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We study the behavior of Fourier integrals summed by the symbols of elliptic operators and
pointwise convergence of Fourier inversion. We consider generalized localization principle which
in classical Lp spaces was investigated by Sjölin (1983), Carbery and Soria (1988, 1997) and Alimov
(1993). Proceeding these studies, in this paper, we establish sharp conditions for generalized
localization in the class of finitely supported distributions.

1. Introduction

In this paper, we study the behavior of spherical Fourier integrals and pointwise convergence
and summability of Fourier inversion.

Let
A(D) =

∑

|α|=m
cαD

α
(1.1)

be a homogeneous elliptic differential operator of orderm. Let us consider its symbol defined
as polynomial:

A(x) =
∑

|α|=m
cαx

α, (1.2)
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and assume that the Gaussian curvature of surface S = {x ∈ Rn : A(x) = 1} is always strictly
positive.

We recall that for f ∈ L2(Rn) its Fourier transform is defined as

f̂(ξ) =
∫
f
(
y
)
e−iyξdy (1.3)

and partial Fourier integral associated with elliptic operator (1.1):

Eλf(x) = (2π)−n
∫

A(ξ)<λ
f̂(ξ)dξ (1.4)

(note that throughout the paper we consider only Lebesque measure on Rn and
∫
=
∫
Rn).

For some functions, Fourier integrals do not converge pointwisely and various summation
techniques are applied to recover convergence property. In this paper, we consider the
method of the Riesz means. The Riesz means of order s are defined as

Esλf(x) = (2π)−n
∫

A(ξ)≤λ

(
1 − |ξ|2

λ2

)s

f̂(ξ)eiξxdξ. (1.5)

As an example, one can consider Laplacian A(D) =
∑n

i=1(∂
2/∂x2

i ), and note that the
level surfaces of its symbol are Euclidean spheres. Thus, Fourier inversion associated with
Laplace operator has the form:

Eλf(x) = (2π)−n
∫

|ξ|2<λ
f̂(ξ)eiξxdξ (1.6)

and known as spherical partial Fourier integrals. The question of Eλf(x) convergence to f(x)
almost everywhere is not solved in Rn, n ≥ 2 even for classical L2 functions and presents
one of the most challenging open problems of classical harmonic analysis, and even special
cases of this problem are of particular interest. One of such special cases is the problem
of generalized localization, which for the first time was formulated by V. Ii’in in [1]. For
convenience, we give its definition for the Riesz means Esλ.

Definition 1.1. We say that, for the Riesz means of order s, the generalized localization
principle in function class F is satisfied, if for any function f ∈ F, the equality

lim
λ→∞

Esλf(x) = 0 (1.7)

is true for a.e. x ∈ Rn \ supp f .

This localization principle generalizes the classical Riemann localization principle and
for Lp functions was intensively investigated by Sjölin [2], Carbery and Soria [3, 4], Bastis
[5–7], and Ashurov et al. [8]. It was established that Rn localization holds true in Lp, where
p ∈ [2, 2n/(n − 1)] and fails otherwise.
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Over the last several years, a number of Fourier inversion studies considered
distributions and investigated the behavior of their Fourier integrals (see, e.g., [9–12]).
In particular, Alimov in [13] considered the classical Riemann localization principle for
compactly supported distributions and established criteria for its validity (see also [14, 15]).

In this paper, we study generalized localization principle for compactly supported
distributions and present conditions for its fulfillment.

2. Notation and Definitions

We define Schwartz space S(Rn) as the function class of all infinitely differentiable functions
that are rapidly decreasing at infinity along with all partial derivatives. It is well known that
S(Rn), being equipped with a family of seminorms

dα,β
(
φ
)
= sup

x∈Rn

∣∣∣xαDβφ(x)
∣∣∣, (2.1)

is a Frechet space (here α, β are multi-indices andD is a partial derivative). As usual, we also
consider class of tempered distributions S′ defined as dual to S.

Let E be the space of infinitely differentiable functions with topology τE such that φn →
0 in τE if and only if for each multiindex α and compact K

sup
x∈K

Dαφn(x) −→ 0. (2.2)

As usual we denote its conjugate space by E′.
It is known (see, e.g., [16]) that each f ∈ E′ has finite support and equivalent to the

class of finitely supported tempered distributions. Thus, it follows from the Paley-Wienner
theorem that, for each f ∈ E′, its Fourier transform f̂ ∈ C∞. Since f̂ is locally integrable, it is
natural to define Fourier integral of f ∈ E′ and its Riesz means by (1.4) and (1.5), respectively.

We also note that for f ∈ L2 the Riesz mean Es
λ
f can be considered as an integral

operator:

Esλf(x) = (2π)−n
∫
f
(
y
)
θsλ
(
x − y)dy, (2.3)

with kernel θsλ(y) = m̂
s
λ(y) where

ms
λ

(
y
)
=

(
1 − A

(
y
)

λ

)s

+

, (2.4)

where (1 −A(y)/λ)s+ = (1 −A(y)/λ)s · χA(y)<λ(y).
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Representation (2.3) has its natural analogue for f ∈ E′. Let ψn be a sequence of
Schwartz functions such that ψn(y) = 0 as |y| > λ and ψn(y) → ms

λ
(y) in L1 norm. Then:

Esλf(x) = lim
n→∞

(2π)−n
∫
f̂(ξ)ψn(ξ)eixξdξ

= (2π)−n lim
n→∞

〈
f̂(ξ), ψn(ξ)eixξ

〉

= (2π)−n lim
n→∞

〈
f
(
y
)
, ψ̂n
(
x − y)〉.

(2.5)

Note that inequality ‖ĝ‖∞ ≤ ‖g‖1 implies that ψ̂n → m̂s
λ in E and since f is continuous on E

Esλf(x) = (2π)−n
〈
f(·), θsλ(x − ·)〉. (2.6)

We will need Sobolev’s classes which can be defined for l ∈ R in the following way.

Definition 2.1. We say that tempered distribution f belongs to Sobolev classHl if f̂ is a regular
distribution such that

∥∥f
∥∥2
Hl =

∫ ∣∣∣f̂(ξ)
∣∣∣
2(
1 + |ξ|2

)l
dξ <∞. (2.7)

One can see that, in particular, H0 = L2. We also remark that for every f ∈ E′ there is
l ∈ R such that f ∈ Hl (for proof see, e.g., [16]).

In other respects, we make the following conventions:

(i) symbol Jν is used to denote Bessel function of the first kind and order ν ≥ 0,

(ii) χE is preserved for an indicator function of E ⊂ Rn,

(iii) unless otherwise indicated, all functions are assumed to be defined on Rn and by
definition Lp(Ω) ≡ {f ∈ Lp(Rn) : supp f ⊂ Ω ⊂ Rn}.

3. Main Result

As has been mentioned above, every f ∈ E′ belongs to some Sobolev classes Hl, in this
paper, we use this fact to establish criterion of generalized localization for finitely supported
distributions. The following theorems present major results of current study.

Theorem 3.1. Let f ∈ E′ ∩H−l, l ≥ 0. Then, for integer s ≥ l, equality

lim
λ→∞

Esλf(x) = 0 (3.1)

holds true a.e. on Rn \ supp f .

Our approach is based on the methods by Carbery and Soria [3] and in order to prove
Theorem 3.1, wewill follow his idea first proving some auxiliary facts in the following section.
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4. Dual Sets

Let a(x) = [A(x)]1/m and K = {x ∈ Rn : a(x) ≤ 1}. Then, K is a symmetric body that is
convex compact symmetric set. We recall that set K∗ = {y : |x · y| ≤ 1, ∀x ∈ K} is called polar
set with respect to K.

As it is done in [17], we will introduce the norm ‖ · ‖a generated by a(x) as

‖x‖a = a(x) (4.1)

and dual norm ‖ · ‖∗a as

∥∥y
∥∥∗
a = sup

‖x‖a≤1

∣∣x · y∣∣ = sup
‖x‖a=1

∣∣x · y∣∣. (4.2)

Next, let S and S∗ be the boundaries of K and K∗, respectively.
It is not difficult to show that S∗ = {∇a(x), x ∈ S}. Indeed on the one hand a(λx) =

λa(x) and, therefore, for x ∈ S

x · ∇a(x) = da

dr
(x) = a(x) = 1,

(−x) · ∇a(x) = −da
dr

(x) = a(x) = −1,
(4.3)

which means that ‖∇a(x)‖∗a ≥ 1. On the other hand, for any y ∈ S, one can consider F(y) =
y · ∇a(x) and examine its local extremums on the surface S. Since S is compact, F(y) reaches
its extremum values and it is known that, at extremum points, ∇F(y) must be parallel to the
normal to S at point y, which is parallel to∇a(y). Since∇F(y) = ∇a(x), we can conclude that
∇a(x)‖∇a(y) at the extremum points. Since S is strictly convex, it is possible only for y = ±x,
that implies ‖∇a(x)‖∗a ≤ 1.

It is convenient for given x ∈ Rn to use the notation θ(x) to denote the point on S such
that the outer normal to S at θ(x) is parallel to x. Similarly, we denote η(x) the point on S∗

such that the outer normal to S∗ at η(x) is parallel to x. One can remark that we have just
seen that for y ∈ S∗

y · θ(y) = 1. (4.4)

5. Technical Lemmas for Theorem 3.1

We will need the asymptotic representation of θs
λ
(y), which can be derived by stationary-

phase method (see, e.g., [18]):

θsλ
(
y
)
= λ(n−1)/2

∣∣y
∣∣−(n+1)/2 ·

[
Rs

+
(
y, λ
)
eiλy·θ(y) + Rs

−
(
y, λ
)
e−iλy·θ(y)

]
, (5.1)
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where functions Rs
±(y, λ) ∈ C∞({y : |y| > ε} × [1,∞)) and

Dα
yD

β

λR
s
±
(
y, λ
)
= O
(
λ−s−β

)
, (5.2)

uniformly on |y| > δ and λ > δ.
Now, let us consider positive numbers ε and R, ε < R and function φ(x) = φ(‖x‖∗a) ∈

C∞
0 vanishing on {x : (‖x‖∗a < ε) ∨ (‖x‖∗a > R)}. Then, for s ≥ 0, we set by definition

Θs
λ(x) = φ(x)θ

s
λ(x), (5.3)

where θs
λ
as in (2.3).

We will need some estimates for the Fourier transform of Θs
λ. With this aim, we will

need the following lemmas.

Lemma 5.1. Let t ≥ δ > 0 and |ξ| < 1. Then, for any α > 0

∣∣∣Θ̂s
t (ξ)
∣∣∣ ≤ O(t−α). (5.4)

Proof. This estimate easily follows from the definition of Θs
t . Indeed,

Θ̂s
t (ξ) =

∫
θst (x)φ(x)e

−iξxdx =
∫ ̂
(
1 − A

(
y
)

t

)s

+

(x)φ(x)e−iξxdx

=
∫ (

1 − A(x)
t

)s

+
φ̂(x + ξ)dx =

∫

A(x)<t
φ̂(x + ξ)dx

+
s∑

k=1

Ck

tk

∫

A(x)<t
φ̂k(·, ξ)(x)dx,

(5.5)

where φk(y, ξ) = Bk(Dy)[φ(y)e−iyξ] and B(D) is formally conjugate to operator A(D). Since
φ(0) = φk(0, ξ) = 0,

Θ̂s
t (ξ) =

∫

A(x)>t
φ̂(x + ξ)dx +

s∑

k=1

Ck

tk

∫

A(x)>t
φ̂k(·, ξ)(x)dx. (5.6)

Further, we notice that since φk(y, ξ) ∈ C∞
0 then for any α > 0 there is Cα such that functions

φ̂k(x, ξ) = Cα/(1 +A(x))α, uniformly for k = 1, . . . , s and |ξ| < 1. For the same reason, for any
α > 0, one has φ̂(x) ≤ O((1 + x)−α). Now substituting these estimates into (5.6), we complete
the proof.

Lemma 5.2. Let t ≥ δ > 0 and |ξ| ≥ 1. Then, for any α > 0,

∣∣∣Θ̂s
t (ξ)
∣∣∣ =

O(1)t−s

(1 + |‖ξ‖a − t|)α
. (5.7)
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Proof. By definition,

Θ̂s
t (ξ) =

∫

ε<‖y‖∗a<R
φ
(
y
)
θst
(
y
)
e−iξ·ydy. (5.8)

Let us pass to a new coordinate system y → (r = ‖y‖∗a, η = η(y)). Then,

Θ̂s
t (ξ) =

∫R

ε

φ(r)rn−1
∫

η∈S∗
θst
(
rη
)
e−irξ·ηdσ

(
η
)
dr, (5.9)

where dσ(η) is a Lebesgue surface measure of S∗.
Using (5.1), we have

Θ̂s
t (ξ) = t(n−1)/2

∫R

ε

φ(r)r(n−3)/2
∫

η∈S∗

∣∣η
∣∣−(n+1)/2eitr[η·θ(η)]R̃s

+
(
rη, t
)
e−irξ·ηdσ

(
η
)
dr

+ t(n−1)/2
∫R

ε

φ(r)r(n−3)/2
∫

η∈S∗

∣∣η
∣∣−(n+1)/2e−itr[η·θ(η)]R̃s

−
(
rη, t
)
e−irξ·ηdσ

(
η
)
dr.

(5.10)

We will focus on the first term since the second one can be handled alike

Ist (ξ) = t
(n−1)/2

∫R

ε

φ(r)r(n−3)/2
∫

η∈S∗

∣∣η
∣∣−(n+1)/2eitr[η·θ(η)]R̃s

+
(
rη, t
)
e−irξ·ηdσ

(
η
)
dr (5.11)

and note that due to (4.4) η · θ(η) = 1, and thus

Ist (ξ) = t
(n−1)/2

∫R

ε

φ(r)r(n−3)/2eitr
∫

η∈S∗

∣∣η
∣∣−(n+1)/2R̃s

+
(
rη, t
)
e−irξ·ηdσ

(
η
)
dr. (5.12)

One can use the expression ξ = ‖ξ‖aθ(ξ) and employ stationary phase method to obtain

∫

η∈S∗

∣∣η
∣∣−(n+1)/2R̃s

+
(
rη, t
)
e−irξ·ηdσ

(
η
)
= ‖ξ‖−(n−1)/2a eir‖ξ‖a[θ(ξ)·η(θ(ξ))]Ps+(rξ, t)

+ ‖ξ‖−(n−1)/2a e−ir‖ξ‖a[θ(ξ)·η(θ(ξ))]Ps−(rξ, t),

(5.13)

where Ps± are smooth functions such that Dα
t D

β
zP

s
±(z, t) = O(t−s−α). Using this expression, we

have

Ist (ξ) =
(

t

‖ξ‖a

)(n−1)/2 ∫R

ε

φ(r)r(n−3)/2eir(t−‖ξ‖a)Ps+(rξ, t)dr

+
(

t

‖ξ‖a

)(n−1)/2 ∫R

ε

φ(r)r(n−3)/2e−ir(t−‖ξ‖a)Ps−(rξ, t)dr.

(5.14)
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Further integrating by parts the integrals, one can see that for anyN > 0 both integrals
are controlled by (CNt

−s)/(1 + |t − ‖ξ‖a|)N . As a result, we have

∣∣Ist (ξ)
∣∣ ≤
(

t

‖ξ‖a

)(n−1)/2 CNt
−s

(1 + |t − ‖ξ‖a|)N
≤ DNt

−s

(1 + |t − ‖ξ‖a|)N−((n−1)/2) , (5.15)

uniformly for |ξ| > 1 and t > δ. Finally, substituting into (5.10), we obtain (5.7).

Now, combining Lemmas 5.1 and 5.2, we can claim that, in fact, for t > δ and any
ξ ∈ Rn,

∣∣∣Θ̂s
t (ξ)
∣∣∣ ≤ O(1)t−s

(1 + |‖ξ‖a − t|)α
. (5.16)

Lemma 5.3. Let Θs
λ
(x) be defined by (5.3). Then, for any δ > 0 there is Cδ > 0 such that

∫∞

δ

∣∣∣Θ̂s
t (ξ)
∣∣∣
2
dt ≤ Cδ

(1 + |ξ|)2s
. (5.17)

Proof. As it follows from (5.16),

∫∞

δ

∣∣∣Θ̂s
t (ξ)
∣∣∣
2
dt ≤ O(1)

∫∞

δ

t−2sdt

(1 + |‖ξ‖a − t|)2α
, (5.18)

where α > 0 can be chosen arbitrary large. Changing the variables u = ξ − t, one has

∫∞

δ

|t|−2sdt
(1 + |‖ξ‖a − t|)2α

=
∫

δ<|‖ξ‖a−u|<‖ξ‖a/2

|‖ξ‖a − u|−2sdt
(1 + |u|)2α

+
∫

max(δ,‖ξ‖a/2)<|‖ξ‖a−u|

|‖ξ‖a − u|−2sdt
(1 + |u|)2α

.

(5.19)

It is not difficult to see that for the values u in the first integral |u| > |‖ξ‖a− | u−‖ξ‖a| > ‖ξ‖a/2,
and thus choosing α > max(2s, 1)

∫

δ<|‖ξ‖a−u|<‖ξ‖a/2

|‖ξ‖a − u|−2sdt
(1 + |u|)2α

≤ O(1)
(1 + ‖ξ‖a)α

≤ O(1)

(1 + ‖ξ‖a)2s
. (5.20)

Moreover, it is clear that for such α

∫

δ<|‖ξ‖a−u|<‖ξ‖a/2

|‖ξ‖a − u|−2sdt
(1 + |u|)2α

≤ O(1)

(1 + ‖ξ‖a)2s
. (5.21)
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Therefore,

∫∞

δ

∣∣∣Θ̂s
t (ξ)
∣∣∣
2
dt ≤ O(1)

(1 + ‖ξ‖a)2s
. (5.22)

Since all norms in Rn are equivalent, the lemma is proved.

Lemma 5.4. Let Θs
λ
be defined by (5.3). Then, for any δ > 0, there is Cδ such that

∫∞

δ

∣∣∣∣
d

dt
Θ̂s
t (ξ)
∣∣∣∣
2

dt ≤ Cδ

(1 + |ξ|)2s
. (5.23)

Proof. For any t > 1, using the Fubini theorem, one has

∫ t

1

∫
d

du
Θs
u

(
y
)
e−iξydy du =

∫
e−iξy

∫ t

1

d

du
Θs
u

(
y
)
dudy = Θ̂s

t (ξ) − Θ̂s
1(ξ), (5.24)

which implies (d/dt)Θ̂s
t (ξ) = ̂(d/dt)Θs

t (ξ).
If s > 0

d

dt
Θs
t (x) = φ(x)

d

dt
θst (x)

= φ(x)
d

dt

∫ t

0

(
1 − u2

t2

)s

dθu(x)

=
2sφ(x)

t

∫ t

0

(
1 − u2

t2

)s−1
u2

t2
dθu(x)

=
2s
t

(
Θs−1
t (x) −Θs

t (x)
)
.

(5.25)

Thus, using inequality (a + b)2 ≤ 2a2 + 2b2, one has

∫∞

δ

∣∣∣∣
d

dt
Θ̂s
t (ξ)
∣∣∣∣
2

dt ≤ C
∫∞

δ

t−2
∣∣∣Θ̂s−1

t (ξ)
∣∣∣
2
dt + C

∫∞

δ

t−2
∣∣∣Θ̂s

t (ξ)
∣∣∣
2
dt. (5.26)

Now, one can use estimate (5.16) to each integral on the right side and complete the proof.
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If s = 0, then for any ξ ∈ Rn,

∣∣∣∣
d

dt
Θ̂t(ξ)

∣∣∣∣ =

∣∣∣∣∣
d

dt

∫

A(y)≤t
φ̂
(
ξ + y

)
dy

∣∣∣∣∣

=

∣∣∣∣∣

∫

A(y)=t
φ̂
(
ξ + y

)
n
(
y
)
dσ
(
y
)
∣∣∣∣∣

≤ O(1)
(1 + |‖ξ‖a − t|)α

, ∀α > 0.

(5.27)

Using this estimate and the reasoning presented in the previous lemma, we obtain the
required estimate.

6. Proof of Theorem 3.1

Let f ∈ H−l ∩ E′ be such that supp f ⊂ Ω. For 0 < ε < 1/2, we set

Eε =
{
x : 2ε < dist(x,Ω) < (2ε)−1

}
(6.1)

and consider an arbitrary radial function φε ∈ C∞
0 such that

φε(x) =

⎧
⎨

⎩
1,

3ε
2

≤ |x| ≤ 1
ε
+ diam Ω;

0, |x| ≤ ε.
(6.2)

It is clear that to prove the theorem it is sufficient to show that for any ε > 0,
limλ→∞Esλf(x) = 0, a.e. x ∈ Eε

In this case, as x ∈ Eε due to (2.6)

Esλf(x) =
∫
f̂(ξ)

[
χΩ(·)θsλ(x − ·)] (̂−ξ)dξ

=
∫
f̂(ξ)

[
φε(x − ·)θsλ(x − ·)] (̂−ξ)dξ

=
∫
f̂(ξ)

[
φεθ

s
λ

]
(̂ξ)eiξxdξ,

(6.3)

or using notation (5.3)

Esλf(x) =
∫
f̂(ξ)Θ̂s

λ(ξ)e
iξxdξ =

̂
(
f̂(ξ)Θ̂s

λ(ξ)
)
(−x). (6.4)
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Further, we consider maximal operator:

Es∗f(x) = sup
λ>1

∣∣Esλf(x)
∣∣. (6.5)

We recall that to prove a.e. convergence on Eε one can use the standard technique of Banach
principle (see, e.g., [19]) according to which it is sufficient to estimate maximal operator on
Eε ⊂ Rn \ supp f as

∥∥Es∗f(x)
∥∥
L2(Eε)

≤ C∥∥f∥∥H−l . (6.6)

Let γ(t) : R → R+ be a C∞ function such that

γ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, t ≤ 1
3
;

1, t ≥ 2
3
.

(6.7)

If we set Ẽs
λ
f(x) = γ(λ)Es

λ
f(x), then by (6.4),

Ẽsλf(x) = γ(λ) < f(·), Θs
λ(x − ·) >= γ(λ) ̂

(
f̂(ξ)Θ̂s

λ(ξ)
)
(−x). (6.8)

According to Sobolev’s embedding theorem (see, e.g., [20]) for any f ∈ H1(R1),

∥∥f
∥∥
L∞

≤ C∥∥f∥∥H1 . (6.9)

Using this fact, we have

Es∗f(x) ≤
∥∥∥Ẽsλf(x)

∥∥∥
L∞(R)

≤
∥∥∥Ẽsλf(x)

∥∥∥
H1(R)

. (6.10)

And, therefore, in order to obtain (6.6), it is sufficient to show that there are constants C1, C2

such that the following estimates are true:

∫ ∥∥∥Ẽsλf(x)
∥∥∥
2

L2(R)
dx ≤ C1

∥∥f
∥∥
H−l ,

∫ ∥∥∥∥
d

dλ
Ẽsλf(x)

∥∥∥∥
2

L2(R)
dx ≤ C2

∥∥f
∥∥
H−l .

(6.11)

First, we note that estimate (5.16) and f ∈ H−l imply that f̂Θ̂s
λ
∈ L2 which in turn with

(6.8) implies the fact Ẽs
λ
f ∈ L2.
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Further, using the Plancherel theorem, we have

∫ ∫ ∣∣∣Ẽsλf(x)
∣∣∣
2
dλdx ≤

∫
γ2(λ)

∫ ∣∣∣f̂(ξ)
∣∣∣
2∣∣∣Θ̂s

λ(ξ)
∣∣∣
2
dξ dλ

≤
∫∞

1/3
γ2(t)

∫ (
1 + |ξ|2

)l∣∣∣Θ̂s
t (ξ)
∣∣∣
2(
1 + |ξ|2

)−l∣∣∣f̂(ξ)
∣∣∣
2
dξ dt

≤ sup
ξ∈Rn

(
1 + |ξ|2

)l ∫∞

1/3

∣∣∣Θ̂s
t (ξ)
∣∣∣
2
dt × ∥∥f∥∥2H−l ≤ C

∥∥f
∥∥2
H−l

(6.12)

(the last inequality follows from Lemma 5.3).
For the same reason, (6.11) can be proved using Lemmas 5.3 and 5.4:

∫ ∫∞

1/3

∣∣∣∣
d

dt

[
γ(t)Θs

t

] ∗ f(x)
∣∣∣∣
2

dt dx ≤
∥∥∥γ

′2(λ)
∥∥∥
∞

∫ ∫∞

1/3

∣∣Θs
t ∗ f(x)

∣∣2dt dx

+
∫ ∫∞

1/3

∣∣∣∣
d

dλ
Θs
λ ∗ f(x)

∣∣∣∣
2

dλdx ≤ C∥∥f∥∥2H−l .

(6.13)
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