that

∥∥Dμf(a, b) +Df(c, d)
∥∥ ≤ θ

(
‖a‖r + ‖b‖r + ‖c‖r + ‖d‖r

)
,

∥∥f(a∗) − f(a)∗
∥∥ ≤ 4θ‖a‖r

(3.19)

for all μ ∈ T
1
1/n0

and all a, b, c, d ∈ A. Then there exists a unique cubic ∗-derivationD onA satisfying

∥∥f(a) −D(a)
∥∥ ≤ θ

2(8 − 2r)
‖a‖r (3.20)

for all a ∈ A.

Proof. The result follows from Theorem 3.2 by letting

ϕ(a, b, c, d) = θ(‖a‖r + ‖b‖r + ‖c‖r + ‖d‖r). (3.21)

In the following corollary, we show the superstability for cubic ∗-derivations.
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Corollary 3.4. Let rj (1 ≤ j ≤ 4) θ be nonnegative real numbers with 0 <
∑4

j=1 rj /= 3, and let
f : A → A be a mapping such that

∥
∥Dμf(a, b) +Df(c, d)

∥
∥ ≤ θ

(
‖a‖r1‖b‖r2‖c‖r3‖d‖r4

)
, (3.22)

∥
∥f(a∗) − f(a)∗

∥
∥ ≤ θ‖a‖

∑4
j=1 rj (3.23)

for all μ ∈ T
1
1/n0

and all a, b, c, d ∈ A. Then f is a cubic ∗-derivation on A.

Proof. Putting a = b = c = d = 0 in (3.22), we get f(0) = 0. Now, if we put b = c = d = 0,
μ = 1 in (3.22), then we have f(2a) = 8f(a) for all a ∈ A. It is easy to see by induction
that f(2na) = 8nf(a), and thus f(a) = f(2na)/8n for all a ∈ A and n ∈ N. It follows from
Theorem 3.2 that f is a cubic mapping. Now, by putting ϕ(a, b, c, d) = θ(‖a‖r1‖b‖r2‖c‖r3‖d‖r4)
in Theorem 3.2, we can obtain the desired result.
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