
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 675810, 10 pages
doi:10.1155/2012/675810

Research Article
General Solutions of Two Quadratic Functional
Equations of Pexider Type on Orthogonal Vectors

Margherita Fochi
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Based on the studies on the Hyers-Ulam stability and the orthogonal stability of some Pexider-
quadratic functional equations, in this paper we find the general solutions of two quadratic
functional equations of Pexider type. Both equations are studied in restricted domains: the first
equation is studied on the restricted domain of the orthogonal vectors in the sense of Rätz, and
the second equation is considered on the orthogonal vectors in the inner product spaces with the
usual orthogonality.

1. Introduction

Stability problems for some functional equations have been extensively investigated by
several authors, and in particular one of the most important functional equation studied in
this topic is the quadratic functional equation,

f
(
x + y

)
+ f

(
x − y

)
= 2f(x) + 2f

(
y
)

(1.1)

(Skof [1], Cholewa [2], Czerwik [3], Rassias [4], among others).
Recently, many articles have been devoted to the study of the stability or orthogonal

stability of quadratic functional equations of Pexider type on the restricted domain of
orthogonal vectors in the sense of Rätz.

We remind the definition of orthogonality space (see [5]). The pair (X,⊥) is called
orthogonality space in the sense of Rätz if X is a real vector space with dimX ≥ 2 and ⊥ is a
binary relation on X with the following properties:

(i) x ⊥ 0, 0 ⊥ x for all x ∈ X,

(ii) if x, y ∈ X − {0}, x ⊥ y, then the vectors are linearly independent,
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(iii) if x, y ∈ X, x ⊥ y, then αx ⊥ βy for all α, β ∈ R,

(iv) let P be a 2-dimensional subspace of X. If x ∈ P then there exists y0 ∈ P such that
x ⊥ y0 and x + y0 ⊥ λx − y0.

The relation ⊥ is called symmetric if x ⊥ y implies that y ⊥ x.
An example of orthogonality in the sense of Rätz is the ordinary orthogonality on an

inner product space (H, (·, ·)) given by ⊥ y ⇔ (x, y) = 0.
In the class of real functionals f, g, h defined on an orthogonality space in the sense of

Rätz, f, g, h : (X,⊥) → R, a first version of the quadratic equation of Pexider type is

f
(
x + y

)
+ f

(
x − y

)
= 2g(x) + 2h

(
y
)

(1.2)

and its relative conditional form is

x ⊥ y =⇒ f
(
x + y

)
+ f

(
x − y

)
= 2g(x) + 2h

(
y
)
. (1.3)

Although the Hyers-Ulam stability of the conditional quadratic functional equation (1.3) has
been studied by Moslehian [6], we do not know the characterization of the solutions of the
conditional equation (1.3).

In the same class of functions, f, g, h, k : (X,⊥) → R, another version of the quadratic
functional equation of Pexider type is

f
(
x + y

)
+ g

(
x − y

)
= h(x) + k

(
y
)
, (1.4)

and its relative conditional form is

x ⊥ y =⇒ f
(
x + y

)
+ g

(
x − y

)
= h(x) + k

(
y
)
. (1.5)

Equation (1.4) has been solved by Ebanks et al. [7]; its stability has been studied, among
others, by Jung and Sahoo [8] and Yang [9] and its orthogonal stability has been studied by
Mirzavaziri and Moslehian [10], but also in this case we do not know the general solutions
of (1.5).

Based on those studies, we intend to consider the above-mentioned functional
equations (1.3) and (1.5) on the restricted domain of orthogonal vectors in order to present
the characterization of their general solutions.

Throughout the paper, the orthogonality ⊥ in the sense of Rätz is assumed to be
symmetric.

2. The Conditional Equation x ⊥ y ⇒ f(x + y) + f(x − y) = 2g(x) + 2h(y)
in Orthogonality Spaces in the Sense of Ratz

In the class of real functionals f, g, h defined on an orthogonality space in the sense of Rätz,
f, g, h : (X,⊥) → R, let us consider the conditional equation (1.3).
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We describe its solutions first assuming that f is an odd functional, then an even
functional, finally, using the decomposition of the functionals f, g, h into their even and odd
parts, we describe the general solutions.

Theorem 2.1. Let f, g, h : (X,⊥) → R be real functionals satisfying (1.3).
If f is an odd functional, then the solutions of (1.3) are given by

f(x) = A(x),

g(x) = A(x) + g(0),

h(x) = h(0),

(2.1)

where A : (X,⊥) → R is an additive function, that is, A is solution of A(x + y) = A(x) +A(y) for
all (x, y) ∈ X2.

If f is an even functional, then the solutions of (1.3) are given by

f(x) = Q(x) + f(0),

g(x) = Q(x) + g(0),

h(x) = Q(x) + h(0),

(2.2)

whereQ : (X,⊥) → R is an orthogonally quadratic function, that is, solution ofQ(x+y)+Q(x−y) =
2Q(x) + 2Q(y) for x ⊥ y.

Proof. Let us first consider f an odd functional. Letting x = 0 and y = 0 in (1.3), by f(0) = 0
for the oddness of f , we obtain

g(0) + h(0) = 0. (2.3)

Now, putting (x, 0) in place of (x, y) in (1.3), we have f(x) = g(x) + h(0), then putting again
(0, x) in place of (x, y) we get g(0) + h(x) = 0 for all x ∈ X, since f is odd. The first equation
gives

g(x) = f(x) + g(0) (2.4)

from (2.3), and the last equation proves that

h(x) = h(0) (2.5)

using (2.3) again.
From the above results, (1.3)may be rewritten in the followingway: f(x+y)+f(x−y) =

2f(x) for all x ⊥ y. Hence by Lemma 3.1, [6], we have f(x) − f(0) = A(x)where A : X → R
is an orthogonally additive functional. But since f(0) = 0 and from [5, Theorem 5], we deduce
that A is everywhere additive.
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Consider now f an even functional. Substituting in (1.3) (0, 0) in place of (x, y), we
obtain

g(0) + h(0) = f(0). (2.6)

Now writing (1.3) with (x, y) replaced, respectively, first by (x, 0), then by (0, y), we get

f(x) = g(x) + h(0), (2.7)

f
(
y
)
= g(0) + h

(
y
)
, (2.8)

for all x, y ∈ X, since f is even. From (1.3), using (2.7), (2.8), and (2.6), we obtain

f
(
x + y

)
+ f

(
x − y

)
= 2f(x) + 2f

(
y
) − 2f(0). (2.9)

Hence, settingQ(t) = f(t)−f(0), we inferQ(x+y)+Q(x−y) = 2Q(x)+2Q(y) for x ⊥ y, that is,
Q is an orthogonally quadratic functional. So, f(x) = Q(x) + f(0), and from (2.7), using (2.6),
g(x) = Q(x)+f(0)−h(0) = Q(x)+g(0), and from (2.8), h(x) = Q(x)+f(0)−g(0)=Q(x)+h(0).

The theorem is so proved.

Lemma 2.2. Let f, g, h : (X,⊥) → R be real functionals satisfying (1.3).
Then both the even parts and the odd parts of f, g, h, namely, fe, ge, he and fo, go, ho, satisfy

(1.3).

Proof. Denoting by fe, ge, he and fo, go, ho the even and odd parts, respectively, of f, g, h, we
have from (1.3)

fe
(
x + y

)
+ fo

(
x + y

)
+ fe

(
x − y

)
+ fo

(
x − y

)
= 2ge(x) + 2go(x) + 2he

(
y
)
+ 2ho

(
y
)
, for x ⊥ y.

(2.10)

From the homogeneity of the orthogonality relation (property (iii)), we have x ⊥ y ⇒ −x ⊥
−y, so that, by (1.3), choosing −x,−y, we get

fe
(
x + y

) − fo
(
x + y

)
+ fe

(
x − y

) − fo
(
x − y

)
= 2ge(x) − 2go(x) + 2he

(
y
) − 2ho

(
y
)
, for x ⊥ y.

(2.11)

Adding and then subtracting (2.10) and (2.11), we easily prove the lemma.
From Lemma 2.2 and Theorem 2.1, we may easily prove the following theorem.

Theorem 2.3. The general solution f, g, h : (X,⊥) → R of the functional equation (1.3) is given by

f(x) = A(x) +Q(x) + f(0),

g(x) = A(x) +Q(x) + g(0),

h(x) = Q(x) + h(0),

(2.12)
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where A : (X,⊥) → R is an additive function and Q : (X,⊥) → R is an orthogonally quadratic
function.

In the case of an inner product space (H, (·, ·)) (dimH > 2) which is a particular
orthogonality space in the sense of Rätz, with the ordinary orthogonality given by ⊥ y ⇔
(x, y) = 0, we have the characterization of the orthogonally quadratic mappings from [11,
Theorem 2]. Hence we have the following corollary.

Corollary 2.4. Let H be an inner product space with dim H > 2 andf, g, h : (H, (·, ·)) → R. The
general solution of the functional equation (1.3) is given by

f(x) = A(x) +Q(x) + f(0),

g(x) = A(x) +Q(x) + g(0),

h(x) = Q(x) + h(0),

(2.13)

where A : (H, (·, ·)) → R is an additive function and Q : (H, (·, ·)) → R is a quadratic function.

3. The Conditional Equation x ⊥ y ⇒ f(x + y) + g(x − y) = h(x) + k(y) in
Inner Product Spaces

Consider now H an inner product space with dimH > 2 and the usual orthogonality given
by ⊥ y ⇔ (x, y) = 0. In the class of real functionals f, g, h, k defined on H, we consider the
conditional equation (1.5).

First prove the following lemma.

Lemma 3.1. Let f, g, h, k : H → R be solutions of (1.5); then

h(x) = A(x) +Q(x) + h(0), (3.1)

where A : H → R is an additive function and Q : H → R is a quadratic function.

Proof. Replacing in (1.5) (x, y) by (0, 0), then by (x, 0) and finally by (0, y), we obtain

(i) f(0) + g(0) = h(0) + k(0),

(ii) f(x) + g(x) = h(x) + k(0),

(iii) f(y) + g(−y) = h(0) + k(y).

Hence (1.5) may be rewritten as

f
(
x + y

)
+ g

(
x − y

)
= f(x) + f

(
y
)
+ g(x) + g

(−y) − f(0) − g(0). (3.2)

So that, setting F(t) = f(t) − f(0) and G(t) = g(t) − g(0), we infer

F
(
x + y

)
+G

(
x − y

)
= F(x) + F

(
y
)
+G(x) +G

(−y). (3.3)
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Now, substituting −y in (3.3) in place of y, we have

F
(
x − y

)
+G

(
x + y

)
= F(x) + F

(−y) +G(x) +G
(
y
)
. (3.4)

Adding (3.3) and (3.4), we get

F
(
x + y

)
+ F

(
x − y

)
+G

(
x + y

)
+G

(
x − y

)
= 2F(x) + F

(
y
)
+ F

(−y) + 2G(x) +G
(
y
)
+G

(−y).
(3.5)

So, defining the functional S : H → R by

S(t) = F(t) +G(t), (3.6)

the above equation becomes

x ⊥ y =⇒ S
(
x + y

)
+ S

(
x − y

)
= 2S(x) + S

(
y
)
+ S

(−y). (3.7)

From [11, Theorem 3], we have

S(x) = A(x) +Q(x), (3.8)

where A : H → R is an additive function and Q : H → R is a quadratic function. From
(3.6), we have, F(x) + G(x) = A(x) +Q(x), that is, f(x) − f(0) + g(x) − g(0) = A(x) +Q(x).
Using (ii) and (i), the left-hand side of the above equation may be written in the following
way: h(x) + k(0) − f(0) − g(0) = h(x) + k(0) − h(0) − k(0) = h(x) − h(0); hence we get h(x) =
A(x) +Q(x) + h(0). The theorem is so proved.

Our aim is now to characterize the general solutions of (1.5): this is obtained using
the decomposition of the functionals f, g, h, k into their even and odd parts. Using the same
approach of Lemma 2.2, we easily prove the following lemma.

Lemma 3.2. Let f, g, h, k : H → R be real functionals satisfying (1.5).
Then both the even parts and the odd parts of f, g, h, k, namely, fe, ge, he, ke and fo, go, ho, ko,

satisfy (1.5), that is,

x ⊥ y =⇒ fo
(
x + y

)
+ go

(
x − y

)
= ho(x) + ko

(
y
)
, (3.9)

x ⊥ y =⇒ fe
(
x + y

)
+ ge

(
x − y

)
= he(x) + ke

(
y
)
. (3.10)

Now consider (3.9): the characterization of its solutions is given by the following
theorem.
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Theorem 3.3. Let fo, go, ho, ko : H → R be real odd functionals satisfying (3.9); then the solutions
of (3.9) are given by

fo(x) =
A(x) + B(x)

2
,

go(x) =
A(x) − B(x)

2
,

ho(x) = A(x),

ko(x) = B(x),

(3.11)

where A : H → R and B : H → R are additive functions.

Proof. Substituting in (3.9) first (0, x), then (x, 0) in place of (x, y), and by ho(0) = 0 and
ko(0) = 0 by the oddness of the functions, we obtain

fo(x) − go(x) = ko(x),

fo(x) + go(x) = ho(x).
(3.12)

Adding and then subtracting the above equations, we get

2fo(x) = ho(x) + ko(x),

2go(x) = ho(x) − ko(x).
(3.13)

By (3.1), ho(x) = A(x), hence from the above equations,

2fo(x) = A(x) + ko(x), (3.14)

2go(x) = A(x) − ko(x). (3.15)

Consider now x, y ∈ H with x ⊥ y. Writing (3.14)with x+y instead of x and (3.15)with x−y
instead of x, we get

2fo
(
x + y

)
= A

(
x + y

)
+ ko

(
x + y

)
,

2go
(
x − y

)
= A

(
x − y

) − ko
(
x − y

)
.

(3.16)

Adding the above equations, from (3.9), the additivity of A and ho(x) = A(x), we obtain

k0
(
x + y

) − k0
(
x − y

)
= 2k0

(
y
)

(3.17)

for x ⊥ y. By the symmetry of the orthogonality relation, we get, changing x and y and from
the oddness of the function,

k0
(
x + y

)
+ k0

(
x − y

)
= 2k0(x), (3.18)
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hence k0(x + y) = k0(x) + k0(y) for x ⊥ y. By [5, Theorem 5], k0 is an additive function;
consequently, there exists an additive function B : H → R such that k0(x) = B(x) for all
x ∈ H. Now (3.14) and (3.15) give fo(x) = (A(x) + B(x))/2 and go(x) = (A(x) − B(x))/2, so
the theorem is proved.

Finally, consider equation (3.10): the characterization of its solutions is given by the
following theorem.

Theorem 3.4. Let fe, ge, he, ke : H → R be real even functionals satisfying (3.10); then there exist
a quadratic function Q : H → R and a function ϕ : [0,∞) → R such that

fe(x) =
Q(x) + ϕ(‖x‖) + he(0) + ke(0)

2
,

ge(x) =
Q(x) − ϕ(‖x‖) + he(0) + ke(0)

2
,

he(x) = Q(x) + he(0),

ke(x) = Q(x) + ke(0).

(3.19)

Proof. From Lemma 3.1, we first notice that

he(x) = Q(x) + he(0). (3.20)

Substituting now in (3.10) first (x, 0) then (0, x) instead of (x, y), we obtain, respectively

fe(x) + ge(x) = he(x) + ke(0),

fe(x) + ge(x) = he(0) + ke(x).
(3.21)

Consequently, by subtraction and from (3.20), we have

ke(x) = Q(x) + ke(0). (3.22)

Substitution of (3.20) and (3.22) in (3.10) gives

fe
(
x + y

)
+ ge

(
x − y

)
= Q(x) +Q

(
y
)
+ he(0) + ke(0). (3.23)

Then, we substitute −y in place of y in (3.23) and have

fe
(
x − y

)
+ ge

(
x + y

)
= Q(x) +Q

(
y
)
+ he(0) + ke(0) (3.24)

for all x ⊥ y. Hence, for y = 0 in (3.24), we obtain

fe(x) + ge(x) = Q(x) + he(0) + ke(0). (3.25)
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Subtracting now (3.23) and (3.24), we get fe(x + y) + ge(x − y) − fe(x − y) − ge(x + y) = 0
for all x ⊥ y. Consider u, v ∈ H with ‖u‖ = ‖v‖: it follows that (u + v)/2 ⊥ (u − v)/2,
hence in the above equation we may replace x, y with (u + v)/2, (u − v)/2, respectively. We
obtain fe(u) + ge(v) − fe(v) − ge(u) = 0, that is, fe(u) − ge(u) = fe(v) − ge(v) for all u, v ∈ H
with ‖u‖ = ‖v‖. Thus the function fe(t) − ge(t) is constant on each sphere with center 0, and
ϕ : [0,∞) → R is well defined by

ϕ(‖x‖) = fe(x) − ge(x). (3.26)

Hence (3.25) and (3.26) lead to

fe(x) =
Q(x) + ϕ(‖x‖) + he(0) + ke(0)

2
,

ge(x) =
Q(x) − ϕ(‖x‖) + he(0) + ke(0)

2
,

(3.27)

which finishes the proof.

Finally, the general solution of (1.5) is characterized by the following theorem.

Theorem 3.5. Let f, g, h, k : H → R be real functionals satisfying (1.5); then there exist additive
functions, B : H → R, a quadratic function Q : H → R, and a function ϕ : [0,∞) → R such that

f(x) =
A(x) + B(x) +Q(x) + ϕ(‖x‖) + h(0) + k(0)

2
,

g(x) =
A(x) − B(x) +Q(x) − ϕ(‖x‖) + h(0) + k(0)

2
,

h(x) = A(x) +Q(x) + h(0),

k(x) = B(x) +Q(x) + k(0).

(3.28)

Conversely, the above functionals satisfy (1.5).
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