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The paper is concerned with the variational formulation of the oligopolistic market equilibrium
problem in presence of both production and demand excesses. In particular, we generalize a
previous model in which the authors, instead, considered only the problem with production
excesses, by allowing also the presence of demand excesses. First we examine the equilibrium
conditions in terms of the well-known dynamic Cournot-Nash principle. Next, the equilibrium
conditions will be expressed in terms of Lagrange multipliers by means of the infinite dimensional
duality theory. Then, we show the equivalence between the two conditions that are both expressed
by an appropriate evolutionary variational inequality. Moreover, thanks to the variational
formulation, some existence and regularity results for equilibrium solutions are proved. At last,
a numerical example, which illustrates the features of the problem, is provided.

1. Introduction

The aim of this paper is to introduce a time-dependent variational formulation for the
dynamic oligopolistic market equilibriummodel in presence of both production and demand
excesses. Moreover, in line with [1], we want to eliminate the serious drawback present in
[2] where the authors made the unreasonable assumption that the production of a given
commodity could be unbounded, by making possible any commodity shipment from a
firm to a demand market. This is not possible because the amount of a commodity that
the producers can offer is limited as a consequence of finite resources. Therefore, it can
happen that some of the amounts of the available commodity are sold out so that can occur
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an excess of demand, whereas for a part of the producers can occur an excess of production.
The question about the unbounded production had already been solved in [1], but the
presence of both excesses realizes a more complete study of the problem. In order to clarify
the presence of both production and demand excesses we consider some concrete economic
situations. During an economic crisis period the presence of production excesses can be due
to a demand decrease in demand markets and, on the other hand, the presence of demand
excesses may occur when the supply cannot satisfy the demand especially for fundamental
goods.Moreover, since themarketmodel presented in this paper evolves in time, the presence
of both production and demand excesses is a consequence of the fact that the physical
transportation of commodity between a firm and a demand market is evidently limited,
therefore, there can exist some time intervals in which some of the demand markets require
more commodity, though some firms produce more commodity than they can send to all the
demandmarkets. For these reasons the newmodel results in a more realistic generalization of
the ones presented in [1, 2], where the authors studied the case without presence of excesses
and the case with the only presence of production excesses, respectively.

The equilibrium formulation fits in the light of a dynamic noncooperative behaviour.
The first author who treated the most trivial example of noncooperative behaviour between
two producers of a given commodity, nowadays called duopoly problem, was Cournot (see
[3]). Later Nash, in [4, 5], extended this concept by introducing m agents in his model
nowadays called noncooperative game, each acting according to his own self-interest.

In order to study the time-dependent behaviour of the model, we will afford this study
by considering the evolution of the market in time and, as a consequence, all the variables
present in this model, such as the costs, the commodity shipments, and the excesses depend
on time. As Beckmann andWallace pointed out, for the first time, in [6], “the time-dependent
formulation of equilibrium problems allows one to explore the dynamics of adjustment
processes in which a delay on time response is operating.” Of course a delay on time response
always happens because the processes have not an infinite speed. Usually, such adjustment
processes can be represented by means of a memory term which depends on previous
equilibrium solutions according to the Volterra operator (see, e.g., [7]). The time-dependent
process was one of the main features of the paper [2]where, in particular, the authors studied
the variational formulation and proved the existence and regularity of a dynamic equilibrium
solution. Moreover, the regularity property allows to provide a computational procedure to
compute the equilibrium solutions (see, e.g., [8–12]).

In [13] the authors, through the notion of quasi-relative interior of sets (see [14]),
applied the infinite dimensional duality results developed in [15–18] to overcome the
difficulty of the voidness of the interior of the ordering cone which defines the constraints of
the problem and so proved the existence of Lagrange variables which permit to describe the
behaviour of the market. Moreover, in [13] some sensitivity results have been obtained each
of them showing that small changes of the solution happen in correspondence with small
changes of the profit function. In [7, 19], an oligopolistic market equilibrium model with an
explicit long-term memory has been considered. Then, in [19], the Lipschitz continuity of the
solution, which depends on the variation rate of projections onto time-dependent constraints
set, is shown and the existence of Lagrange multipliers is provided.

In the first part of the paper, we present the equilibrium conditions in presence of
excesses according to the well-known Cournot-Nash principle. This is a practical equilibrium
definition that expresses that each firm acts trying to maximize its own profit. The second
one, more theoretical, is shown through the Lagrange variables that better emphasize, in
particular, the presence of excess constraints. The equilibrium conditions established in terms
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of Lagrange variables do not arouse any concern because we will prove that their presence is
not influential in the definition of equilibrium because we can characterize such equilibrium
conditions by means of an evolutionary variational inequality that does not contain the
Lagrange variables. Another thing to notice is that the equilibrium conditions, provided
with the help of the duality theory, are equivalent to the dynamic Cournot-Nash equilibrium
principle because we can prove that they are both equivalent to the same evolutionary
variational inequality. Such variational formulation gives us a powerful tool for the study
of the existence, the regularity, and the calculus of equilibrium solutions. In particular, we
show that the constraint set satisfies the property of set convergence in Kuratowski’s sense
which has an important role in order to guarantee the continuity of equilibrium solutions.
Moreover, the continuity property is very useful in order to introduce a numerical scheme to
compute equilibrium solutions (see [20, 21]).

The outline of the paper is as the following. In Section 2, we describe the model of
the dynamic oligopolistic market equilibrium problem in presence of both production and
demand excesses and we show the equilibrium conditions making use of both Cournot-
Nash principle and Lagrange multipliers. In Section 3, we recall the new infinite dimensional
duality theory requested to show the existence of Lagrange variables. In Section 4, after
showing some preliminary lemmas, we give the proof of the characterization of the dynamic
oligopolistic market equilibrium conditions established in terms of Lagrange variables by
means of an evolutionary variational inequality, so we can derive their equivalence with the
dynamic Cournot-Nash principle. In Section 5, after recalling some preliminary definitions,
we give some existence results. Section 6 is devoted to provide a regularity result for the
equilibrium solution after proving that the constraint set of commodity shipments satisfies
the requirements of the set convergence in Kuratowski’s sense. Finally, in Section 7, we
provide a numerical example of a dynamic oligopolistic market equilibrium problem in
presence of production and demand excesses and underline some important features of the
problem.

2. Dynamic Oligopolistic Market Equilibrium

Let us consider m firms Pi, i = 1, . . . , m, that produce only one commodity and n demand
marketsQj , j = 1, . . . , n, that are generally spatially separated. Assume that the homogeneous
commodity, produced by the m firms and consumed by the n markets, is involved during a
time interval [0, T], T > 0. Let pi(t), i = 1, . . . , m, denote the nonnegative commodity output
produced by firm Pi at the time t ∈ [0, T]. Let qj(t), j = 1, . . . , n, denote the nonnegative
demand for the commodity at demand marketQj at the time t ∈ [0, T]. Let xij(t), i = 1, . . . , m,
j = 1, . . . , n, denote the nonnegative commodity shipment between the supply market Pi

and the demand market Qj at the time t ∈ [0, T]. In particular, let us set the vector xi(t) =
(xi1(t), . . . , xin(t)), i = 1, . . . , m, t ∈ [0, T] as the strategy vector for the firm Pi. Finally, let
us introduce the production and demand excesses. Let εi(t), i = 1, . . . , m, be the nonnegative
production excess for the commodity of the firm Pi at the time t ∈ [0, T]. Let δj(t), j = 1, . . . , n,
be the nonnegative demand excess for the commodity of the demand market Qj at the time
t ∈ [0, T].

Let us group the production output into a vector-function p : [0, T] → R
m
+ , the

demand output into a vector-function q : [0, T] → R
n
+, the commodity shipments into a

matrix-function x : [0, T] → R
mn
+ , the production excess into a vector-function ε : [0, T] →

R
m
+ , and the demand excess into a vector-function δ : [0, T] → R

n
+.
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Let us assume that the following feasibility conditions hold:

pi(t) =
n∑

j=1

xij(t) + εi(t), i = 1, . . . , m, a.e. in [0, T],

qj(t) =
m∑

i=1

xij(t) + δj(t), j = 1, . . . , n, a.e. in [0, T].

(2.1)

Hence, the quantity produced by each firm Pi, at the time t ∈ [0, T], must be equal to the
commodity shipments from that firm to all the demand markets plus the production excess,
at the same time t ∈ [0, T]. Moreover, the quantity demanded by each demand market Qj ,
at the time t ∈ [0, T], must be equal to the commodity shipments from all the firms to that
demand market plus the demand excess, at the same time t ∈ [0, T].

Furthermore, we assume that the nonnegative commodity shipment between the
producer Pi and the demand market Qj has to satisfy time-dependent constraints, namely,
there exist two nonnegative functions x, x : [0, T] → R

mn
+ such that

0 ≤ xij(t) ≤ xij(t) ≤ xij(t), ∀i = 1, . . . , m, ∀j = 1, . . . , n, a.e. in [0, T]. (2.2)

For technical reasons, let us assume that

x ∈ L2([0, T],Rmn
+ ), x ∈ L2([0, T],Rmn

+ ), x ∈ L2([0, T],Rmn
+ ),

ε ∈ L2([0, T],Rm
+ ), δ ∈ L2([0, T],Rn

+).
(2.3)

As a consequence, we have

p ∈ L2([0, T],Rm
+ ), q ∈ L2([0, T],Rn

+). (2.4)

Then, the set of feasible vectors (x, ε, δ) ∈ L2([0, T],Rmn+m+n
+ ) is

K
∗ =

⎧
⎨

⎩(x, ε, δ) ∈ L2([0, T],Rmn+m+n
+ ) :

xij(t) ≤ xij(t) ≤ xij(t), ∀i = 1, . . . , m, ∀j = 1, . . . , n, a.e. in [0, T],

εi(t) ≥ 0, ∀i = 1, . . . , m, a.e. in [0, T],

pi(t) =
n∑

j=1

xij(t) + εi(t), ∀i = 1, . . . , m, a.e. in [0, T],

δj(t) ≥ 0, ∀j = 1, . . . , n, a.e. in [0, T],

qj(t) =
m∑

i=1

xij(t) + δj(t), ∀j = 1, . . . , n, a.e. in [0, T]

⎫
⎬

⎭.

(2.5)
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Furthermore, let us associate with each firm Pi a production cost f∗
i , i = 1, . . . , m, and

assume that the production cost of a firm Pi may depend upon the entire production pattern,
namely:

f∗
i = f∗

i (t, x(t), ε(t)). (2.6)

Similarly, let us associate with each demand market Qj , a demand price for unity of the
commodity d∗

j , j = 1, . . . , n and assume that the demand price of a demand market Qj may
depend upon the entire consumption pattern, namely:

d∗
j = d∗

j (t, x(t), δ(t)). (2.7)

Moreover, since we allow production excesses and, consequently, the storage of commodities,
we must consider the function g∗

i , i = 1, . . . , m, that denotes the storage cost of the
commodity produced by the firm Pi and assume that this cost may depend upon the entire
production pattern, namely:

g∗
i = g∗

i (t, x(t), ε(t)). (2.8)

Finally, let cij , i = 1, . . . , m, j = 1, . . . , n, denote the transaction cost, which includes the
transportation cost associated with trading the commodity between firm Pi and demand
market Qj . Here we permit the transaction cost to depend upon the entire shipment pattern,
namely:

cij(t) = cij(t, x(t)). (2.9)

Hence, we have the following mappings:

f∗ :[0, T] × L2([0, T],Rmn
+ ) × L2([0, T],Rm

+ ) −→ L2([0, T],Rm
+ ),

d∗ :[0, T] × L2([0, T],Rmn
+ ) × L2([0, T],Rn

+) −→ L2([0, T],Rn
+),

g∗ :[0, T] × L2([0, T],Rmn
+ ) × L2([0, T],Rm

+ ) −→ L2([0, T],Rm
+ ),

c :[0, T] × L2([0, T],Rmn
+ ) −→ L2([0, T],Rmn

+ ).

(2.10)

The profit v∗
i (t, x(t), ε(t), δ(t)), i = 1, . . . , m, of the firm Pi at the time t ∈ [0, T] is, then,

v∗
i (t, x(t), ε(t), δ(t)) =

n∑

j=1

d∗
j (t, x(t), δ(t))xij(t) − f∗

i (t, x(t), ε(t))

− g∗
i (t, x(t), ε(t)) −

n∑

j=1

cij(t, x(t))xij(t),

(2.11)
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namely, it is equal to the price that the demand markets are disposed to pay minus the
production cost, the storage cost and the transportation costs.

Now, we can rewrite K
∗ in an equivalent way. By virtue of (2.1)we can express εi(t) in

terms of pi(t) and xij(t) and δj(t) in terms of qj(t) and xij(t), namely:

εi(t) = pi(t) −
n∑

j=1

xij(t), i = 1, . . . , m, a.e. in [0, T],

δj(t) = qj(t) −
m∑

i=1

xij(t), j = 1, . . . , n, a.e. in [0, T].

(2.12)

Then, the equivalent constraint set becomes

K =

{
x ∈ L2([0, T],Rmn

+ ) :

xij(t) ≤ xij(t) ≤ xij(t), ∀i = 1, . . . , m, ∀j = 1, . . . , n, a.e. in [0, T],

n∑

j=1

xij(t) ≤ pi(t), ∀i = 1, . . . , m, a.e. in [0, T],

m∑

i=1

xij(t) ≤ qj(t), ∀j = 1, . . . , n, a.e. in [0, T]

}
.

(2.13)

We can observe that K includes the presence of both production and demand excesses
described in K

∗.
Then, the production costs, the demand price, and the storage costs, by virtue of (2.12)

and taking into account (2.6), (2.7), and (2.8), become

fi = fi(t, x(t)) = f∗
i (t, x(t), ε(t)),

dj = dj(t, x(t)) = d∗
j (t, x(t), δ(t)),

gi = gi(t, x(t)) = g∗
i (t, x(t), ε(t)),

(2.14)

and, analogously, the profit function (2.11) becomes

vi(t, x(t)) = v∗
i (t, x(t), ε(t), δ(t))

=
n∑

j=1

dj(t, x(t))xij(t) − fi(t, x(t)) − gi(t, x(t)) −
n∑

j=1

cij(t, x(t))xij(t).
(2.15)
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Let us denote by ∇Dv = (∂vi/∂xij) i=1,...,m,
j=1,...,n

and let us assume the following assump-

tions:

(i) vi(t, x(t)) is continuously differentiable for each i = 1, . . . , m, a.e. in [0, T],

(ii) ∇Dv is a Carathéodory function such that

∃h ∈ L2([0, T]) : ‖∇Dv(t, x(t))‖mn ≤ h(t)‖x(t)‖mn, a.e. in [0, T], (2.16)

(iii) vi(t, x(t)) is pseudoconcavewith respect to the variable xi, i = 1, . . . , m, a.e. in [0, T].

For the reader’s convenience, we recall that a function v, continuously differentiable, is called
pseudoconcavewith respect to xi, i = 1, . . . , m, a.e. in [0, T] (see [22]), if the following condition
holds, a.e. in [0, T]:

〈
∂v

∂xi
(t, x1, . . . , xi, . . . , xm), xi − yi

〉
≥ 0

=⇒ vi(t, x1, . . . , xi, . . . , xm) ≥ vi

(
t, x1, . . . , yi, . . . , xm

)
.

(2.17)

Now let us consider the dynamic oligopolistic market, in which the m firms supply the
commodity in a noncooperative fashion, each one trying to maximize its own profit function
considered the optimal distribution pattern for the other firms, at the time t ∈ [0, T]. We seek
to determine a nonnegative commodity distribution matrix-function x for which them firms
and the n demand markets will be in a state of equilibrium as defined below. In fact, we can
consider different, but equivalent, equilibrium conditions each of them illustrates important
features of the equilibrium.

The first one makes use of the dynamic Cournot-Nash principle (see [2]).

Definition 2.1. x∗ ∈ K is a dynamic oligopolistic market equilibrium in presence of excesses if
and only if for each i = 1, . . . , m and a.e. in [0, T] one has

vi(t, x∗(t)) ≥ vi

(
t, xi(t), x̂∗

i (t)
)
, (2.18)

where

x̂∗
i (t) =

(
x∗
1(t), . . . , x

∗
i−1(t), x

∗
i+1(t), . . . , x

∗
m(t)
)
. (2.19)

With the same technique used in [2, Theorem 3.1] it is possible to prove that under the
assumptions (i), (ii), (iii) on vi, Definition 2.1 is equivalent to an evolutionary variational
inequality, as the following result shows.

Theorem 2.2. Let one suppose that assumptions (i), (ii), (iii) are satisfied. Then, x∗ ∈ K is a dynamic
oligopolistic market equilibrium in presence of excesses according to Definition 2.1 if and only if it
satisfies the evolutionary variational inequality

∫T

0
−

m∑

i=1

n∑

j=1

∂vi(t, x∗(t))
∂xij

(
xij(t) − x∗

ij(t)
)
dt ≥ 0, ∀x ∈ K. (2.20)
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In Section 4 we will prove that, under the assumptions (i), (ii), (iii) on the profit
function v, Definition 2.1 is equivalent to the equilibrium conditions defined through
Lagrange variables which are very useful in order to analyze the presence of both production
and demand excesses.

Definition 2.3. x∗ ∈ K is a dynamic oligopolistic market problem equilibrium in presence
of excesses if and only if, for each i = 1, . . . , m, j = 1, . . . , n and a.e. in [0, T], there exist
λ∗ij ∈ L2([0, T]), ρ∗ij ∈ L2([0, T]), μ∗

i ∈ L2([0, T]), ν∗j (t) ∈ L2([0, T]) such that

− ∂vi(t, x∗(t))
∂xij

+ ρ∗ij(t) + μ∗
i (t) + ν∗j (t) = λ∗ij(t), (2.21)

λ∗ij(t)
(
xij(t) − x∗

ij(t)
)
= 0, λ∗ij(t) ≥ 0, (2.22)

ρ∗ij(t)
(
x∗
ij(t) − xij(t)

)
= 0, ρ∗ij(t) ≥ 0, (2.23)

μ∗
i (t)

⎛

⎝
n∑

j=1

x∗
ij(t) − pi(t)

⎞

⎠ = 0, μ∗
i (t) ≥ 0, (2.24)

ν∗j (t)

(
m∑

i=1

x∗
ij(t) − qj(t)

)
= 0, ν∗j (t) ≥ 0. (2.25)

The terms λ∗ij(t), ρ
∗
ij(t), μ

∗
i (t), ν

∗
j (t) are the Lagrange multipliers associated to the

constraints x∗
ij(t) ≥ xij(t), x∗

ij(t) ≤ xij(t),
∑n

j=1 x
∗
ij(t) ≤ pi(t), and

∑m
i=1 x

∗
ij(t) ≤ qj(t),

respectively.
They, as it is well known, have a topical importance on the understanding and the

management of the market. In fact, at a fixed time t ∈ [0, T], we have:

(a) if λ∗ij(t) > 0 then, by using (2.22), we obtain x∗
ij(t) = xij(t), namely, the commodity

shipment between the firm Pi and the demand market Qj is minimum,

(b) if x∗
ij(t) > xij(t) then, taking into account (2.22), λ∗ij(t) = 0 and, making use of

(2.21), it results ρ∗ij(t) + μ∗
i (t) + ν∗j (t) = ∂vi(t, x∗(t))/∂xij , namely, ρ∗ij(t) + μ∗

i (t) + ν∗j (t)
is equal to the marginal profit,

(c) if ρ∗ij(t) > 0 then, by using (2.23), we obtain x∗
ij(t) = xij(t), namely, the commodity

shipment between the firm Pi and the demand market Qj is maximum,

(d) if x∗
ij(t) < xij(t) then, making use of (2.23), ρ∗ij(t) = 0 and, taking into account (2.21),

we get μ∗
i (t) + ν∗j (t) − λ∗ij(t) = ∂vi(t, x∗(t))/∂xij , namely, μ∗

i (t) + ν∗j (t) − λ∗ij(t) is equal
to the marginal profit,



Abstract and Applied Analysis 9

(e) if μ∗
i (t) > 0 then, for the condition (2.24), we have

∑n
j=1 x

∗
ij(t) = pi(t), namely, there

is no production excess,

(f) if
∑n

j=1 x
∗
ij(t) < pi(t), as a consequence of (2.24) we get μ∗

i (t) = 0 and, for the
condition (2.21), ρ∗ij(t)+ν

∗
j (t)−λ∗ij(t) = ∂vi(t, x∗(t))/∂xij , namely, ρ∗ij(t)+ν

∗
j (t)−λ∗ij(t)

is equal to the marginal profit,

(g) if ν∗j (t) > 0 then, for the condition (2.25), it results
∑m

i=1 x
∗
ij(t) = qj(t), namely, there

is no demand excess,

(h) if
∑m

i=1 x
∗
ij(t) < qj(t), as a consequence of (2.25) we obtain ν∗j (t) = 0 and, for the

condition (2.21), ρ∗ij(t)+μ
∗
i (t)−λ∗ij(t) = ∂vi(t, x∗(t))/∂xij , namely, ρ∗ij(t)+μ

∗
i (t)−λ∗ij(t)

is equal to the marginal profit.

It is worthy to underline that in Definition 2.3, even if in (2.21)–(2.25) the unknown
Lagrange variables λ∗ij , ρ

∗
ij , μ

∗
i , ν

∗
j appear, they do not influence the equilibrium definition

because the following equivalent condition in terms of evolutionary variational inequality
holds.

Theorem 2.4. x∗ ∈ K is a dynamic oligopolistic market equilibrium in presence of excesses according
to Definition 2.3 if and only if it satisfies the evolutionary variational inequality:

∫T

0
−

m∑

i=1

n∑

j=1

∂vi(t, x∗(t))
∂xij

(
xij(t) − x∗

ij(t)
)
dt ≥ 0, ∀x ∈ K. (2.26)

Taking into account Theorems 2.2 and 2.4, the equivalence between Definitions 2.1 and
2.3 is proved.

Finally, we observe that also in the case in which the production is bounded and we
are in presence of excesses, the meaning of Cournot-Nash equilibrium does not change.

3. Lagrange Theory

Let us present the infinite dimensional Lagrange duality theory which represents an
important and very recent achievement (see [16–18]). At first, we remember some definitions
and then we give some duality results (see [15–17]).

Let X denote a real normed space, let X∗ be the topological dual of all continuous
linear functionals on X, and let C be a subset of X. Given an element x ∈ Cl(C), the set:

TC(x) =
{
h ∈ X : h = lim

n→∞
λn(xn − x), λn > 0, xn ∈ C, ∀n ∈ N, lim

n→∞
xn = x

}
(3.1)

is called the tangent cone to C at x.
If C is convex, we have (see [23]):

TC(x) = Cl(Cone(C − {x})), (3.2)

where Cone(C) = {λx : x ∈ C, λ ≥ 0}.
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Following Borwein and Lewis [14], we give the following definition of quasi-relative
interior for a convex set.

Definition 3.1. Let C be a convex subset of X. The quasi-relative interior of C, denoted by
qri C, is the set of those x ∈ C for which TC(x) is a linear subspace of X.

If we define the normal cone to C at x as the set:

NC(x) =
{
ξ ∈ X∗ :

〈
ξ, y − x

〉 ≤ 0, ∀y ∈ C
}
, (3.3)

the following result holds.

Proposition 3.2. Let C be a convex subset of X and x ∈ C. Then x ∈ qri C if and only if NC(x) is a
linear subspace of X∗.

Using the notion of qri C, in [17], the following separation theorem is proved.

Theorem 3.3. Let C be a convex subset of X and x0 ∈ C \ qri C. Then, there exists ξ ∈ X∗, ξ /= θX∗ ,
such that

〈ξ, x〉 ≤ 〈ξ, x0〉, ∀x ∈ C. (3.4)

Vice versa, let one suppose that there exist ξ /= θX∗ and a point x0 ∈ X such that 〈ξ, x〉 ≤ 〈ξ, x0〉, for
all x ∈ C, and that Cl(TC(x0) − TC(x0)) = X. Then, x0 /∈ qri C.

Now, let us present the statement of the infinite dimensional duality theory.
Let X be a real linear topological space and S a nonempty convex subset of X; let

(Y, ‖ · ‖Y ) be a real normed space partially ordered by a convex cone C and let (Z, ‖ · ‖Z) be a
real normed space. Let f : S → R and g : S → Y be two convex functions and let h : S → Z
be an affine-linear function.

Let us consider the problem

min
x∈K

f(x), (3.5)

where K = {x ∈ S : g(x) ∈ −C, h(x) = θZ}, and the dual problem

max
u∈C∗
v∈Z∗

inf
x∈S
{
f(x) +

〈
u, g(x)

〉
+ 〈v, h(x)〉}, (3.6)

where C∗ = {u ∈ Y ∗ : 〈u, y〉 ≥ 0 ∀y ∈ C} is the dual cone of C.
We say that Assumption S is fulfilled at a point x0 ∈ K if and only if it results in

TM̃(0, θY , θZ) ∩ (]−∞, 0[ × {θY} × {θZ}) = ∅, (3.7)

where M̃ = {(f(x) − f(x0) + α, g(x) + y, h(x)) : x ∈ S \ K, α ≥ 0, y ∈ C}.

Remark 3.4. If (0, θY , θZ) /∈ Cl(M̃), then Assumption S holds, because TM̃(0, θY , θZ) = ∅.



Abstract and Applied Analysis 11

Remark 3.5. If Assumption S holds, TM̃(0, θY , θZ)/= ∅, and (l, θY , θZ) ∈ TM̃(0, θY , θZ), then l ≥ 0.

Remark 3.6. If Assumption S holds, then (0, θY , θZ) /∈ qri M̃.

The following theorem holds (see [16]).

Theorem 3.7. Under the above assumptions, if problem (3.5) is solvable and Assumption S is fulfilled
at the extremal solution x0 ∈ K, then also problem (3.6) is solvable, the extreme values of both problems
are equal, and if (x0, u, v) ∈ K × C∗ × Z∗ is the optimal point of problem (3.6), it results in:

〈
u, g(x0)

〉
= 0. (3.8)

Using Theorem 3.7, we are able to show the usual relationship between a saddle point
of the so-called Lagrange functional:

L(x, u, v) = f(x) +
〈
u, g(x)

〉
+ 〈v, h(x)〉, ∀x ∈ S, ∀u ∈ C∗, ∀v ∈ Z∗, (3.9)

and the solution of the constraint optimization problem (3.5) (see [16]).

Theorem 3.8. Let one assume that the assumptions of Theorem 3.7 are satisfied. Then, x0 ∈ K is a
minimal solution to problem (3.5) if and only if there exist u ∈ C∗ and v ∈ Z∗ such that (x0, u, v) is
a saddle point of the Lagrange functional (3.9), namely:

L(x0, u, v) ≤ L(x0, u, v) ≤ L(x, u, v), ∀x ∈ S, u ∈ C∗, v ∈ Z∗, (3.10)

and, moreover, it results in

〈
u, g(x0)

〉
= 0. (3.11)

4. Proof of Existence of Lagrange Variables

In this section, making use of the infinite dimensional Lagrange duality theory shown
in Section 3, we will prove that equilibrium conditions (2.21)–(2.25) can be equivalently
expressed by the evolutionary variational inequality (2.20). As a consequence, we determine
under assumptions (i), (ii), (iii) on the profit function v, the equivalence with dynamic
Cournot-Nash equilibrium conditions (2.18).

In order to prove Theorem 2.4, let us show some preliminary results. At first we recall
Lemma 3.7 in [13] for the capacity constraints of the commodity shipments.

Lemma 4.1. Let x∗ ∈ K be a solution to the variational inequality (2.20) and let one set

E−
ij =
{
t ∈ [0, T] : x∗

ij(t) = xij(t)
}
, ∀i = 1, . . . , m, ∀j = 1, . . . , n,

E0
ij =
{
t ∈ [0, T] : xij(t) < x∗

ij(t) < xij(t)
}
, ∀i = 1, . . . , m, ∀j = 1, . . . , n,

E+
ij =
{
t ∈ [0, T] : x∗

ij(t) = xij(t)
}
, ∀i = 1, . . . , m, ∀j = 1, . . . , n.

(4.1)
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Then, one has

∂vi

(
t, x(t)

)

∂xij
≤ 0, a.e. in E−

ij ,

∂vi(t, x∗(t))
∂xij

= 0, a.e. in E0
ij ,

∂vi(t, x(t))
∂xij

≥ 0, a.e. in E+
ij .

(4.2)

Now, we recall Lemma 4.1 in [1] that holds when production excesses occur.

Lemma 4.2. Let x∗ ∈ K be a solution to the variational inequality (2.20). Setting

I0i =

⎧
⎨

⎩t ∈ [0, T] :
n∑

j=1

x∗
ij(t) = pi(t)

⎫
⎬

⎭, i = 1, . . . , m,

γ∗i (t) = min

{
−∂vi(t, x∗(t))

∂xij
, j = 1, . . . , n

}
, a.e. in I0i , i = 1, . . . , m,

X0
i =

{
t ∈ I0i : −∂vi(t, x∗(t))

∂xij
> γ∗i (t)

}
, i = 1, . . . , m,

Y 0
i =

{
t ∈ I0i : −∂vi(t, x∗(t))

∂xij
= γ∗i (t)

}
, i = 1, . . . , m,

(4.3)

one has

(
−∂vi(t, x∗(t))

∂xij
− γ∗i (t)

)
x∗
ij(t) = 0, a.e. in I0i , ∀i = 1, . . . , m,

γ∗i (t) ≤ 0, a.e. in Y 0
i , ∀i = 1, . . . , m,

−∂vi(t, x∗(t))
∂xij

≥ 0, a.e. in X0
i , ∀j = 1, . . . , n.

(4.4)

With the same technique used for proving Lemma 4.2, we can obtain the following
analogous result that holds when demand excesses occur.

Lemma 4.3. Let x∗ ∈ K be a solution to the variational inequality (2.20). Setting

H0
j =

{
t ∈ [0, T] :

m∑

i=1

x∗
ij(t) = qj(t)

}
, j = 1, . . . , n,

η∗
j (t) = min

{
−∂vi(t, x∗(t))

∂xij
, i = 1, . . . , m

}
, a.e. in H0

j , j = 1, . . . , n,
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V 0
j =

{
t ∈ H0

j : −∂vi(t, x∗(t))
∂xij

> η∗
j (t)

}
, j = 1, . . . , n,

W0
j =

{
t ∈ H0

j : −∂vi(t, x∗(t))
∂xij

= η∗
j (t)

}
, j = 1, . . . , n,

(4.5)

one has

(
−∂vi(t, x∗(t))

∂xij
− η∗

j (t)

)
x∗
ij(t) = 0, a.e. in H0

j , j = 1, . . . , n, (4.6)

η∗
j (t) ≤ 0, a.e. in W0

j , ∀j = 1, . . . , n,

−∂vi(t, x∗(t))
∂xij

≥ 0, a.e. in V 0
j , ∀i = 1, . . . , m.

(4.7)

Now, we remember Lemma 4.2 in [1] that holds when production excesses occur.

Lemma 4.4. Let x∗ ∈ K be a solution to the variational inequality (2.20). Setting

I−i =

⎧
⎨

⎩t ∈ [0, T] :
n∑

j=1

x∗
ij(t) − pi(t) < 0

⎫
⎬

⎭, i = 1, . . . , m, (4.8)

one has

−∂vi(t, x∗(t))
∂xij

= 0, a.e. in I−i , ∀ i = 1, . . . , m. (4.9)

Finally, by proceeding as in Lemma 4.4 we can prove the following analogous result
that holds when demand excesses occur.

Lemma 4.5. Let x∗ ∈ K be a solution to the variational inequality (2.20). Setting

H−
j =

{
t ∈ [0, T] :

m∑

i=1

x∗
ij(t) − qj(t) < 0

}
, j = 1, . . . , n, (4.10)

one has

−∂vi(t, x∗(t))
∂xij

= 0, a.e. in H−
j , ∀j = 1, . . . , n. (4.11)

Now we are able to prove Theorem 2.4.
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Proof of Theorem 2.4. Let us assume that x∗ ∈ K is an equilibrium solution according to
Definition 2.3. Then, taking into account that λ∗ij(t)(xij(t)−x∗

ij(t)) = 0 and ρ∗ij(t)(x
∗
ij(t)−xij(t)) =

0, a.e. in [0, T], we have for every x ∈ K, a.e. in [0, T],

−∂vi(t, x∗(t))
∂xij

(
xij(t) − x∗

ij(t)
)
= −ρ∗ij(t)

(
xij(t) − x∗

ij(t)
)
− μ∗

i (t)
(
xij(t) − x∗

ij(t)
)

− ν∗j (t)
(
xij(t) − x∗

ij(t)
)
+ λ∗ij(t)

(
xij(t) − x∗

ij(t)
)

= −ρ∗ij(t)
(
xij(t) − xij(t)

) − μ∗
i (t)
(
xij(t) − x∗

ij(t)
)

− ν∗j (t)
(
xij(t) − x∗

ij(t)
)
+ λ∗ij(t)

(
xij(t) − xij(t)

)

≥ −μ∗
i (t)
(
xij(t) − x∗

ij(t)
)
− ν∗j (t)

(
xij(t) − x∗

ij(t)
)
,

(4.12)

and, as a consequence, by summing over i = 1, . . . , m and j = 1, . . . , n, integrating on [0, T]
and using the conditions (2.24) and (2.25), it results, for each x ∈ K

∫T

0

m∑

i=1

n∑

j=1

− ∂vi(t, x∗(t))
∂xij

(
xij(t) − x∗

ij(t)
)
dt

≥ −
m∑

i=1

∫T

0
μ∗
i (t)

⎛

⎝
n∑

j=1

xij(t) −
n∑

j=1

x∗
ij(t) + pi(t) − pi(t)

⎞

⎠dt

−
n∑

j=1

∫T

0
ν∗j (t)

(
m∑

i=1

xij(t) −
m∑

i=1

x∗
ij(t) + qj(t) − qj(t)

)
dt

= −
m∑

i=1

∫T

0
μ∗
i (t)

⎛

⎝
n∑

j=1

xij(t) − pi(t)

⎞

⎠dt

−
n∑

j=1

∫T

0
ν∗j (t)

(
m∑

i=1

xij(t) − qj(t)

)
dt ≥ 0.

(4.13)

Hence, we obtain (2.20).
Vice versa, let x∗ ∈ K be a solution to (2.20) and let us apply the infinite dimensional

duality theory. First of all, let us prove that the Assumption S is fulfilled.
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Let us set, for x ∈ L2([0, T],Rmn),

Ψ(x) =
∫T

0

m∑

i=1

n∑

j=1

− ∂vi(t, x∗(t))
∂xij

(
xij(t) − x∗

ij(t)
)
dt,

M̃ =

⎧
⎨

⎩

⎛

⎝Ψ(x) + α,−x + x + y, x − x + u,
n∑

j=1

xij − pi + vi,
m∑

i=1

xij − qj + zj

⎞

⎠ :

i = 1, . . . , m, j = 1, . . . , n, α ≥ 0, x ∈ L2([0, T],Rmn
+ ) \ K,

y, u ∈ L2([0, T],Rmn
+ ), v ∈ L2([0, T],Rm

+ ), z ∈ L2([0, T],Rn
+)

⎫
⎬

⎭,

(4.14)

we must show that if (l, θL2([0,T],Rmn
+ ), θL2([0,T],Rmn

+ ), θL2([0,T],Rm
+ ), θL2([0,T],Rn

+)) belongs to
TM̃(0, θL2([0,T],Rmn

+ ), θL2([0,T],Rmn
+ ), θL2([0,T],Rm

+ ), θL2([0,T],Rn
+)), namely:

lim
n→+∞

λn(Ψ(xn) + αn) = l,

lim
n→+∞

λn
(−xn + x + yn) = θL2([0,T],Rmn

+ ),

lim
n→+∞

λn(xn − x + un) = θL2([0,T],Rmn
+ ),

lim
n→+∞

λn

⎛

⎝
n∑

j=1

xn
ij − pi + vn

i

⎞

⎠ = θL2([0,T],R+), ∀i = 1, . . . , m,

lim
n→+∞

λn

(
m∑

i=1

xn
ij − qj + znj

)
= θL2([0,T],R+), ∀j = 1, . . . , n,

(4.15)

with λn ≥ 0, xn ∈ L2([0, T],Rmn
+ ) \ K, αn ≥ 0, yn, un ∈ L2([0, T],Rmn

+ ), vn ∈ L2([0, T],Rm
+ ),

zn ∈ L2([0, T],Rn
+), for all n ∈ N, and

lim
n→+∞

(Ψ(xn) + αn) = 0,

lim
n→+∞

(−xn + x + yn) = θL2([0,T],Rmn
+ ),

lim
n→+∞

(xn + x + un) = θL2([0,T],Rmn
+ ),

lim
n→+∞

⎛

⎝
n∑

j=1

xn
ij − pi + vn

i

⎞

⎠ = θL2([0,T],R+), ∀i = 1, . . . , m,

lim
n→+∞

(
m∑

i=1

xn
ij − qj + znj

)
= θL2([0,T],R+), ∀j = 1, . . . , n,

(4.16)

then l is nonnegative.



16 Abstract and Applied Analysis

Let us set

E−
ij =
{
t ∈ [0, T] : x∗

ij(t) = xij(t)
}
, i = 1, . . . , m, j = 1, . . . , n,

E0
ij =
{
t ∈ [0, T] : xij(t) < x∗

ij(t) < xij(t)
}
, i = 1, . . . , m, j = 1, . . . , n,

E+
ij =
{
t ∈ [0, T] : x∗

ij(t) = xij(t)
}
, i = 1, . . . , m, j = 1, . . . , n,

I0i =

⎧
⎨

⎩t ∈ [0, T] :
n∑

j=1

x∗
ij(t) = pi(t)

⎫
⎬

⎭, i = 1, . . . , m,

H0
j =

{
t ∈ [0, T] :

m∑

i=1

x∗
ij(t) = qj(t)

}
, j = 1, . . . , n,

I−i =

⎧
⎨

⎩t ∈ [0, T] :
n∑

j=1

x∗
ij(t) − pi(t) < 0

⎫
⎬

⎭, i = 1, . . . , m,

H−
j =

{
t ∈ [0, T] :

m∑

i=1

x∗
ij(t) − qj(t) < 0

}
, j = 1, . . . , n,

γ∗i (t) = min

{
−∂vi(t, x∗(t))

∂xij
, j = 1, . . . , n

}
, t ∈ I0i , i = 1, . . . , m,

η∗
j (t) = min

{
−∂vi(t, x∗(t))

∂xij
, i = 1, . . . , m

}
, t ∈ H0

j , j = 1, . . . , n,

X0
i =

{
t ∈ I0i : −∂vi(t, x∗(t))

∂xij
> γ∗i (t)

}
, i = 1, . . . , m,

Y 0
i =

{
t ∈ I0i : −∂vi(t, x∗(t))

∂xij
= γ∗i (t)

}
, i = 1, . . . , m,

V 0
j =

{
t ∈ H0

j : −∂vi(t, x∗(t))
∂xij

> η∗
j (t)

}
, j = 1, . . . , n,

W0
j =

{
t ∈ H0

j : −∂vi(t, x∗(t))
∂xij

= η∗
j (t)

}
, j = 1, . . . , n.

(4.17)

Before starting with the proof let us observe the following:

[0, T] = I0i ∪
(
H0

j \ I0i
)
∪
(
I−i ∩H−

j

)
, ∀i = 1, . . . , m, ∀j = 1, . . . , n, (4.18)

and also

[0, T] = E−
ij ∪ E0

ij ∪ E+
ij , ∀i = 1, . . . , m, ∀j = 1, . . . , n. (4.19)
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Moreover,

E−
ij = E−

ij ∩
[
I0i ∪

(
H0

j \ I0i
)
∪
(
I−i ∩H−

j

)]

=
(
E−
ij ∩ I0i

)
∪
[
E−
ij ∩
(
H0

j \ I0i
)]

∪
[
E−
ij ∩
(
I−i ∩H−

j

)]

=
(
E−
ij ∩X0

i

)
∪
(
E−
ij ∩ Y 0

i

)
∪
[
E−
ij ∩
(
V 0
j \ I0i

)]

∪
[
E−
ij ∩
(
W0

j \ I0i
)]

∪
[
E−
ij ∩
(
I−i ∩H−

j

)]
, ∀i = 1, . . . , m, ∀j = 1, . . . , n,

(4.20)

and, analogously,

E0
ij =
(
E0
ij ∩X0

i

)
∪
(
E0
ij ∩ Y 0

i

)
∪
[
E0
ij ∩
(
V 0
j \ I0i

)]
∪
[
E0
ij ∩
(
W0

j \ I0i
)]

∪
[
E0
ij ∩
(
I−i ∩H−

j

)]
, ∀i = 1, . . . , m, ∀j = 1, . . . , n,

E+
ij =
(
E+
ij ∩X0

i

)
∪
(
E+
ij ∩ Y 0

i

)
∪
[
E+
ij ∩
(
V 0
j \ I0i

)]

∪
[
E+
ij ∩
(
W0

j \ I0i
)]

∪
[
E+
ij ∩
(
I−i ∩H−

j

)]
, ∀i = 1, . . . , m, ∀j = 1, . . . , n.

(4.21)

Now we observe that, for Lemmas 4.1, 4.2, 4.3, 4.4, and 4.5, we get

−∂vi(t, x∗(t))
∂xij

= 0, a.e. in E0
ij , ∀i = 1, . . . , m, ∀j = 1, . . . , n,

−∂vi

(
t, x(t)

)

∂xij
≥ 0, a.e. in E−

ij ∩X0
i , ∀i = 1, . . . , m, ∀j = 1, . . . , n,

−∂vi

(
t, x(t)

)

∂xij
= γ∗i (t) = 0, a.e. in E−

ij ∩ Y 0
i , ∀i = 1, . . . , m, ∀j = 1, . . . , n,

−∂vi

(
t, x(t)

)

∂xij
≥ 0, a.e. in E−

ij ∩
(
V 0
j \ I0i

)
, ∀i = 1, . . . , m, ∀j = 1, . . . , n,

−∂vi

(
t, x(t)

)

∂xij
= η∗

j (t) = 0, a.e. in E−
ij ∩
(
W0

j \ I0i
)
, ∀i = 1, . . . , m, ∀j = 1, . . . , n,

−∂vi

(
t, x(t)

)

∂xij
= 0, a.e. in E−

ij ∩
(
I−i ∩H−

j

)
, ∀i = 1, . . . , m, ∀j = 1, . . . , n,

−∂vi(t, x(t))
∂xij

= 0, a.e. in E+
ij ∩X0

i , ∀i = 1, . . . , m, ∀j = 1, . . . , n,
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−∂vi(t, x(t))
∂xij

= γ∗i (t) ≤ 0, a.e. in E+
ij ∩ Y 0

i , ∀i = 1, . . . , m, ∀j = 1, . . . , n,

−∂vi(t, x(t))
∂xij

= 0, a.e. in E+
ij ∩
(
V 0
j \ I0i

)
, ∀i = 1, . . . , m, ∀j = 1, . . . , n,

−∂vi(t, x(t))
∂xij

= η∗
j (t) ≤ 0, a.e. in E+

ij ∩
(
W0

j \ I0i
)
, ∀i = 1, . . . , m, ∀j = 1, . . . , n,

−∂vi(t, x(t))
∂xij

= 0, a.e. in E+
ij ∩
(
I−i ∩H−

j

)
, ∀i = 1, . . . , m, ∀j = 1, . . . , n.

(4.22)

As a consequence, we have

l = lim
n→+∞

λn(Ψ(xn) + αn)

= lim
n→+∞

λn

⎛

⎝
∫T

0

m∑

i=1

n∑

j=1

− ∂vi(t, x∗(t))
∂xij

(
xn
ij(t) − x∗

ij(t)
)
dt + αn

⎞

⎠

≥ lim
n→+∞

λn

⎛

⎝
∫

E−
ij

m∑

i=1

n∑

j=1

− ∂vi(t, x∗(t))
∂xij

(
xn
ij(t) − xij(t)

)
dt

+
∫

E0
ij

m∑

i=1

n∑

j=1

− ∂vi(t, x∗(t))
∂xij

(
xn
ij(t) − x∗

ij(t)
)
dt

+
∫

E+
ij

m∑

i=1

n∑

j=1

− ∂vi(t, x∗(t))
∂xij

(
xn
ij(t) − xij(t)

)
dt

⎞

⎠.

(4.23)

We note that

lim
n→+∞

λn

∫

E0
ij

m∑

i=1

n∑

j=1

− ∂vi(t, x∗(t))
∂xij

(
xn
ij(t) − x∗

ij(t)
)
dt = 0 (4.24)

being −∂vi(t, x∗(t))/∂xij = 0, a.e. in E0
ij , for all i = 1, . . . , m, for all j = 1, . . . , n. We will prove

that

lim
n→+∞

λn

∫

E−
ij

m∑

i=1

n∑

j=1

− ∂vi

(
t, x(t)

)

∂xij

(
xn
ij(t) − xij(t)

)
dt ≥ 0,

lim
n→+∞

λn

∫

E+
ij

m∑

i=1

n∑

j=1

− ∂vi(t, x(t))
∂xij

(
xn
ij(t) − xij(t)

)
dt ≥ 0.

(4.25)
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In fact, it results in

λn

∫

E−
ij

m∑

i=1

n∑

j=1

− ∂vi

(
t, x(t)

)

∂xij

(
xn
ij(t) − xij(t)

)
dt

= λn

∫

E−
ij∩X0

i

m∑

i=1

n∑

j=1

− ∂vi

(
t, x(t)

)

∂xij

(
xn
ij(t) − xij(t)

)
dt

+ λn

∫

E−
ij∩Y 0

i

m∑

i=1

n∑

j=1

− ∂vi

(
t, x(t)

)

∂xij

(
xn
ij(t) − xij(t)

)
dt

+ λn

∫

E−
ij∩
(
V 0
j \I0i

)

m∑

i=1

n∑

j=1

− ∂vi

(
t, x(t)

)

∂xij

(
xn
ij(t) − xij(t)

)
dt

+ λn

∫

E−
ij∩
(
W0

j \I0i
)

m∑

i=1

n∑

j=1

− ∂vi

(
t, x(t)

)

∂xij

(
xn
ij(t) − xij(t)

)
dt

+ λn

∫

E−
ij∩I−i ∩H−

j

m∑

i=1

n∑

j=1

− ∂vi

(
t, x(t)

)

∂xn
ij

(
xn
ij(t) − xij(t)

)
dt

= λn

∫

E−
ij∩X0

i

m∑

i=1

n∑

j=1

− ∂vi

(
t, x(t)

)

∂xij
xn
ij(t)dt

+ λn

∫

E−
ij∩
(
V 0
j \I0i

)

m∑

i=1

n∑

j=1

− ∂vi

(
t, x(t)

)

∂xij
xn
ij(t)dt.

(4.26)

By virtue of the previous remarks, conditions (4.4) and (4.6), Lemmas 4.1, 4.2, 4.3, 4.4, and
4.5, for the conditions of belonging to the tangent cone, we get the first inequality of (4.25)
and, with analogous considerations, we get the second inequality of (4.25).

Therefore, thanks to (4.25) and (4.24), we have that

l = lim
n→+∞

λn(Ψ(xn) + αn)

= lim
n→+∞

λn

⎛

⎝
∫T

0

m∑

i=1

n∑

j=1

− ∂vi(t, x∗(t))
∂xij

(
xn
ij(t) − x∗

ij(t)
)
dt + αn

⎞

⎠
(4.27)

is nonnegative.
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Taking into account Theorems 3.7 and 3.8, if we consider the Lagrange function,

L(x, λ, ρ, μ, ν) = Ψ(x) −
m∑

i=1

n∑

j=1

∫T

0
λij(t)

(
xij(t) − xij(t)

)
dt

+
m∑

i=1

n∑

j=1

∫T

0
ρij(t)

(
xij(t) − xij(t)

)
dt

+
m∑

i=1

∫T

0
μi(t)

⎛

⎝
n∑

j=1

xij(t) − pi(t)

⎞

⎠dt

+
n∑

j=1

∫T

0
νj(t)

(
m∑

i=1

xij(t) − qj(t)

)
dt,

(4.28)

we have that there exist λ∗, ρ∗ ∈ L2([0, T],Rmn
+ ), μ∗ ∈ L2([0, T],Rm

+ ), ν
∗ ∈ L2([0, T],Rn

+), such
that

L(x∗, λ, ρ, μ, ν
) ≤ L(x∗, λ∗, ρ∗, μ∗, ν∗

) ≤ L(x, λ∗, ρ∗, μ∗, ν∗
)
, (4.29)

for all x ∈ L2([0, T],Rmn
+ ), λ, ρ ∈ L2([0, T],Rmn

+ ), μ ∈ L2([0, T],Rm
+ ), ν ∈ L2([0, T],Rn

+), and,
moreover,

λ∗ij(t)
(
xij(t) − x∗

ij(t)
)
= 0, ∀i = 1, . . . , m, ∀j = 1, . . . , n,

ρ∗ij(t)
(
x∗
ij(t) − xij(t)

)
= 0, ∀i = 1, . . . , m , ∀j = 1, . . . , n,

μ∗
i (t)

⎛

⎝
n∑

j=1

x∗
ij(t) − pi(t)

⎞

⎠ = 0, ∀i = 1, . . . , m,

ν∗j (t)

(
m∑

i=1

x∗
ij(t) − qj(t)

)
= 0, ∀j = 1, . . . , n.

(4.30)
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Then, for conditions (4.30), L(x∗, λ∗, ρ∗, μ∗, ν∗) = 0, and by virtue of the right-hand side of
(4.29) and the equalities (4.30), we get

L(x, λ∗, ρ∗, μ∗, ν∗
)
=

m∑

i=1

n∑

j=1

∫T

0
−∂vi(t, x∗(t))

∂xij

(
xij(t) − x∗

ij(t)
)
dt

−
m∑

i=1

n∑

j=1

∫T

0
λ∗ij(t)

(
xij(t) − x∗

ij(t)
)
dt

+
m∑

i=1

n∑

j=1

∫T

0
ρ∗ij(t)

(
xij(t) − x∗

ij(t)
)
dt

+
m∑

i=1

n∑

j=1

∫T

0
μ∗
i (t)
(
xij(t) − x∗

ij(t)
)
dt

+
n∑

j=1

m∑

i=1

∫T

0
ν∗j (t)

(
xij(t) − x∗

ij(t)
)
dt

≥ L(x∗, λ∗, ρ∗, μ∗, ν∗
)
= 0, ∀x ∈ L2([0, T],Rmn

+ ).

(4.31)

Then, L(x, λ∗, ρ∗, μ∗, ν∗) has a minimal point in x∗.
Let us assume that x1

ij = x∗
ij + εij and x2

ij = x∗
ij − εij , for all ε ∈ L2([0, T],Rmn

+ ). Let us
note that

L
(
x1, λ∗, ρ∗, μ∗, ν∗

)

=
m∑

i=1

n∑

j=1

∫T

0

(
−∂vi(t, x∗(t))

∂xij
− λ∗ij(t) + ρ∗ij(t) + μ∗

i (t) + ν∗i (t)

)
εij(t)dt ≥ 0,

∀ε ∈ L2([0, T],Rmn
+ ),

L
(
x2, λ∗, ρ∗, μ∗, ν∗

)

= −
⎧
⎨

⎩

m∑

i=1

n∑

j=1

∫T

0

(
−∂vi(t, x∗(t))

∂xij
− λ∗ij(t) + ρ∗ij(t) + μ∗

i (t) + ν∗i (t)

)
εij(t)dt

⎫
⎬

⎭ ≥ 0,

∀ε ∈ L2([0, T],Rmn
+ ).

(4.32)

As a consequence, we have

m∑

I=1

n∑

j=1

∫T

0

(
−∂vi(t, x∗(t))

∂xij
− λ∗ij(t) + ρ∗ij(t) + μ∗

i (t) + ν∗i (t)

)
εij(t)dt = 0,

∀ε ∈ L2([0, T],Rmn
+ ),

(4.33)
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and, hence, we obtain the equilibrium conditions according to Definition 2.3, namely:

−∂vi(t, x∗(t))
∂xij

+ ρ∗ij(t) + μ∗
i (t) + ν∗j (t) = λ∗ij(t),

λ∗ij(t)
(
xij(t) − x∗

ij(t)
)
= 0, λ∗ij(t) ≥ 0,

ρ∗ij(t)
(
x∗
ij(t) − xij(t)

)
= 0, ρ∗ij(t) ≥ 0,

μ∗
i (t)

⎛

⎝
n∑

j=1

x∗
ij(t) − pi(t)

⎞

⎠ = 0, μ∗
i (t) ≥ 0,

ν∗j (t)

(
m∑

i=1

x∗
ij(t) − qj(t)

)
= 0, ν∗j (t) ≥ 0,

(4.34)

for all i = 1, . . . , m, j = 1, . . . , n, a.e. in [0, T].

5. Existence Results

This section is devoted to show some results for the existence of solutions to the dynamic
oligopolistic market equilibrium problem in presence of excesses.

Let us recall some definitions (see [24]). Let X be a reflexive Banach space, let K be a
subset of X, and let X∗ be the dual space of X.

Definition 5.1. A mapping A : K → X∗ is strongly monotone on K if and only if for all u,
v ∈ K, there exists ν > 0 such that 〈Au −Av, u − v〉 ≥ ν‖u − v‖2

K
.

Definition 5.2. A mapping A : K → X∗ is pseudomonotone in the sense of Karamardian
(K-pseudomonotone) if and only if for all u, v ∈ K,

〈Av, u − v〉 ≥ 0 =⇒ 〈Au, u − v〉 ≥ 0. (5.1)

Definition 5.3. A mapping A : K → X∗ is strictly pseudomonotone if and only if for all u,
v ∈ K, u/=v,

〈Av, u − v〉 ≥ 0 =⇒ 〈Au, u − v〉 > 0. (5.2)

Definition 5.4. A mapping A : K → X∗ is pseudomonotone in the sense of Brezis (B-
pseudomonotone) if and only if:

(1) for each sequence {un}weakly converging to u (in short un ⇀ u) in K and such that
lim supn〈Aun, un − v〉 ≤ 0 it results in

lim inf
n
〈Aun, un − v〉 ≥ 〈Au, u − v〉, ∀v ∈ K, (5.3)
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(2) for each v ∈ K the function u �→ 〈Au, u − v〉 is lower bounded on the bounded
subset of K.

Let, now, K be a convex subset of X.

Definition 5.5. A mapping A : K → X∗ is lower hemicontinuous along line segments, if and
only if the function ξ �→ 〈Aξ, u − v〉 is lower semicontinuous for all u, v ∈ K on the line
segments [u, v].

Definition 5.6. A mapping A : K → X∗ is hemicontinuous in the sense of Fan (F-
hemicontinuous) if and only if for all v ∈ K the function u �→ 〈Au, u − v〉 is weakly lower
semicontinuous on K.

Let us recall that in the Hilbert space L2([0, T],Rk)

� φ, y �=
∫T

0

〈
φ(t), y(t)

〉
dt, (5.4)

is its duality mapping, where φ ∈ (L2([0, T],Rk))∗ = L2([0, T],Rk) and y ∈ L2([0, T],Rk). We
are able to show the following existence result.

Theorem 5.7. Let one set

A =

[
−∂vi(x∗)

∂xij

]

i=1,...,m
j=1,...,n

,

A : L2([0, T],Rmn) −→ L2([0, T],Rmn),

u =
(
xij

)
i=1,...,m
j=1,...,n

,

K =

{
x ∈ L2([0, T],Rmn) :

xij(t) ≤ xij(t) ≤ xij(t), ∀i = 1, . . . , m, ∀ j = 1, . . . , n, a.e. in [0, T],

n∑

j=1

xij(t) ≤ pi(t), ∀i = 1, . . . , m, a.e. in [0, T],

m∑

i=1

xij(t) ≤ qj(t), ∀j = 1, . . . , n, a.e. in [0, T]

}
.

(5.5)

If A is B-pseudomonotone or F-hemicontinuous, or assuming that A is K-pseudomonotone and lower
hemicontinuous along line segments, then the variational inequality

� Ax∗, x − x∗ � ≥ 0, ∀x ∈ K, (5.6)

admits a solution.
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Proof. Let us note that K is clearly a nonempty, closed, convex, and bounded subset of
L2([0, T],Rmn), and, consequently, it is a weakly compact subset of L2([0, T],Rmn). Then, the
claim is achieved by applying Theorems 2.6 and 2.7 and Corollary 3.7 in [24].

6. Regularity Results

In the following, we want to establish conditions under which the solutions to the dynamic
oligopolistic market problemwith both production and demand excesses are continuouswith
respect to time.

6.1. Set Convergence

Let us remember the classical notion of convergence for subsets of a givenmetric space (X, d),
which was introduced in the 1950s by Kuratowski (see [25], see also [26, 27]).

Let {Kn}n∈N
be a sequence of subsets of X. Let us remember that

d − limnKn =
{
x ∈ X : ∃{xn}n∈N

eventually in Kn such that xn
d−→ x
}
,

d − limnKn =
{
x ∈ X : ∃{xn}n∈N

frequently in Kn such that xn
d−→ x
}
,

(6.1)

where eventually means that there exists δ ∈ N such that xn ∈ Kn for any n ≥ δ, and frequently
means that there exists an infinite subset N ⊆ N such that xn ∈ Kn for any n ∈ N (in this
last case, according to the notation given above, we also write that there exists a subsequence
{xkn}n∈N

⊆ {xn}n∈N
such that xkn ∈ Kkn).

Now, we are able to recall the Kuratowski’s convergence of sets.

Definition 6.1. We say that the sequence {Kn}n∈N
converges to some subset K ⊆ X in

Kuratowski’s sense, and we briefly writeKn → K, if and only if d−limnKn = d−limnKn = K.
Thus, in order to verify that Kn → K, it suffices to check that

(i) K ⊂ d − limnKn, that is, for any x ∈ K there exists a sequence {xn}n∈N
eventually in

Kn such that xn
d→ x,

(ii) d− limnKn ⊆ K, that is, for any sequence {xn}n∈N
frequently inKn such that xn

d→ x
for some x ∈ S, then x ∈ K.

We observe that the set convergence in Kuratowski’s sense can also be expressed as
follows.

Remark 6.2. Let (X, d) be a metric space andK a nonempty, closed, and convex subset ofX. A
sequence of nonempty, closed and convex setsKn ofX converges toK in Kuratowski’s sense,
as n → +∞, that is, Kn → K, if and only if

(K1) for any x ∈ K, there exists a sequence {xn}n∈N
converging to x ∈ X such that xn lies

in Kn for all n ∈ N,

(K2) for any subsequence {xn}n∈N
converging to x ∈ X such that xn lies in Kn, for all

n ∈ N, then the limit x belongs to K.



Abstract and Applied Analysis 25

The following lemma, that now we prove, assures that the feasible set K of the
dynamic oligopolistic market problem in the presence of both production and demand
excesses satisfies the property of the set convergence in Kuratowski’s sense.

Lemma 6.3. Let x, x ∈ C0([0, T],Rmn
+ ), p ∈ C0([0, T],Rm

+ ), q ∈ C0([0, T],Rn
+), and let {tk}k∈N

be
a sequence such that tk ∈ [0, T], for all k ∈ N, and tk → t, with t ∈ [0, T], as k → +∞. Then the
sequence of sets

K(tk) =

{
x(tk) ∈ R

mn : xij(tk) ≤ xij(tk) ≤ xij(tk), ∀i = 1, . . . , m, ∀j = 1, . . . , n,

n∑

j=1

xij(tk) ≤ pi(tk), ∀i = 1, . . . , m,

m∑

i=1

xij(tk) ≤ qj(tk), ∀j = 1, . . . , n

}

(6.2)

for all k ∈ N, converges to

K(t) =

{
x(t) ∈ R

mn : xij(t) ≤ xij(t) ≤ xij(t), ∀i = 1, . . . , m, ∀j = 1, . . . , n,

n∑

j=1

xij(t) ≤ pi(t), ∀i = 1, . . . , m,

m∑

i=1

xij(t) ≤ qj(t), ∀j = 1, . . . , n

}
,

(6.3)

as k → +∞, in Kuratowski’s sense.

Proof. In the first part, we prove the condition (K1). Let {tk}k∈N
be a sequence such that tk ∈

[0, T], for all k ∈ N, and tk → t, with t ∈ [0, T], as k → +∞. By virtue of the continuity of x,
x, p, q, it follows that x(tk) → x(t), x(tk) → x(t), p(tk) → p(t), q(tk) → q(t), as k → +∞,
respectively. Let x(t) ∈ K(t) be fixed and let us note that, for i = 1, . . . , m and j = 1, . . . , n, and
if

aij(tk) = xij(t) − xij(tk) +
mpi(tk) + nqj(tk)

mn
− mpi(t) + nqj(t)

mn
, (6.4)

it results in

lim
k→+∞

aij(tk) = xij(t) − xij(t) ≥ 0. (6.5)

As a consequence, there exists an index ν1 such that for k > ν1 we get

aij(tk) ≥ 0, ∀i = 1, . . . , m, ∀j = 1, . . . , n. (6.6)
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We remark

lim
k→+∞

⎡

⎣ 1
m

n∑

j=1

qj(tk) − 1
m

n∑

j=1

qj(t) − εi(t)

⎤

⎦ = −εi(t) ≤ 0, ∀i = 1, . . . , m, (6.7)

where ε is the production excess function. Then, there exists an index ν2 such that for k > ν2
we have

1
m

n∑

j=1

qj(tk) − 1
m

n∑

j=1

qj(t) − εi(t) ≤ 0, ∀i = 1, . . . , m. (6.8)

Moreover, we get

lim
k→+∞

[
1
n

m∑

i=1

pi(tk) − 1
n

m∑

i=1

pi(t) − δj(t)

]
= −δj(t) ≤ 0, ∀j = 1, . . . , n, (6.9)

where δ is the demand excess function. Hence, there exists an index ν3 such that for k > ν3
we have

1
n

m∑

i=1

pi(tk) − 1
n

m∑

i=1

pi(t) − δj(t) ≤ 0, ∀j = 1, . . . , n. (6.10)

As a consequence, we can consider a sequence {x(tk)}k∈N
such that:

(i) for k > ν = max{ν1, ν2, ν3}, for all i = 1, . . . , m, for all j = 1, . . . , n,

xij(tk) = xij(tk) +min
{
xij(t) − xij(t), xij(tk) − xij(tk), aij(tk)

}
, (6.11)

(ii) for k ≤ ν, for all i = 1, . . . , m, for all j = 1, . . . , n,

xij(tk) = PK(tk)xij(t), (6.12)

where PK(tk)(·) denotes the Hilbertian projection on K(tk).

Obviously if k ≤ ν, for (6.12) we get x(tk) ∈ K(tk). Instead, for k > ν, since for (6.6),
min{xij(t)−xij(t), xij(tk)−xij(tk), aij(tk)} ≥ 0, for all i = 1, . . . , m, for all j = 1, . . . , n, we obtain

xij(tk) ≤ xij(tk), ∀i = 1, . . . , m, ∀j = 1, . . . , n. (6.13)

Moreover, since min{xij(t) − xij(t), xij(tk) − xij(tk), aij(tk)} ≤ xij(tk) − xij(tk), for all i =
1, . . . , m, for all j = 1, . . . , n, we have

xij(tk) ≤ xij(tk), ∀i = 1, . . . , m, ∀j = 1, . . . , n. (6.14)
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Now, being

min
{
xij(t) − xij(t), xij(tk) − xij(tk), aij(tk)

}

≤ aij(tk)

= xij(t) − xij(tk) +
mpi(tk) + nqj(tk)

mn
− mpi(t) + nqj(t)

mn

∀i = 1, . . . , m, ∀j = 1, . . . , n,

(6.15)

it results in

xij(tk) ≤ xij(t) +
mpi(tk) + nqj(tk)

mn
− mpi(t) + nqj(t)

mn
, ∀i = 1, . . . , m, ∀j = 1, . . . , n. (6.16)

Then, taking into account (6.8), we get

n∑

j=1

xij(tk) ≤
n∑

j=1

xij(t) + pi(tk) +
1
m

n∑

j=1

qj(tk) − pi(t) − 1
m

n∑

j=1

qj(t)

≤
n∑

j=1

xij(t) + pi(tk) − pi(t) + εi(t)

=
n∑

j=1

xij(t) + pi(tk) −
n∑

j=1

xij(t) − εi(t) + εi(t)

= pi(tk), ∀i = 1, . . . , m,

(6.17)

and, making use of (6.10), we obtain

m∑

i=1

xij(tk) ≤
m∑

i=1

xij(t) +
1
n

m∑

i=1

pi(tk) + qj(tk) − 1
n

m∑

i=1

pi(t) + qj(t)

≤
m∑

i=1

xij(t) + qj(tk) − qj(t) + δj(t)

=
m∑

i=1

xij(t) + qj(tk) −
m∑

i=1

xij(t) − δj(t) + δj(t)

= qj(tk), ∀j = 1, . . . , n.

(6.18)
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Hence x(tk) ∈ K(tk), for all k ∈ N, and it results in

lim
k→+∞

xij(tk) = xij(t) +min
{
xij(t) − xij(t), xij(t) − xij(t), xij(t) − xij(t)

}

= xij(t) + xij(t) − xij(t)

= xij(t).

(6.19)

Then, the proof of the condition (K1) is completed.
Now let us prove condition (K2). Let {tk}k∈N

be a sequence such that tk ∈ [0, T], for
all k ∈ N, and tk → t, with t ∈ [0, T], as k → +∞. Let {x(tk)}k∈N

be a sequence, such that
x(tk) ∈ K(tk), for all k ∈ N, and converging to x(t), as k → +∞. We need to prove that
x(t) ∈ K(t).

Since x(tk) ∈ K(tk), for all k ∈ N, it results in

xij(tk) ≤ xij(tk) ≤ xij(tk), ∀i = 1, . . . , m, ∀j = 1, . . . , n, ∀k ∈ N,

n∑

j=1

xij(tk) ≤ pi(tk), ∀i = 1, . . . , m, ∀k ∈ N,

m∑

i=1

xij(tk) ≤ qj(tk), ∀j = 1, . . . , n, ∀k ∈ N.

(6.20)

Passing to the limit as n → +∞ and taking into account the continuity assumption on the
functions x, x, p, q, we obtain

xij(t) ≤ xij(t) ≤ xij(t), ∀i = 1, . . . , m, ∀j = 1, . . . , n,

n∑

j=1

xij(t) ≤ pi(t), ∀i = 1, . . . , m,

n∑

i=1

xij(t) ≤ qj(t), ∀j = 1, . . . , n.

(6.21)

As a consequence x(t) ∈ K(t), and, hence, the condition (K2) is achieved.

6.2. Continuity Theorems for Equilibrium Solutions

In order to show the continuity result for the dynamic oligopolistic market equilibrium
solution in presence of both production and demand excesses, we present the following result
(see e.g., [2, Corollary 3.1]).
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Figure 1: Network structure of the numerical dynamic spatial oligopoly problem.

Proposition 6.4. The evolutionary variational inequality (2.20) is equivalent to the point-to-point
variational inequality:

m∑

i=1

n∑

j=1

− ∂vi(t, x∗(t))
∂xij

(
xij(t) − x∗

ij(t)
)
≥ 0, ∀x(t) ∈ K(t), a.e. in [0, T], (6.22)

where

K(t) =

{
x(t) ∈ R

mn : xij(t) ≤ xij(t) ≤ xij(t) , ∀i = 1, . . . , m , ∀j = 1, . . . , n,

n∑

j=1

xij(t) ≤ pi(t), ∀i = 1, . . . , m,

m∑

i=1

xij(t) ≤ qj(t), ∀j = 1, . . . , n

}
.

(6.23)

The continuity of solutions to evolutionary variational inequalities with respect to
time under the only assumption of continuity on the data has been proved in several papers
(see for instance [8–12]). Now, in our case, by applying Theorem 4.2 in [12] and taking into
account Lemma 6.3, we obtain the following result.

Theorem 6.5. Let one assume that the production function p, the demand function q, and the capacity
constraints x and x are continuous on [0, T]. Moreover, let one assume that the function −∇Dv is
a strictly pseudomonotone and continuous on [0, T]. Then the unique dynamic market equilibrium
distribution in presence of both production and demand excesses x∗ ∈ K is continuous on [0, T].

7. Numerical Example

Let us present a numerical example about the dynamic oligopolistic market equilibrium
problem in presence of both production and demand excesses.
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Let us consider four firms and four demand markets, as in Figure 1. Let x, x ∈
L2([0, 1],R16

+ ) be the capacity constraints such that, a.e. in [0, 1],

x(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
t 0

1
100

t
1
2
t

t
1
4
t 0

1
10

t

3
100

t
1
4
t

1
10

t
1
4
t

4
7
t

2
7
t

1
10

t 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

x(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t 2t t 4t

2t
3
2
t

10
11

t
5
6
t

t
3
4
t 3t

3
4
t

6
7
t

6
7
t

3
7
t

1
2
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7.1)

Let p ∈ L2([0, 1],R4
+) be the production function such that, a.e. in [0, 1],

p(t) =

⎛
⎜⎜⎜⎜⎜⎝

5t

7t

9t

11t

⎞
⎟⎟⎟⎟⎟⎠

, (7.2)

and let q ∈ L2([0, 1],R4
+) be the demand function such that, a.e. in [0, 1],

q(t) =

⎛
⎜⎜⎜⎜⎜⎝

6t

8t

10t

12t

⎞
⎟⎟⎟⎟⎟⎠

. (7.3)
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As a consequence, the feasible set is

K =

{
x ∈ L2

(
[0, 1],R16

+

)
:

xij(t) ≤ xij(t) ≤ xij(t), ∀i = 1, . . . , 4, ∀j = 1, . . . , 4, a.e. in [0, 1],

4∑

j=1

xij(t) ≤ pi(t), ∀i = 1, . . . , 4, a.e. in [0, 1],

4∑

i=1

xij(t) ≤ qj(t), ∀j = 1, . . . , 4, a.e. in [0, 1]

}
.

(7.4)

Let us consider the profit function v ∈ L2([0, 1] × L2([0, 1],R4 × 4
+ ),R4) defined by

v1(t, x(t)) = −4x2
11(t) − 6x2

12(t) − 2x2
13(t) − 4x2

14(t) − 2x11(t)x13(t) − 2x12(t)x14(t)

+ 3tx11(t) + 6tx12(t) + tx13(t) + 5tx14(t),

v2(t, x(t)) = −2x2
21(t) − 5x2

22(t) − 6x2
23(t) − 2x2

24(t) − 2x21(t)x23(t) − 2x22(t)x31(t)

− 2x24(t)x33(t) + 6tx21(t) + 5tx22(t) + 4tx23(t) + tx24(t),

v3(t, x(t)) = −3x2
31(t) − 4x2

32(t) − 2x2
33(t) − 2x2

34(t) − 2x22(t)x31(t) − 2x24(t)x33(t)

− 2x32(t)x34(t) + 2tx31(t) + 5tx32(t) + tx33(t) + 3tx34(t),

v4(t, x(t)) = −4x2
41(t) − 4x2

42(t) − 2x2
43(t) − 2x2

44(t) − 2x41(t)x43(t) − 2x42(t)x44(t)

+ 6tx41(t) + 5tx42(t) + 2tx43(t) + 2tx44(t).

(7.5)

Then, the operator ∇Dv ∈ L2([0, 1] × L2([0, 1],R4 × 4
+ ),R4 × 4) is given by

∇Dv(t, x(t))

=

⎛
⎜⎜⎜⎜⎜⎝

−8x11(t)−2x13(t)+3t −12x12(t)−2x14(t)+6t −4x13(t)−2x11(t) +t −8x14(t)−2x12(t)+5t

−4x21(t)−2x23(t)+6t −10x22(t)−2x31(t)+5t −12x23(t)−2x21(t) +4t −4x24(t)−2x33(t)+t

−6x31(t)−2x22(t)+2t −8x32(t)−2x34(t)+5t −4x33(t)−2x24(t) +t −4x34(t)−2x32(t)+3t

−8x41(t)−2x43(t)+6t −8x42(t)−2x44(t)+5t −4x43(t)−2x41(t) +2t −4x44(t)−2x42(t)+2t

⎞
⎟⎟⎟⎟⎟⎠

.

(7.6)
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Now, we verify that −∇Dv is a strongly monotone operator, in fact

〈−∇Dv(x) +∇Dv
(
y
)
, x − y

〉
=
{
8
[
x11 − y11

]
+ 2
[
x13 − y13

]}[
x11 − y11

]

+
{
12
[
x12 − y12

]
+ 2
[
x14 − y14

]}[
x12 − y12

]

+
{
4
[
x13 − y13

]
+ 2
[
x11 − y11

]}[
x13 − y13

]

+
{
8
[
x14 − y14

]
+ 2
[
x12 − y12

]}[
x14 − y14

]

+
{
4
[
x21 − y21

]
+ 2
[
x23 − y23

]}[
x21 − y21

]

+
{
10
[
x22 − y22

]
+ 2
[
x31 − y31

]}[
x22 − y22

]

+
{
12
[
x23 − y23

]
+ 2
(
x21 − y21

]}[
x23 − y23

]

+
{
4
[
x24 − y24

]
+ 2
[
x33 − y33

]}[
x24 − y24

]

+
{
6
[
x31 − y31

]
+ 2
[
x22 − y22

]}[
x31 − y31

]

+
{
8
[
x32 − y32

]
+ 2
[
x34 − y34

]}[
x32 − y32

]

+
{
4
[
x33 − y33

]
+ 2
[
x24 − y24

]}[
x33 − y33

]

+
{
4
[
x34 − y34

]
+ 2
[
x32 − y32

]}[
x34 − y34

]

+
{
8
[
x41 − y41

]
+ 2
[
x43 − y43

]}[
x41 − y41

]

+
{
8
[
x42 − y42

]
+ 2
[
x44 − y44

]}[
x42 − y42

]

+
{
4
[
x43 − y43

]
+ 2
[
x41 − y41

]}[
x43 − y43

]

+
{
4
[
x44 − y44

]
+ 2
[
x42 − y42

]}[
x44 − y44

]

≥ 3
∥∥x − y

∥∥2
4 × 4.

(7.7)

The dynamic oligopolistic market equilibrium distribution in presence of excesses is the solu-
tion to the evolutionary variational inequality:

∫1

0

4∑

i=1

4∑

j=1

− ∂vi(t, x∗(t))
∂xij

(
xij(t) − x∗

ij(t)
)
dt ≥ 0, ∀x ∈ K. (7.8)

In order to compute the solution to (7.8) we make use of the direct method (see [28–
30]). We consider the following system:

8x∗
11(t) + 2x∗

13(t) − 3t = 0, 12x∗
12(t) + 2x∗

14(t) − 6t = 0, 4x∗
13(t) + 2x∗

11(t) − t = 0,

8x∗
14(t) + 2x∗

12(t) − 5t = 0, 4x∗
21(t) + 2x∗

23(t) − 6t = 0, 10x∗
22(t) + 2x∗

31(t) − 5t = 0,

12x∗
23(t) + 2x∗

21(t) − 4t = 0, 4x∗
24(t) + 2x∗

33(t) − t = 0, 6x∗
31(t) + 2x∗

22(t) − 2t = 0,

8x∗
32(t) + 2x∗

34(t) − 5t = 0, 4x∗
33(t) + 2x∗

24(t) − t = 0, 4x∗
34(t) + 2x∗

32(t) − 3t = 0,

8x∗
41(t) + 2x∗

43(t) − 6t = 0, 8x∗
42(t) + 2x∗

44(t) − 5t = 0, 4x∗
43(t) + 2x∗

41(t) − 2t = 0,
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4x∗
44(t) + 2x∗

42(t) − 2t = 0,

xij(t) ≤ xij(t) ≤ xij(t), ∀i = 1, . . . , 4, ∀j = 1, . . . , 4,

n∑

j=1

xij(t) ≤ pi(t), ∀i = 1, . . . , 4,

m∑

i=1

xij(t) ≤ qj(t), ∀j = 1, . . . , 4,

(7.9)

and we get the following solution, a.e. in [0, 1]:

x∗(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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1
7
t

3
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t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.10)

It is easy to prove that x∗ belongs to the constraint set K, then it is the equilibrium solution.
Now, we are able to compute the production excess of each firm and the demand

excess of each demand market

ε1(t) = p1(t) −
4∑

j=1

x∗
1j(t) = 5t − 439

322
t =

1171
322

t, a.e. in [0, 1],

ε2(t) = p2(t) −
4∑

j=1

x∗
2j(t) = 7t − 2011

924
t =

4457
924

t, a.e. in [0, 1],

ε3(t) = p3(t) −
4∑

j=1

x∗
3j(t) = 9t − 113

84
t =

643
84

t, a.e. in [0, 1],

ε4(t) = p4(t) −
4∑

j=1

x∗
3j(t) = 11t − 23

14
t =

131
14

t, a.e. in [0, 1],

δ1(t) = q1(t) −
4∑

i=1

x∗
i1(t) = 6t − 119

44
t =

145
44

t, a.e. in [0, 1],

δ2(t) = q2(t) −
4∑

i=1

x∗
i2(t) = 8t − 1255

644
t =

3897
644

t, a.e. in [0, 1],
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δ3(t) = q3(t) −
4∑

i=1

x∗
i3(t) = 10t − 109

231
t =

2201
231

t, a.e. in [0, 1],

δ4(t) = q4(t) −
4∑

i=1

x∗
i4(t) = 12t − 1355

966
t =

10237
966

t, a.e. in [0, 1].

(7.11)

Making use of the equilibrium conditions (2.21)–(2.25), we derive:

λ∗ij(t) = 0, ∀i = 1, . . . , 4, ∀j = 1, . . . , 4, a.e. in [0, 1],

ρ∗ij(t) = 0, ∀i = 1, . . . , 4, ∀j = 1, . . . , 4, a.e. in [0, 1],

μ∗
i (t) = 0, ∀i = 1, . . . , 4, a.e. in [0, 1],

ν∗j (t) = 0, ∀j = 1, . . . , 4, a.e. in [0, 1].

(7.12)

8. Concluding Remarks

In this paper, we have considered the variational formulation for the dynamic oligopolistic
market equilibrium problem in presence of both production and demand excesses. The very
general model allows to study all the economic periods that a market can be gone through.
In this way, the previous models presented in [2] and in [1] are improved.

The equilibrium conditions are given according to the well-known dynamic Cournot-
Nash principle and by means Lagrange multipliers which allow to point out the importance
of the excesses in the equilibrium solutions. Making use of the variational formulation,
which expresses the equilibrium conditions, the equivalence between the two equilibrium
definitions is proved. In particular, the evolutionary variational inequality allows to obtain
very important theoretical results for equilibrium solutions. More precisely, under general
assumptions, the existence of equilibrium solutions is guaranteed. Moreover, after that the
powerful property of the set convergence in Kuratowski’s sense has been proved for the
constraint set, a continuity result for the equilibrium solution has been obtained.
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