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A function f is continuous if and only if f preserves convergent sequences; that is, (f(αn)) is a
convergent sequencewhenever (αn) is convergent. The concept ofNθ-ward continuity is defined in
the sense that a function f isNθ-ward continuous if it preservesNθ-quasi-Cauchy sequences; that
is, (f(αn)) is an Nθ-quasi-Cauchy sequence whenever (αn) is Nθ-quasi-Cauchy. A sequence (αk)
of points in R, the set of real numbers, isNθ-quasi-Cauchy if limr→∞(1/hr)

∑
k∈Ir |Δαk | = 0, where

Δαk = αk+1 − αk , Ir = (kr−1, kr], and θ = (kr) is a lacunary sequence, that is, an increasing sequence
of positive integers such that k0 = 0 and hr : kr − kr−1 → ∞. A new type compactness, namely,
Nθ-ward compactness, is also, defined and some new results related to this kind of compactness
are obtained.

1. Introduction

It is well known that a real function f is continuous if and only if, for each point α0 in the
domain, limn→∞f(αn) = f(α0) whenever limn→∞αn = α0. This is equivalent to the statement
that (f(αn)) is a convergent sequence whenever (αn) is. This is also equivalent to the state-
ment that (f(αn)) is a Cauchy sequence whenever (αn) is Cauchy provided that the domain
of the function is either whole R or a bounded and closed subset of R where R is the set of
real numbers. These well known results for continuity for real functions in terms of sequences
suggested to introduce and study new types of continuities such as slowly oscillating conti-
nuity [1], quasi-slowly oscillating continuity [2], δ-quasi-slowly oscillating continuity [3],
forward continuity [4], statistical ward continuity [5] which enabled some authors to obtain
some characterizations of uniform continuity in terms of sequences in the sense that a func-
tion preserves either quasi-Cauchy sequences or slowly oscillating sequences (see [6–8]).

The purpose of this paper is to introduce a new kind of continuity and a new type
of compactness, namely, Nθ-ward continuity and Nθ-ward compactness, respectively, in the
senses that a function f is Nθ-ward continuous if f preserves Nθ-quasi-Cauchy sequences,
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and a subset A of R is Nθ-ward compact if any sequence of points in A has an Nθ-quasi-
Cauchy subsequence and to investigate relations among this kind of continuity, compactness,
and some other types of continuities.

2. Preliminaries

We will use boldface letters α, x,y, z, . . . for sequences α = (αk), x = (xn), y = (yn), and z =
(zn),. . . of points in R for the sake of abbreviation. s and c will denote the set of all sequences
and the set of convergent sequences of points in R.

A subset of R is compact if and only if it is closed and bounded. A subset A of R is
bounded if |a| ≤ M for all a ∈ A where M is a positive real constant number. This is equi-
valent to the statement that any sequence of points in A has a Cauchy subsequence. The con-
cept of a Cauchy sequence involves far more than that the distance between successive terms
is tending to zero. Nevertheless, sequences which satisfy this weaker property are interesting
in their own right. A sequence (αn) of points in R is quasi-Cauchy if (Δαn) is a null sequence
whereΔαn = αn+1−αn. These sequences were named as quasi-Cauchy by Burton and Coleman
[8, page 328], while they were called as forward convergent to 0 sequences in [4, page 226].

It is known that a sequence (αn) of points in R is slowly oscillating if

lim
λ→ 1+

lim
n

max
n+1≤k≤[λn]

|αk − αn| = 0, (2.1)

where [λn] denotes the integer part of λn (see [9, Definition 2 page 947]). Any Cauchy
sequence is slowly oscillating, and any slowly oscillating sequence is quasi-Cauchy. There
are quasi-Cauchy sequences which are not Cauchy. For example, the sequence (

√
n) is quasi-

Cauchy, but not Cauchy. Any subsequence of a Cauchy sequence is Cauchy. The analogous
property fails for quasi-Cauchy sequences, and fails for slowly oscillating sequences as well.
A counter example for the case, quasi-Cauchy, is again the sequence (an) = (

√
n) with the

subsequence (an2) = (n). A counter example for the case slowly oscillating is the sequence
(log10 n) with the subsequence (n). Furthermore we give more examples without neglecting:
the sequences (

∑∞
k=1 1/n), (lnn), (ln(lnn)), (ln(ln(lnn))), . . . , (ln(ln(ln(· · · (lnn) · · · )))) and

combinations like that are all slowly oscillating, but not Cauchy. The bounded sequence
(cos(6 log(n + 1))) is slowly oscillating, but not Cauchy. The sequences (cos(π

√
n)) and

(
∑k=n

k=1(1/k)(
∑j=k

j=1(1/j))) are quasi-Cauchy, but not slowly oscillating.
By a method of sequential convergence, or briefly a method, we mean a linear func-

tion G defined on a subspace of s, denoted by cG, into R. A sequence x = (xn) is said to be
G-convergent to � if α ∈ cG and G(α) = � [10]. In particular, lim denotes the limit function
limα = limnαn on the space c of convergent sequences of points in R. A method G is called
regular if c ⊂ cG; that is, every convergent sequence α = (αn) is G-convergent with G(α) =
limα. A point � in R is in the G-sequential closure of a subsetA of R if there is a sequence x =
(xn) of points in A such that G(x) = �. A subset A is called G-sequentially closed if it contains
all of the points in its G-sequential closure.

Consider an infinite matrix A = (ank)
∞
n,k=1 of real numbers. Then, for any sequence

x = (xn) the sequence Ax is defined as

Ax =

( ∞∑

k=1

ankxk

)

n

(2.2)
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provided that each of the series converges. A sequence x is called A-convergent (or A-sum-
mable) to � if Ax exists and is convergent with

lim Ax = lim
n→∞

∞∑

k=1

ankxk = �. (2.3)

Then � is called the A-limit of x. We have thus defined a method of sequential convergence,
that is, G(x) = lim Ax, called a matrix method or a summability matrix.

The concept of statistical convergence is a generalization of the usual notion of
convergence that, for real-valued sequences, parallels the usual theory of convergence. A
sequence (αk) of points in R is called statistically convergent to an element � of R if for each ε

lim
n→∞

1
n
|{k ≤ n : |αk − �| ≥ ε}| = 0, (2.4)

and this is denoted by st-limk→∞αk = � (see [11–15]). This defines a method of sequential
convergence, that is, G(α) := st-limk→∞αk.

Nowwe recall the concepts of ward compactness, and slowly oscillating compactness:
a subset A of R is called ward compact if whenever (αn) is a sequence of points in A, there
is a quasi-Cauchy subsequence z = (zk) = (αnk) of (αn) [4]. A subset A of R is called slowly
oscillating compact if whenever (αn) is a sequence of points in A, there is a slowly oscillating
subsequence z = (zk) = (αnk) of (αn) [1].

A function f is called G-sequentially continuous at u ∈ R if, given a sequence α = (αn)
of points in R, G(α) = u implies that G(f(α)) = f(u).

Recently, Cakalli (see [16, page 594], [17]) gave a sequential definition of compactness,
which is a generalization of ordinary sequential compactness, as in the following: a subset A
of R is G-sequentially compact if for any sequence (αk) of points in A there exists a sub-
sequence z of the sequence such that G(z) ∈ A. His idea enables us obtaining new kinds of
compactness via most of the nonmatrix sequential convergence methods as well as all matrix
sequential convergence methods.

3. Nθ-Quasi-Cauchy Sequences

A lacunary sequence θ = (kr) is an increasing sequence θ = (kr) of positive integers such that
k0 = 0 and hr : kr−kr−1 → ∞. The intervals determined by θwill be denoted by Ir = (kr−1, kr],
and the ratio kr/kr−1 will be abbreviated by qr . Sums of the form

∑kr
kr−1+1

|αk| frequently occur,
andwill often bewritten for convenience as

∑
k∈Ir |αk|. Throughout this paper, wewill assume

that lim infr qr > 1 .

The notion ofNθ convergence was introduced and studied by Freedman et al. in [18].
Basarir and Altundag studied Δ-Nθ-asymptotically equivalent sequences in [19]. Using the
idea of Sember and Raphael, Fridy and Orhan introduced lacunary statistical convergence
(see [20, 21]).

A sequence (αk) of points in R is called Nθ-convergent to an element � of R if

lim
r→∞

1
hr

∑

k∈Ir
|αk − �| = 0, (3.1)
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and it is denoted by Nθ-limαk = �. This defines a method of sequential convergence, that
is, G(α) := Nθ-limαk. Any convergent sequence is Nθ-convergent, but the converse is not
always true. Throughout the paper Nθ will denote the set of Nθ convergent sequences of
points in R.

For example, limit of the sequence of the ratios of Fibonacci numbers converge, to the
golden mean. This property ensures the regularity of lacunary sequential method obtained
via the sequence of Fibonacci numbers; that is, θ = (kr) is the lacunary sequence defined by
writing k0 = 0 and kr = Fr+2 where (Fr) is the Fibonacci sequence, that is, F1 = 1, F2 = 1, and
Fr = Fr−1 + Fr−2 for r ≥ 3.

Nowwemodify the definition ofG-sequential compactness to the special case,G = Nθ

[16] as in the following: a subset A, of R is called Nθ-sequentially compact if whenever (αn)
is a sequence of points in A there is an Nθ-convergent subsequence z = (zk) = (ank) of (αn)
whose Nθ-limit is in A.

Adopting the technique in the proof of the necessity of Theorem 6 in [22], we see that
the sequential method Nθ is subsequential. It follows from [16, Corollary 5, page 597] that a
subset A of R is sequentially compact if and only if it is Nθ-sequentially compact. A subset
A of R is closed and bounded if and only if it is Nθ-sequentially compact. A subset of R is
G-sequentially compact if and only if it is Nθ-sequentially compact for any regular subse-
quential method G.

In connection with Nθ-convergent sequences and convergent sequences the problem
arises to investigate the following types of continuity of functions on R:

(Nθ) : (αn) ∈ Nθ =⇒ (
f(αn)

) ∈ Nθ,

(Nθc) : (αn) ∈ Nθ =⇒ (
f(αn)

) ∈ c,

(c) : (αn) ∈ c =⇒ (
f(αn)

) ∈ c,

(cNθ) : (αn) ∈ c =⇒ (
f(αn)

) ∈ Nθ.

(3.2)

We see that (Nθ) is Nθ-sequential continuity of f , and (c) is the ordinary continuity
of f . It is easy to see that (Nθc) implies (Nθ), and (Nθ) does not imply (Nθc); (Nθ) implies
(cNθ), and (cNθ) does not imply (Nθ); (Nθc) implies (c), and (c) does not imply (Nθc); and
(c) is equivalent to (cNθ).

If a function f is Nθ-sequentially continuous at a point α0, then it is continuous at α0.
If a function f is Nθ-sequentially continuous on a subset A of R, then it is statistically con-
tinuous on A. We obtain from [16, Theorem 7, page 597] that Nθ-sequentially continuous
image of any Nθ-sequentially compact subset of R is Nθ-sequentially compact.

In [23] a nonempty subset A of a R is called G-sequentially connected if there are no
nonempty and disjoint G-sequentially closed subsets U and V such that A ⊆ U

⋃
V , and

A ∩U andA ∩V are nonempty. As far as G-sequentially connectedness is considered, we see
that Nθ-sequentially continuous image of any Nθ-sequentially connected subset of R is Nθ-
sequentially connected, so Nθ-sequentially continuous image of any interval is an interval.
Furthermore it can be easily seen that a subset of R is Nθ-sequentially connected if and only
if it is connected in the ordinary sense, and so it is an interval.

Definition 3.1. A sequence (αn) of points in R is called Nθ-quasi-Cauchy if (Δαn) is Nθ-con-
vergent to 0. ΔN0

θ
will denote the set of all Nθ-quasi-Cauchy sequences of points in R.



Abstract and Applied Analysis 5

We note that Nθ-quasi-Cauchy sequences were studied in [19] in a different point of
view.

Now we give the definition of Nθ-ward compactness.

Definition 3.2. A subset A of R is called Nθ-ward compact if whenever (αn) is a sequence of
points in A, there is an Nθ-quasi-Cauchy subsequence z = (zk) = (ank) of (αn).

Theorem 3.3. A subset A of R is bounded if and only if it is Nθ-ward compact.

Proof. Let A be any bounded subset of R and let (αn) be any sequence of points in A. (αn) is
also a sequence of points inAwhereA denotes the closure ofA. AsA is sequentially compact,
there is a convergent subsequence (αnk) of (αn) (no matter the limit is in A or not). This
subsequence is Nθ-convergent since Nθ-method is regular. Hence (αnk) is Nθ-quasi-Cauchy.
Thus (a) implies (b). To prove that (b) implies (a), suppose that A is unbounded. If it is
unbounded above, then one can construct a sequence (αn) of numbers in A such that αn+1 >
1+αn for each positive integer n. Then the sequence (αn) does not have anyNθ-quasi-Cauchy
subsequence, so A is not Nθ-ward compact. If A is bounded above and unbounded below,
then similarly we obtain that A is not Nθ-ward compact. This completes the proof of the
theorem.

It easily follows from the preceding theorem that a closed subset of R is Nθ-ward
compact if and only if it isNθ-sequentially compact and a closed subset ofR isNθ-ward com-
pact if and only if it is statistically ward compact.

A sequence α = (αn) is δ-quasi-Cauchy if limk→∞Δ2αn = 0 whereΔ2αn = an+2 −2an+1 +
αn [3]. A subsetA of R is called δ-ward compact if whenever α = (αn) is a sequence of points
in A, there is a subsequence z = (zk) = (αnk) of α with limk→∞Δ2zk = 0. It follows from the
previous theorem that any Nθ-ward compact subset of R is δ-ward compact.

We see that for any regular subsequential method G defined on R, if a subset A of R is
G-sequentially compact, then it is Nθ-ward compact. But the converse is not always true.

Now we give the definition of Nθ-ward continuity in the following.

Definition 3.4. A function defined on a subset A of R is called Nθ-ward continuous if it pre-
serves Nθ-quasi-Cauchy sequences; that is, (f(αk)) is an Nθ-quasi-Cauchy sequence when-
ever (αk) is.

Sum of two Nθ-ward continuous functions is Nθ-ward continuous, but product of
Nθ-ward continuous functions need not beNθ-ward continuous.

In connection with Nθ-quasi-Cauchy sequences and convergent sequences the prob-
lem arises to investigate the following types of continuity of functions on R:

(δNθ) : (αn) ∈ ΔN0
θ =⇒ (

f(αn)
) ∈ ΔN0

θ,

(δNθc) : (αn) ∈ ΔN0
θ =⇒ (

f(αn)
) ∈ c,

(c) : (αn) ∈ c =⇒ (
f(αn)

) ∈ c,

(cδNθ) : (αn) ∈ c =⇒ (
f(αn)

) ∈ ΔN0
θ,

(Nθ) : (αn) ∈ Nθ =⇒ (
f(αn)

) ∈ N0
θ.

(3.3)
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We see that (δNθ) is Nθ-ward continuity of f , (Nθ) is Nθ-sequential continuity of f ,
and (c) is the ordinary continuity of f . It is easy to see that (δNθc) implies (δNθ), and (δNθ)
does not imply (δNθc); (δNθ) implies (cδNθ), and (cδNθ) does not imply (δNθ); (δNθc)
implies (c), and (c) does not imply (δNθc); (Nθ) clearly implies (c) as we have seen in
Section 3.

Now we give the implication that (δNθ) implies (Nθ); that is, any Nθ-ward con-
tinuous function is Nθ-sequentially continuous.

Theorem 3.5. If f isNθ-ward continuous on a subset A of R, then it isNθ-sequentially continuous
on A.

Proof. Assume that f is an Nθ-ward continuous function on a subset A of R. Let (αn) be any
Nθ-convergent sequence with Nθ − limk→∞αk = α0. Then the sequence

(α1, α0, α2, α0, . . . , αn−1, α0, αn, α0, . . .) (3.4)

is also Nθ-convergent to α0. Hence it is Nθ-quasi-Cauchy. As f is Nθ-ward continuous, the
sequence

(
f(α1), f(α0), f(α2), f(α0), . . . , f(αn−1), f(α0), f(αn), f(α0), . . .

)
(3.5)

is Nθ-quasi-Cauchy. It follows from this that the sequence (f(αn)) Nθ-converges to f(α0).
This completes the proof of the theorem.

The converse is not always true for the function f(x) = x2 is an example since the
sequence (

√
n) isNθ-quasi-Cauchy while (f(

√
n)) = (n) is not.

Corollary 3.6. If f is Nθ-ward continuous on a subset A of R, then it is continuous on A.

Proof. The proof immediately follows from the preceding theorem, so it is omitted.

Corollary 3.7. If f is Nθ-ward continuous on a subset A of R, then it is statistically continuous on
A.

It is well known that any continuous function on a compact subsetA of R is uniformly
continuous on A. It is also true for a regular subsequential method G that any Nθ-ward con-
tinuous function on a G-sequentially compact subset A of R is also uniformly continuous on
A (see [6]). Furthermore, forNθ-ward continuous functions defined on anNθ-ward compact
subset of R, we have the following.

Theorem 3.8. Let A be an Nθ-ward compact subset A of R and let f : A → R be an Nθ-ward con-
tinuous function on A. Then f is uniformly continuous on A.

Proof. Suppose that f is not uniformly continuous onA so that there exists an ε0 > 0 such that
for any δ > 0 there are x, y ∈ Ewith |x−y| < δ but |f(x)−f(y)| ≥ ε0. For each positive integer
n, there exist αn and βn such that |αn − βn| < 1/n, and |f(αn) − f(βn)| ≥ ε0. SinceA isNθ-ward
compact, there exists an Nθ-quasi-Cauchy subsequence (αnk) of the sequence (αn). It is clear
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that the corresponding subsequence (βnk) of the sequence (βn) is alsoNθ-quasi-Cauchy, since
(βnk+1 − βnk) is a sum of three Nθ-null sequences, that is,

βnk+1 − βnk =
(
βnk+1 − αnk+1

)
+ (αnk+1 − αnk) +

(
αnk − βnk

)
. (3.6)

On the other hand, it follows from the equality αnk+1 − βnk = αnk+1 − αnk + αnk − βnk that the
sequence (αnk+1 − βnk) isNθ-convergent to 0. Hence the sequence

(
an1 , βn1 , αn2 , βn2 , αn3 , βn3 , . . . , αnk , βnk , . . .

)
(3.7)

isNθ-quasi-Cauchy. But the transformed sequence

(
f(αn1), f

(
βn1

)
, f(αn2), f

(
βn2

)
, f(αn3), f

(
βn3

)
, . . . , f(αnk), f

(
βnk

)
, . . .

)
(3.8)

is not Nθ-quasi-Cauchy. Thus f does not preserve Nθ-quasi-Cauchy sequences. This contra-
diction completes the proof of the theorem.

Corollary 3.9. If a function f isNθ-ward continuous on a bounded subsetA ofR, then it is uniformly
continuous on A.

Proof. The proof follows from the preceding theorem and Theorem 3.3.

Theorem 3.10. Nθ-ward continuous image of any Nθ-ward compact subset of R is Nθ-ward com-
pact.

Proof. Assume that f is an Nθ-ward continuous function on a subset A of R and E is an Nθ-
ward compact subset ofA. Let (βn) be any sequence of points in f(E). Write βn = f(αn)where
αn ∈ E for each positive integer n. Nθ-ward compactness of E implies that there is a subse-
quence (γk) = (αnk) of (αn) with Nθlimk→∞Δγk = 0. Write (tk) = (f(γk)). As f is Nθ-ward
continuous, (f(γk)) is Nθ-quasi-Cauchy. Thus we have obtained a subsequence (tk) of the
sequence (f(αn)) with Nθ − limk→∞Δtk = 0. Thus f(E) is Nθ-ward compact. This completes
the proof of the theorem.

Corollary 3.11. Nθ-ward continuous image of any compact subset of R isNθ-ward compact.

The proof follows from the preceding theorem.

Corollary 3.12. Nθ-ward continuous image of any bounded subset of R is bounded.

The proof follows from Theorems 3.3 and 3.10.

Corollary 3.13. Nθ-ward continuous image of a G-sequentially compact subset of R is Nθ-ward
compact for any regular subsequential method G.

For a further study, we suggest to investigate Nθ-quasi-Cauchy sequences of fuzzy
points andNθ-ward continuity for the fuzzy functions (see [24] for the definitions and related
concepts in fuzzy setting). However due to the change in settings, the definitions and meth-
ods of proofs will not always be analogous to those of the present work.
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