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An iteration process studied by Chidume and Zegeye 2002 is proved to converge strongly to a
solution of the equation Au = 0 where A is a bounded m-accretive operator on certain real Banach
spaces E that include Lp spaces 2 ≤ p < ∞. The iteration process does not involve the computation
of the resolvent at any step of the process and does not involve the projection of an initial vector
onto the intersection of two convex subsets of E, setbacks associated with the classical proximal
point algorithm of Martinet 1970, Rockafellar 1976 and its modifications by various authors for
approximating of a solution of this equation. The ideas of the iteration process are applied to
approximate fixed points of uniformly continuous pseudocontractive maps.

1. Introduction

Consider the following problem:

find u ∈ H such that 0 ∈ Au, (1.1)

where H is a real Hilbert space and A is a maximal monotone operator (defined below) on H.
One of the classical algorithms for approximating a solution of (1.1), assuming existence, is
the so-called proximal point algorithm introduced byMartinet [1] and studied further by Rock-
afellar [2] and a host of other authors. Specifically, given xk ∈ H, an approximation of a sol-
ution of (1.1), the proximal point algorithm generates the next iterate xk+1 by solving the fol-
lowing equation:

xk+1 =
(
I +

1
λk

A

)−1
(xk) + ek, (1.2)
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where λk > 0 is a regularizing parameter. If the sequence {λk}∞k=1 is bounded from above, then
the resulting sequence {xk}∞k=1 of proximal point iterates converges weakly to a solution of
(1.1), provided that a solution exists (Rockafellar [2]).

Rockafellar then posed the following question.

(Q1) Does the proximal point algorithm always converge strongly?

This question was resolved in the negative by Güler [3]who produced a proper closed
convex function g in the infinite-dimensional Hilbert space l2 for which the proximal point
algorithm converges weakly but not strongly. This naturally raises the following question.

(Q2) Can the proximal point algorithm be modified to guarantee strong convergence?

Before we comment on this question, we make the following observation. The proxi-
mal point algorithm (1.2) is not at all convenient to use in any possible application. This is
because at each step of the iteration process, one has to compute (I + (1/λk)A)−1(xk) and this is
certainly not convenient. Consequently, while thinking of modifications of the proximal point
algorithm that will guarantee strong convergence, the following question is, perhaps, more
important than Q2.

(Q3) Can an iteration process be developed which will not involve the computation of
(I +(1/λk)A)−1 at each step of the iteration process and which will guarantee strong
convergence to a solution of (1.1)?

With respect to Q2, Solodov and Svaiter [4]were the first to propose a modification of
the proximal point algorithm, which guarantees strong convergence in a real Hilbert space.
Their algorithm is as follows.

Algorithm. Choose any x0 ∈ H and σ ∈ [0, 1). At iteration k, having xk, choose μk > 0, and
find (yk, vk) an inexact solution of 0 ∈ Tx + μk(x − xk), with tolerance σ. Define

Ck :=
{
z ∈ H |

〈
z − yk, vk

〉
≤ 0

}
,

Qk :=
{
z ∈ H |

〈
z − xk, x0 − xk

〉
≤ 0

}
.

(1.3)

Take

xk+1 = PCk∩Qk

(
x0
)
. (1.4)

The authors themselves noted ([4], p.195) that “. . . at each iteration, there are two subprobl-
ems to be solved . . .”: (i) find an inexact solution of the proximal point algorithm, and (ii)
find the projection of x0 onto Ck ∩ Qk, the intersection of the two halfspaces. They also ack-
nowledged that these two subproblems constitute a serious drawback in their algorithm. This
method of Solodov and Svaiter is the so-called CQ-method which has been studied by va-
rious authors.

For more on the computation of an approximate solution and the projection step, both
of which must be performed at each step, the reader may consult [4].

Kamimura and Takahashi [5], extended the work of Solodov and Svaiter [4] to the fra-
mework of Banach spaces that are both uniformly convex and uniformly smooth.
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Xu [6] noted that “. . . Solodov and Svaiter’s algorithm, though strongly convergent,
does need more computing time due to the projection in the second subproblem . . .”

He then proposed another modification of the proximal point algorithm, which does
not increase computing time by much compared to the algorithm of Solodov and Svaiter.

Xu [7] proposed and studied the following algorithm:

xn+1 = αnx0 + (1 − αn)(I + cnT)−1(xn) + en, n ≥ 0. (1.5)

He proved that (1.5) converges strongly provided that the sequences {αn} and {cn} of real
numbers and the sequence {en} of errors are chosen appropriately. He argued that once un :=
(I + cnT)

−1(xn) + en has been calculated, the calculation of the mean αnx0 + (1−αn)un is much
easier than the projection of x0 onto Cn ∩ Qn mentioned earlier, and so his algorithm seems
simpler than that of Solodov and Svaiter [4]. But the algorithm (1.5) of Xu still has the ser-
ious setback associated with the classical proximal point algorithm: the computation of (I +
cnT)

−1(xn) at each step of the iteration process.
Lehdili and Moudafi [8] considered the technique of the proximal map and the Tikho-

nov regularization to introduce the so-called Prox-Tikhonov method which generates the se-
quence {xn} by the following algorithm:

xn+1 = JTn
λn
xn, n ≥ 0, (1.6)

where Tn := μnT +T , μn > 0 is viewed as a Tikhonov regularization of T and JTn
λn

:= (I+λnTn)
−1.

Using the notation of variational distance, Lehdili and Moudafi [8] proved convergence
theorems for the algorithm (1.6) and its perturbed version, under appropriate conditions on
the sequences {λn} and {μn}.

It is known that Tikhonov regularization is not generally effective if an appropriate
regularization parameter is not chosen, especially for ill-posed problems. For example, in
order to use the discrepancy principle, it is necessary to have information about the noise.
Also, in the case of generalized cross validation, efficient implementation for Tikhonov
regularization requires computing the singular value decomposition of the matrix, which,
for large-scale problems, may be formidable.

Xu [6] studied the algorithm (1.6). He used the technique of nonexpansive mappings
to get convergence theorems for the perturbed version of the algorithm (1.6), under much
relaxed conditions on the sequences {λn} and {μn}. Here again, the algorithm (1.6) has the
drawback of the classical proximal point algorithm: JTn

λn
xn has to be computed at each step.

Another modification of the proximal point algorithm, perhaps the most significant,
which yields strong convergence, is implicitly contained in the following theorem of Reich.

Theorem 1.1 (Reich [9]). Let E be a q-uniformly smooth real Banach space. Let A : E → E be
accretive withD(A) = E, and suppose thatA satisfies the range condition: R(I + rA) = E for all r >
0. Let Jtx := (I + tA)−1x, t > 0, be the resolvent of A, and assume that A−1(0) is nonempty. Then for
each x ∈ E, limt→∞Jtx ∈ A−1(0).

We first make the following observations about this theorem.

(i) The q-uniformly smooth real Banach spaces include the Lp spaces, 1 < p < ∞. In
particular, all Hilbert spaces and Lp spaces, 2 ≤ p < ∞, are 2-uniformly smooth.
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(ii) Anym-accretive operator satisfies the range condition. The converse is not necessarily
true. Hence, range condition is weaker thanm-accretive.

Now, let {λn} be a sequence in (0, 1) such that λn → 0 as n → +∞. Set tn = λ−1n . Then,
using the notation of Theorem 1.1, define

Jtnx := (I + tnA)−1x. (1.7)

By the theorem, for arbitrary x0 ∈ E, limn→∞Jtnx0 exists, call it x∗ say, and x∗ ∈ A−1(0). We can
now define the sequence {xn} as follows:

x0 ∈ E, xn+1 =
(
I +

1
λn

A

)−1
x0, n ≥ 1, (1.8)

as a modification of the proximal point algorithm, which yields strong convergence to a sol-
ution of the equation Au = 0, assuming existence. Clearly, (1.8) is easier to use and requires
less computation time than any of (1.2), (1.5), or (1.6), or using the (CQ)-method of Solodov
and Svaiter.

We have seen, in response to Q2, that all modifications of the classical proximal point
algorithm to obtain strong convergence so far studied inherited the drawback of the algo-
rithm: the computation of (I + cnT)

−1 at each step of the process.
We remark, however, that the proximal point algorithm can be still useful in some spec-

ial cases. For example, the algorithm was recently successfully used in signal processing and
in image restoration where the proximal mappings are fairly evaluated.

We now turn our attention to the consideration of the more important question Q3. It
is our purpose in this paper to prove that an iteration process studied by Chidume and Zeg-
eye [10] converges strongly to a solution of the equation Au = 0 where A is a boundedm-ac-
cretive (defined below) operator even on certain real Banach spaces much more general than
Hilbert spaces. The iteration process will not involve the computation of (I + cnT)

−1(xn) at
any stage and will not involve the computation of two convex subsets at each step and the
projection of an initial vector to their intersection.

Before we prove our convergence theorems, we need the following definitions and
preliminaries.

Let E be a real normed linear space with dual E∗. For q > 1, we denote by Jq the
generalized duality mapping from E to 2E

∗
defined by

Jq(x) :=
{
f∗ ∈ E∗ :

〈
x, f∗〉 = ‖x‖∥∥f∗∥∥,∥∥f∗∥∥ = ‖x‖q−1

}
, (1.9)

where 〈·, ·〉 denotes the generalized duality pairing. J2 is denoted by J and is the so-called
normalized duality map. If E∗ is strictly convex, then Jq is single-valued (see, e.g., Xu [11]). A
mappingAwith domainD(A) and range R(A) in E is said to be strongly φ-accretive if, for any
x, y ∈ D(A), there exist jq(x − y) ∈ Jq(x − y) and a strictly increasing function φ : [0,∞) →
[0,∞)with φ(0) = 0 such that

〈
Ax −Ay, jq

(
x − y

)〉 ≥ φ
(∥∥x − y

∥∥)∥∥x − y
∥∥q−1

. (1.10)
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The mapping A is called generalized Φ-accretive if, for any x, y ∈ D(A), there exist jq(x − y) ∈
Jq(x − y) and a strictly increasing function Φ : [0,∞) → [0,∞)with Φ(0) = 0 such that

〈
Ax −Ay, jq

(
x − y

)〉 ≥ Φ
(∥∥x − y

∥∥). (1.11)

It is well known that the class of generalized Φ-accretive mappings includes the class of
strongly φ-accretive operators as a special case (one sets Φ(s) = sφ(s) for all s ∈ [0,∞)).

LetN(A) := {x ∈ E : Ax = 0}/= ∅. The mappingA is called strongly quasi-accretive if for
all x ∈ E, x∗ ∈ N(A), there exists k ∈ (0, 1) such that

〈
Ax −Ax∗, jq(x − x∗)

〉 ≥ k‖x − x∗‖q. (1.12)

A is called strongly φ-quasi-accretive if, for all x ∈ E, x∗ ∈ N(A), there exists φ such that

〈
Ax −Ax∗, jq(x − x∗)

〉 ≥ φ(‖x − x∗‖)‖x − x∗‖q−1. (1.13)

Finally, A is called generalized Φ-quasi-accretive if, for all x ∈ E, x∗ ∈ N(A), there exists jq(x −
x∗) ∈ J(x − x∗) such that

〈
Ax −Ax∗, jq(x − x∗)

〉 ≥ Φ(‖x − x∗‖). (1.14)

It is well known that the class of generalized Φ-quasi-accretive mappings is the largest class
(among those defined above) for which the equation Au = 0 has a unique solution.

A mapping A with domain D(A) and range R(A) in E is called accretive if and only if
for all x, y ∈ D(A), the following inequality is satisfied:

∥∥x − y
∥∥ ≤ ∥∥x − y + s

(
Ax −Ay

)∥∥ ∀s > 0. (1.15)

As a consequence of a result of Kato [12], it follows that A is accretive if and only if for each
x, y ∈ D(A), there exists jq(x − y) ∈ Jq(x − y) such that

〈
Ax −Ay, jq

(
x − y

)〉 ≥ 0. (1.16)

It follows from inequality (1.15) thatA is accretive if and only if (I+sA) is expansive, and con-
sequently its inverse (I + sA)−1 exists and is nonexpansive (i.e., ‖(I + sA)−1x − (I + sA)−1y‖ ≤
‖x − y‖, for all x, y ∈ R(I + sA)) as a mapping from R(I + sA) into D(A), where R(I + sA)
denotes the range of (I + sA). The range of (I + sA) needs not be the whole of E. This leads
to the following definitions. A mapping A is said to be m-accretive if A is accretive and the
range of (I + sA) is all of E for some s > 0. The operator A is said to satisfy the range condition
if R(I + sA) = E for all s > 0. It can be shown that if R(I + sA) = E for some s > 0, then it holds
for all s > 0. We prove this important fact, which will be used in the sequel in Lemma 2.5.
Hence, m-accretive condition implies range condition. In Hilbert space, accretive operators are
called monotone.

Let E be a real Banach space and A : E → E a map. Assume that the equation Au = 0
has a solution. Iterative methods for approximating such a solution have been of interest
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to numerous researchers in nonlinear operator theory. Bruck [13] considered an iteration
process of the Mann-type and proved that the sequence of the process converges strongly to a
solution of the inclusion 0 ∈ Au in a real Hilbert space whereA is a maximal monotone map,
provided the initial vector is taken in a neighbourhood of a solution of this inclusion. Chid-
ume [14] extended this result to Lp spaces, p ≥ 2. These results of Bruck and Chidume are not
convenient in any possible application because the neighbourhood of a solution in which the
initial vector must be chosen is not known precisely. Other early results involvedmappingsA
that are Lipschitz and strongly accretive (see, e.g., Browder and Petryshyn [15, 16], Chidume
[17, 18], Chidume and Moore [19, 20], Deng [21, 22], Zhou [23], Zhou and Jia [24], Weng
[25], Xu and Yin [26], Xu and Roach [27] and a host of other authors).

Numerous papers were later published, extending these results to the class of map-
pingsA that are Lipschitz and strongly φ-accretive (see e.g., Chang et. al [28], Zhou [23] and the
references contained therein). Recently, some authors have proved convergence theorems for
the solution of Au = 0, where A is assumed to be a Lipschitz and generalized Φ-accretivemap.

A few papers have recently been published establishing convergence theorems for the
solution of Au = 0, where A is a uniformly continuous and generalized Φ-quasi-accretive map
(see, e.g., Gu [29], Chang et al. [30], and the references contained in them). Related results on
general variational inequalities can be found in the paper of Aslam Noor [31].

Recall that the class of generalized Φ-quasi accretive maps is the largest class for which
the equation Au = 0 has a unique solution. Most papers have been devoted to this. It is well
known that for the general accretive operator A, the solution of this equation, whenever it
exists, is generally not unique. In this case, the technique used in approximating a solution of
the equation when it exists and is unique does not carry over to the case when it exists and is
not unique.

The accretive mappings were introduced independently in 1967 by Browder [32] and
Kato [12]. Interest in such mappings stems mainly from their firm connection with the exist-
ence theory for nonlinear equations of evolution in real Banach spaces. It is known (see, e.g.,
Zeidler [33]) that many physically significant problems can bemodelled in terms of an initial-
value problem of the form

du

dt
+Au = 0, u(0) = u0, (1.17)

where A is an accretive map on an appropriate real Banach space. Typical examples of such
evolution equations are found in models involving the heat, wave, or Schrödinger equations
(see [34]). Observe that in the model (1.17), if the solution u is independent of time (i.e., at
the equilibrium state of the system), then du/dt = 0 and (1.17) reduces to

Au = 0, (1.18)

whose solutions then correspond to the equilibrium state of the system described by (1.17).
To approximate a solution of (1.18), Browder converted (1.18) to a fixed point problem as
follows. He called an operator T := I −A pseudocontractive ifA is accretive and I is the identity
map on the space. Then, u∗ is a solution of (1.18) if and only if it is a fixed point of T .
Consequently, a lot of effort has been devoted to approximating fixed points of pseudocon-
tractivemaps.
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Let K be a nonempty subset of E. We reiterate that a mapping T : K → K is called
pseudocontractive ifA := (I−T) : E → E is accretive. Consequently, solutions ofAu = 0 (when
they exist) for accretive operators A correspond to fixed points of pseudocontractions T .
Every nonexpansive map is Lipschitz pseudocontractive.

In the late 1960s and early 1970s, the well-known Mann iteration process [35] was suc-
cessfully employed to approximate fixed points of nonexpansive maps under suitable as-
sumptions. All attempts to apply it to approximate fixed points of Lipschitz pseudocontractions
proved abortive. In 1974, Ishikawa [36] introduced an iteration scheme involving two pa-
rameters αn and βn for approximating a fixed point of a Lipschitz pseudocontraction defined on
a compact convex subset of a real Hilbert space. He proved strong convergence of the seque-
nce generated by his scheme. An example of αn and βn satisfying his condition is αn = βn =
n−1/2, n ≥ 1 (see, e.g., Berinde [37], Chidume [38], Ishikawa [36]). It is still an open ques-
tion whether or not this theorem of Ishikawa can be extended to real Banach spaces more ge-
neral than Hilbert spaces. Since 1974, three other iteration methods have been introduced and
studied and have been succesfully employed to approximate fixed points of Lipschitz pseudo-
contractive mappings in certain Banach spaces more general than Hilbert spaces.

One of these three iteration processes was introduced and studied by Schu [39]. The re-
cursion formula studied involved the use of two real sequences λn, μn which are required to
have the so-called Property (A).

Let αn ∈ (0,∞), μn ∈ (0, 1) for all nonnegative integers n. Then, ({αn}, {μn}) is said to
have Property (A) if and only if the following conditions hold:

(i) {αn} is decreasing and {μn} is strictly increasing;

(ii) there is a sequence {βn} ⊆ IN, strictly increasing such that

(a) limn→∞βn(1 − μn) = ∞,

(b) limn→∞(1 − μ(n+βn))/(1 − μn) = 1,

(c) limn→∞(αn − α(n+βn))/(1 − μn) = 0.

Schu proved his convergence theorem in real Hilbert spaces. Chidume [40] extended it
to real Banach spaces possessing weakly sequentially continuous duality maps (e.g., lp spaces,
1 < p < ∞). However, it is known that Lp spaces, 1 < p < ∞, p /= 2, do not possess this pro-
perty.

Another iteration scheme for approximating fixed points of Lipschitz pseudocontractive
mappings was implicitly introduced by Bruck [13], who actually applied the scheme, still in
real Hilbert spaces, to approximate a solution of the inclusion 0 ∈ Au, whereA is anm- accre-
tive operator. The recursion formula studied by Bruck involved two real sequences λn and θn
which are required to be acceptably paired.

Two real sequences {λn} and {θn} are called acceptably paired if they satisfy the follow-
ing conditions: {θn} is decreasing, limn→∞θn = 0, and there exists a strictly increasing seq-
uence {n(i)}∞i=1 of positive integers such that

(i) lim infi(θn(i)
∑n(i+1)

j=n(i) λj) > 0,

(ii) limi[θn(i) − θn(i+1)]
∑n(i+1)

j=n(i) λj = 0,

(iii) limi
∑n(i+1)

j=n(i) λ
2
j = 0.
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An example of such sequences given in Bruck [13] is

λn = n−1, θn =
(
log log n

)−1
, n(i) = ii. (1.19)

The idea of sequences with Property (A) or acceptably paired are due to Halpern [41]. Reich
[9, 42] also studied the recursion formula studied by Bruck for Lipschitz accretive operators on
real uniformly convex Banach spaces with a duality map that is weakly sequentially continuous at
zero, but with λn and θn not necessarely being acceptably paired.

Motivated by the papers of Reich [9, 42], Chidume and Zegeye [10] introduced and
studied a perturbation of the Mann recurrence relation (see Theorem CZ below) to approxi-
mate zeros of Lipschitz accretivemaps in real Banach spaces much more general than real Hil-
bert spaces. They proved the following theorem.

Theorem CZ (Chidume and Zegeye, [10]). Let E be a reflexive real Banach space with a uniformly
Gâteaux differentiable norm. Let A : E → E be a Lipschitz accretive operator and let N(A) := {x ∈
E : Ax = 0}/= ∅. Suppose that every nonempty closed convex and bounded subset of E has the fixed
point property for nonexpansive self-mappings. Let a sequence {xn} be generated from arbitrary x1 ∈ E
by

xn+1 = xn − λnAxn − λnθn(xn − x1), n ≥ 1, (1.20)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0,

(2) λn(1 + θn) < 1,
∑∞

n=1 λnθn = ∞, λn = o(θn),

(3) limn→∞((θ(n−1)/θn) − 1)/λnθn = 0.

Then, {xn} converges strongly to a solution of Au = 0.

An example of sequences λn and θn satisfying TheoremCZ is λn = n−a, θn = n−b, n ≥ 1,
0 < b < a, and a + b < 1.

It is clear that these parameters are much simpler than the requirement that they have
Property (A) or are acceptably paired.

It is our purpose in this paper to provide affirmative answer to Q3 whenA is bounded
and satisfies the range condition. We show that the iteration process (1.20) converges strongly
even in real Banach spaces much more general than Hilbert spaces to a solution of the equa-
tion Au = 0 (assuming existence) for arbitrary initial vector x0 ∈ E. These spaces include Lp

spaces, 2 ≤ p < ∞. Moreover, it is clear that the recursion formula (1.20) is simpler than that
of the proximal point algorithm and involves direct applications of A. Furthermore, the regu-
larization parameters λn, θn are easily chosen at the begining of the iteration process. Com-
putation of (I + cnT)

−1 is not required at any stage, and computation of two convex sets and
projection of x0 onto their intersection will not be required. Finaly, we derive some applica-
tions of our theorems to approximate fixed points of uniformly continuous pseudocontractions.
We achieve this by means of an incisive result recently proved by C. E. Chidume and C. O.
Chidume [43].
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2. Preliminaries

Let X be a real normed linear space of dimension ≥ 2. The modulus of smoothness of X is def-
ined by

ρX(τ) := sup

{∥∥x + y
∥∥ +

∥∥x − y
∥∥

2
− 1 : ‖x‖ = 1,

∥∥y∥∥ = τ

}
, τ > 0. (2.1)

If there exist a constant c > 0 and a real number q > 1, such that ρX(τ) ≤ cτq, then X is said to
be q-uniformly smooth. Typical examples of such spaces are the Lp, 
p, and Wm

p spaces for
1 < p < ∞, where

Lp(or lp) or Wm
p is

⎧⎨
⎩
2-uniformly smooth if 2 ≤ p < ∞,

p-uniformly smooth if 1 < p < 2.
(2.2)

In the sequel will we will need the following results.

Theorem 2.1 (Xu [11]). Let q > 1 and E be a real Banach space. Then the following are equivalent.

(i) E is q-uniformly smooth.

(ii) There exists a constant dq > 0 such that for all x, y ∈ E,

∥∥x + y
∥∥q ≤ ‖x‖q + q

〈
y, jq(x)

〉
+ dq

∥∥y∥∥q
. (2.3)

For the remainder of this paper, cq and dq will denote the constants appearing in
Theorem 2.1.

Lemma 2.2. Let E be a real normed linear space. Then, the following inequality holds:

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉 ∀j(x + y
) ∈ J

(
x + y

)
, ∀ x, y ∈ E. (2.4)

Lemma 2.3 (Xu [7]). Let {an} be a sequence of nonnegative real numbers satisfying the following
relations:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 0, (2.5)

where (i) {αn} ⊂ (0, 1),
∑

αn = ∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0, (n ≥ 0),
∑

γn < ∞. Then,
an → 0 as n → ∞.

Lemma 2.4 (C. E. Chidume and C. O. Chidume [43]). Let X and Y be real normed linear spaces
and let T : X → Y be a uniformly continuous map. For arbitrary r > 0 and fixed x∗ ∈ X, let

BX(x∗, r) := {x ∈ X : ‖x − x∗‖X ≤ r}. (2.6)

Then T(B(x∗, r)) is bounded.
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Since this result is yet to appear, we reproduce its short proof here.

Proof. By the uniform continuity of T and by taking ε = 1, there exists δ > 0 such that for all
x, y ∈ X,

∥∥x − y
∥∥ < δ =⇒ ∥∥Tx − Ty

∥∥ < 1. (2.7)

For r > 0, let z ∈ B(x∗, r) be arbitrary. Choose n0 ∈ N fixed such that r < n0δ. Set

z0 = x∗, z1 = x∗ +
z − x∗

n0
, z2 = x∗ +

2(z − x∗)
n0

, z3 = x∗ +
3(z − x∗)

n0
, . . . , zk = x∗ +

k(z − x∗)
n0

,

zk+1 = x∗ +
(k + 1)(z − x∗)

n0
, . . . , zn0−1 = x∗ +

(n0 − 1)(z − x∗)
n0

, zn0 = z.

(2.8)

Then,

‖zk+1 − zk‖ =
‖z − x∗‖

n0
≤ r

n0
< δ. (2.9)

By the uniform continuity of T , ‖Tzk+1 − Tzk‖ < 1. Furthermore,

‖Tz‖ = ‖Tzn0‖ ≤ ‖Tzn0 − Tzn0−1‖ + ‖Tzn0−1 − Tzn0−2‖ + · · · + ‖Tz1 − Tz0‖
+ ‖Tz0‖ ≤ n0 + ‖Tz0‖ ≤ n0 + ‖Tx∗‖.

(2.10)

Hence, T(B(x∗, R)) is bounded.

We now prove the following lemma, which will be used in the sequel.

Lemma 2.5. For q > 1, let E be a q-uniformly smooth real Banach space and A : E → E be a map
withD(A) = E. Suppose thatA ism-accretive, that is, (i) for all u, v ∈ E, ∃j(u−v) ∈ Jq(u−v) such
that 〈Au−Av, j(u−v)〉 ≥ 0. (ii)R(I+s0A) = E for some s0 > 0. ThenA satisfies the range condition,
that is, R(I + sA) = E for all s > 0.

Proof. Assume that there exists some s0 > 0 such that R(I + s0A) = E. It is known that sinceA
is accretive, the map (I + s0A) : E → E is invertible and, moreover, Js0 := (I + s0A)−1 is non-
expansive, that is,

‖Js0u − Js0v‖ ≤ ‖u − v‖ ∀u, v ∈ E. (2.11)

Claim. R(I + sA) = E for any s > s0/2. Indeed, let s > s0/2 and w ∈ E, we solve the equation

u + sAu = w. (2.12)
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We observe that u ∈ E solves (2.12) if and only if

u + s0Au =
s0
s
w +

(
1 − s0

s

)
u (2.13)

or equivalently

u = Js0

(
s0
s
w +

(
1 − s0

s

)
u

)
. (2.14)

Observing that |1 − s0/s| < 1, it follows from the Banach fixed point theorem that (2.14) has a
unique solution. This proves the claim.

Since A is m-accretive, R(I + s0A) = E for some s0 > 0. Using the claim, it follows that
R(I+sA) = E for any s > s0/2. By induction, we have thatR(I+sA) = E for any s > s0/2n and
for any n ≥ 1. So, the conclusions follows.

3. Approximation of Zeros of Bounded m-Accretive Operators

We now prove the following theorem.

Theorem 3.1. Let E be a 2-uniformly smooth real Banach space, and let A : E → E be a bounded
m-accretive map. For arbitrary x1 ∈ E, define the sequence {xn} iteratively by

xn+1 := xn − λnAxn − λnθn(xn − x1), n ≥ 1, (3.1)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0, and {θn} is decreasing;
(2)

∑∞
n=1 λnθn = ∞, λn = o(θn);

(3) limn→∞((θn−1/θn) − 1)/λnθn = 0,
∑∞

n=1 λ
2
n < ∞.

Suppose that the equation Ax = 0 has a solution. Then, there exists a constant γ0 > 0 such that if
λn ≤ γ0θn for all n ≥ 1, {xn} converges strongly to a solution of the equation Ax = 0.

Proof. Let x∗ ∈ E be a solution of the equationAx = 0. There exists r > 0 sufficiently large such
that x1 ∈ B(x∗, r/2). Define B := B(x∗, r). SinceA is bounded, it follows thatA(B) is bounded.
So,

M0 := sup
{
‖Ax + θ(x − x1)‖2 : x ∈ B, 0 < θ ≤ 1

}
+ 1 < ∞. (3.2)

Let

M2 := d2M0, γ0 := min

{
1,

r2

4M2

}
, (3.3)

where d2 = dq in Theorem 2.1 with q = 2.
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Step 1. We prove that {xn}is bounded. Indeed, it suffices to show that xn is in B for all n ≥ 1. The
proof is by induction. By construction, x1 ∈ B. Suppose that xn ∈ B for some n ≥ 1. We prove
that xn+1 ∈ B.

Using inequality (2.3) of Theorem 2.1 with q = 2, we have

‖xn+1 − x∗‖2 = ‖xn − x∗ − λn(Axn + θn(xn − x1))‖2

≤ ‖xn − x∗‖2 − 2λn
〈
Axn + θn(xn − x1), j(xn − x∗)

〉

+ d2λ
2
n‖Axn + θn(xn − x1)‖2

≤ ‖xn − x∗‖2 − 2λn
〈
Axn + θn(xn − x1), j(xn − x∗)

〉
+ λ2nM2.

(3.4)

Using the fact that A is accretive, we obtain

〈
Axn + θn(xn − x1), j(xn − x∗)

〉 ≥ θn‖xn − x∗‖2 + θn
〈
x∗ − x1, j(xn − x∗)

〉
. (3.5)

Therefore, we have the following estimates:

‖xn+1 − x∗‖2 ≤ (1 − 2λnθn)‖xn − x∗‖2 − 2λnθn
〈
x∗ − x1, j(xn − x∗)

〉
+ λ2nM2

≤ (1 − 2λnθn)‖xn − x∗‖2 + 2λnθn‖x∗ − x1‖‖xn − x∗‖ + λ2nM2

≤ (1 − 2λnθn)‖xn − x∗‖2 + 2λnθn
(
1
2
‖x∗ − x1‖2 + 1

2
‖xn − x∗‖2

)
+ λ2nM2.

(3.6)

Thus,

‖xn+1 − x∗‖2 ≤ (1 − λnθn)‖xn − x∗‖2 + λnθn‖x∗ − x1‖2 + λ2nM2. (3.7)

So, using the induction assumption, the fact that x1 ∈ B(x∗, r/2) and the condition λn ≤ γ0θn,
we obtain

‖xn+1 − x∗‖2 ≤
(
1 − 1

2
λnθn

)
r2 ≤ r2. (3.8)

Therefore, xn+1 ∈ B. Thus by induction, {xn} is bounded.

Step 2. We prove that {xn}converges to a solution of Ax = 0. Since A is m-accretive, using
Lemma 2.5 and Theorem 1.1, there exists a unique sequence {yn} in E satisfying the following
properties:

θn
(
yn − x1

)
+Ayn = 0 ∀n ≥ 1, (i)

yn −→ y∗ with Ay∗ = 0. (ii)
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Indeed, applying Theorem 1.1, with t = 1/θn, then the sequence {yn}, with

yn =
(
I +

1
θn

A

)−1
x1 (3.9)

has the desired properties.

Claim. ‖xn+1 − yn‖ → 0 as n → 0. Since {xn} and {yn} are bounded and A is bounded, there
exists some positive constant M such that

∥∥xn+1 − yn

∥∥2 =
∥∥xn − yn − λn(Axn + θn(xn − x1))

∥∥2

≤ ∥∥xn − yn

∥∥2 − 2λn
〈
Axn + θn(xn − x1), j

(
xn − yn

)〉

+ d2λ
2
n‖Axn + θn(xn − x1)‖2

≤ ∥∥xn − yn

∥∥2 − 2λn
〈
Axn + θn(xn − x1), j

(
xn − yn

)〉
+ λ2nM.

(3.10)

Using (23) and the fact that A is accretive, we have

〈
Axn + θn(xn − x1), j

(
xn − yn

)〉
=
〈
Axn −Ayn, j

(
xn − yn

)〉
+ θn

∥∥xn − yn

∥∥2

+
〈
Ayn + θn

(
yn − x1

)
, j
(
xn − yn

)〉

≥ θn
2
∥∥xn − yn

∥∥2
. (3.11)

Therefore,

‖xn+1 − yn‖2 ≤ (1 − λnθn)
∥∥xn − yn

∥∥2 + λ2nM. (3.12)

Using again the fact that A is accretive, we obtain

∥∥yn−1 − yn

∥∥2 ≤
∥∥∥∥yn−1 − yn +

1
θn

(
Ayn−1 −Ayn

)∥∥∥∥
2

. (3.13)

From (i), observing that

yn−1 − yn +
1
θn

(
Ayn−1 −Ayn

)
=

θn − θn−1
θn

(
yn−1 − x1

)
, (3.14)

it follows that
∥∥yn−1 − yn

∥∥ ≤ θn−1 − θn
θn

∥∥yn−1 − x1
∥∥. (3.15)

By Lemma 2.2, we have∥∥xn − yn

∥∥2 =
∥∥(xn − yn−1

)
+
(
yn−1 − yn

)∥∥2

≤ ∥∥xn − yn−1
∥∥2 + 2

〈
yn−1 − yn, j

(
xn − yn

)〉
. (3.16)



14 Abstract and Applied Analysis

Using Schwartz’s inequality, we obtain:

∥∥xn − yn

∥∥2 ≤ ∥∥xn − yn−1
∥∥2 + 2

∥∥yn−1 − yn

∥∥∥∥xn − yn

∥∥. (3.17)

Using (3.12), (3.15), (3.17), and the fact that {xn} and {yn} are bounded, we have,

∥∥xn+1 − yn

∥∥2 ≤ (1 − λnθn)
∥∥xn − yn−1

∥∥2 + C

(
θn−1 − θn

θn

)
+ λ2nM. (3.18)

for some positive constant C. Thus, by Lemma 2.3, xn+1 − yn → 0. Using (ii), it follows that
xn → y∗ and Ay∗ = 0. This completes the proof.

Corollary 3.2. Let E be a 2-uniformly smooth real Banach space, and let A : E → E be a uniformly
continuous m-accretive map. For arbitrary x1 ∈ E, define the sequence {xn} iteratively by

xn+1 := xn − λnAxn − λnθn(xn − x1), n ≥ 1, (3.19)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0 and {θn} is decreasing;
(2)

∑∞
n=1 λnθn = ∞, λn = o(θn);

(3) limn→∞((θn−1/θn) − 1)/λnθn = 0,
∑∞

n=1 λ
2
n < ∞.

Suppose that the equation Ax = 0 has a solution. Then, there exists a constant γ0 > 0 such that if
λn ≤ γ0θn for all n ≥ 1, {xn} converges strongly to a solution of the equation Ax = 0.

Proof. Since A is uniformly continuous, then, by Lemma 2.4, A is bounded. So the result
follows from Theorem 3.1.

Corollary 3.3. Let H be real Hilbert space, and let A : H → H be a bounded maximal monotone
operator. For arbitrary x1 ∈ H, define the sequence {xn} iteratively by

xn+1 := xn − λnAxn − λnθn(xn − x1), n ≥ 1, (3.20)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0 and {θn} is decreasing;
(2)

∑∞
n=1 λnθn = ∞, λn = o(θn);

(3) limn→∞((θn−1/θn) − 1)/λnθn = 0,
∑∞

n=1 λ
2
n < ∞.

Suppose that the equation Ax = 0 has a solution. Then, there exists a constant γ0 > 0 such that if
λn ≤ γ0θn for all n ≥ 1, {xn} converges strongly to a solution of the equation Ax = 0.

Corollary 3.4. LetH be real Hilbert space, and letA : H → H be a uniformly continuous maximal
monotone operator. For arbitrary x1 ∈ H, define the sequence {xn} iteratively by

xn+1 := xn − λnAxn − λnθn(xn − x1), n ≥ 1, (3.21)
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where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0 and {θn} is decreasing;
(2)

∑∞
n=1 λnθn = ∞, λn = o(θn);

(3) limn→∞((θn−1/θn) − 1)/λnθn = 0,
∑∞

n=1 λ
2
n < ∞.

Suppose that the equation Ax = 0 has a solution. Then, there exists a constant γ0 > 0 such that if
λn ≤ γ0θn for all n ≥ 1, {xn} converges strongly to a solution of the equation Ax = 0.

Corollary 3.5. Let E = Lp (or lp) space, (2 ≤ p < ∞), and let A : E → E be a bounded m-accretive
map. For arbitrary x1 ∈ E, define the sequence {xn} iteratively by

xn+1 := xn − λnAxn − λnθn(xn − x1), n ≥ 1, (3.22)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0 and {θn} is decreasing;
(2)

∑∞
n=1 λnθn = ∞, λn = o(θn);

(3) limn→∞((θn−1/θn) − 1)/λnθn = 0,
∑∞

n=1 λ
2
n < ∞.

Suppose that the equation Ax = 0 has a solution. Then, there exists a constant γ0 > 0 such that if
λn ≤ γ0θn for all n ≥ 1, {xn} converges strongly to a solution of the equation Ax = 0.

Corollary 3.6. Let E = Lp (or lp) space, (2 ≤ p < ∞), and let A : E → E be a uniformly continuous
m-accretive map. For arbitrary x1 ∈ E, define the sequence {xn} iteratively by

xn+1 := xn − λnAxn − λnθn(xn − x1), n ≥ 1, (3.23)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0 and {θn} is decreasing;
(2)

∑∞
n=1 λnθn = ∞, λn = o(θn);

(3) limn→∞((θn−1/θn) − 1)/λnθn = 0,
∑∞

n=1 λ
2
n < ∞.

Suppose that the equation Ax = 0 has a solution. Then, there exists a constant γ0 > 0 such that if
λn ≤ γ0θn for all n ≥ 1, {xn} converges strongly to a solution of the equation Ax = 0.

4. Approximation of Fixed Points of Uniformly Continuous
Pseudocontractive Operators

We will make use of the following result.

Lemma 4.1 (Reich [9], Morales and Jung [44], Takahashi and Ueda [45]). Let K be closed
convex subset of a reflexive Banach spaceEwith a uniformly Gâteaux differentiable norm. Let T : K →
K be continuous pseudocontractive mapping with F(T)/= ∅. Suppose that every closed convex and
bounded subset ofK has the fixed point property for nonexpansive self-mappings. Then for u ∈ K, the
path t → yt ∈ K, t ∈ (0, 1], satisfying, yt = (1− t)Tyt+ tu, converges strongly to a fixed pointQu of
T as t → 0, where Q is the unique sunny nonexpansive retract from K onto F(T).
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We now prove the following theorem.

Theorem 4.2. LetK be a nonempty closed convex subset of a 2-uniformly smooth real Banach spaceE.
Let T : K → K be a uniformly continuous pseudocontractive map with F(T)/= ∅. Let a sequence {xn}
be generated from arbitrary x1 ∈ K by

xn+1 := (1 − λn)xn + λnTxn − λnθn(xn − x1), ∀n ≥ 1, (4.1)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) λn(1 + θn) < 1;

(2) lim θn = 0 and {θn} is decreasing;
(3)

∑∞
n=1 λnθn = ∞, λn = o(θn);

(4) limn→∞((θn−1/θn) − 1)/λnθn = 0,
∑∞

n=1 λ
2
n < ∞.

Then, {xn} converges strongly to a fixed point of T .

Proof. Since E is a 2-uniformly smooth real Banach space, it has uniformly Gâteaux differ-
entiable norm and every closed bounded convex nonempty subset of E has the fixed point
property for nonexpansive self-mappings. Set A := (I − T). Then A is uniformly continuous
and accretive. Now, using the fact T is uniformly continuous and pseudocontractive, it fol-
lows from Lemma 4.1 that there exists a unique sequence (yn), with yn := ytn , tn := θn/(1+θn)
satisfying the following properties:

θn
(
yn − x1

)
+Ayn = 0 ∀ n ≥ 1,

yn −→ y∗ with Ay∗ = 0.
(4.2)

Since A is uniformly continuous, then from Lemma 2.4 it is bounded. As in the proof of
Theorem 3.1, {xn} converges strongly to y∗, withAy∗ = 0. So, {xn} converges strongly to a fix-
ed point of T .

Corollary 4.3. Let K be a nonempty closed convex subset of a 2-uniformly smooth real Banach space
E. Let T : K → K be a Lipschitz pseudocontractive map with F(T)/= ∅. Let a sequence {xn} be gen-
erated from arbitrary x1 ∈ K by

xn+1 := (1 − λn)xn + λnTxn − λnθn(xn − x1), ∀n ≥ 1, (4.3)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) λn(1 + θn) < 1;

(2) lim θn = 0; and {θn} is decreasing;
(3)

∑∞
n=1 λnθn = ∞, λn = o(θn);

(4) limn→∞((θn−1/θn) − 1)/λnθn = 0,
∑∞

n=1 λ
2
n < ∞.

Then, {xn} converges strongly to a fixed point of T .
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Corollary 4.4. Let E = Lp (or lp) space, (2 ≤ p < ∞), and letK be a nonempty closed convex subset of
E. Let T : K → K be a uniformly continuous pseudocontractive map with F(T)/= ∅. Let a sequence
{xn} be generated from arbitrary x1 ∈ K by

xn+1 := (1 − λn)xn + λnTxn − λnθn(xn − x1), ∀n ≥ 1, (4.4)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) λn(1 + θn) < 1;

(2) lim θn = 0 and {θn} is decreasing;
(3)

∑∞
n=1 λnθn = ∞, λn = o(θn);

(4) limn→∞((θn−1/θn) − 1)/λnθn = 0,
∑∞

n=1 λ
2
n < ∞.

Then, {xn} converges strongly to a fixed point of T .

Remark 4.5. Addition of bounded error terms to any of the recursion formulas studied in this
paper yields no further generalizations.

Remark 4.6. Real sequences that satisfy the hypotheses of Theorems 3.1 are λn = n−a and
θn = n−b, n ≥ 1 with 0 < b < a, 1/2 < a < 1, and a + b < 1. We verify that these choices
satisfy in particular, the first part of condition (3) of Theorem 3.1. In fact, using the fact that
(1 + x)s ≤ 1 + sx, for x > −1 and 0 < s < 1, we have

0 ≤ ((θn−1/θn) − 1)/λnθn =

[(
1 +

1
n

)b

− 1

]
· (n + 1)a+b

≤ b · (n + 1)a+b

n
= b · n + 1

n
· 1

(n + 1)1−(a+b)
−→ 0 (4.5)

as n → ∞.
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