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This paper presents a class of new numerical methods for nonlinear functional-integrodifferential
equations, which are derived by an adaptation of Pouzet-Runge-Kutta methods originally
introduced for standard Volterra integrodifferential equations. Based on the nonclassical Lipschitz
condition, analytical and numerical stability is studied and some novel stability criteria are
obtained. Numerical experiments further illustrate the theoretical results and the effectiveness of
the methods. In the end, a comparison between the presented methods and the existed related
methods is given.

1. Introduction

In the last ten years the numerical analysis and computational solution of various types of
functional-integrodifferential equations (FIDEs) have received considerable attention. Many
of these numerical schemes were derived by suitably adapting classical numerical methods
for ordinary differential equations (ODEs) or integrodifferential equations (IDEs) to FIDEs,
and there is a growing literature on their convergence and stability properties. Of these
papers, Zhang and Vandewalle [1, 2] dealt with nonlinear numerical stability of FIDEs of
the form

x′(t) = F

(
t, x(t), x(t − τ),

∫ t
t−τ

g(t, ξ, x(ξ))dξ

)
, t ≥ t0,

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0.
(1.1)
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Yu et al. [3] extended the analysis to FIDEs of neutral-type,

d

dt
[x(t) −Nx(t − τ)] = F

(
t, x(t), x(t − τ),

∫ t
t−τ

g(t, ξ, x(ξ))dξ

)
, t ≥ t0,

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,
(1.2)

while Zhang et al. [4, 5] derived several improved numerical stability results for neutral
FIDEs of the form (1.2). For the class of neutral FIDEs:

d

dt

[
x(t) −

∫ t
0
a(t − ξ)G(ξ, x(ξ − τ))dξ

]
= F(t, x(t)), t ≥ t0,

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,
(1.3)

Brunner and Vermiglio [6] made an insight into the analytical and numerical stability
of continuous Runge-Kutta methods. Moreover, in the papers [7, 8], Brunner presented
superconvergence results of collocation methods for several classes of FIDEs with constant
or variable (vanishing) delays.

The reader may wish to consult Baker’s survey paper [9] and Brunner’s monograph
[10] for details on related earlier work and for additional references.

However, up to now, no numerical investigation appears to have been carried out for
general nonlinear FIDEs of the form:

d

dt

[
x(t) −

∫ t
t−τ

g(t, ξ, x(ξ))dξ

]
= f(t, x(t), x(t − τ)), t ≥ t0,

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,
(1.4)

in which the integral term on the left-hand side is no longer pure delay type: in contrast to
the FIDEs (1.1)–(1.3), it contains information on the solution x on the interval [t−τ, t]. Hence,
the numerical analysis and computational solution of (1.4) is rather more complex than is the
case for (1.1)–(1.3).

In the present paper, with an adaptation of the underlying Pouzet-Runge-Kutta
methods (cf. Brunner and van der Houwen [11]), we obtain a class of new numerical
methods for nonlinear FIDEs (1.4) and study analytical and numerical stability of the
equations. The paper is organized as follows. In Section 2 we derive results on the asymptotic
stability of analytical solutions, under the assumption of nonclassical Lipchitz conditions.
Section 3 describes the adaptation of the Pouzet-Runge-Kutta method to the FIDE (1.4). In
Section 4 some lemmas are given which will play a key role in the analysis of the global and
asymptotical stability properties of the Pouzet-Runge-Kutta solutions (Section 5). Here, we
also state stability results for a number of concrete methods. Some numerical experiments
are given in Section 6 to illustrate the theoretical results and the effectiveness of the methods.
Finally, in Section 7, a comparison between the presented methods and the existed related
methods is given.
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2. Stability Results for Exact Solutions

Let 〈·, ·〉 and ‖ · ‖ denote a given inner product and its induced norm on the d-dimensional
complex space C

d, respectively. The functions ϕ : [t0 − τ, t0] → C
d,f : [t0,+∞) × C

d × C
d →

C
d and g : D × C

d → C
d (with D = {(t, s) : t ∈ [t0,+∞), s ∈ [t − τ, t]}) are assumed to be

continuous and possess the properties

�〈f(t, u, v) − f(t, ũ, ṽ), u − ũ − (w − w̃)
〉

≤ α‖u − ũ‖2 + β‖v − ṽ‖2 + γ‖w − w̃‖2, u, ũ, v, ṽ, w, w̃ ∈ C
d,

(2.1)

∥∥g(t, ξ, u) − g(t, ξ, ũ)∥∥ ≤ η‖u − ũ‖, (t, ξ) ∈ D, u, ũ ∈ C
d, (2.2)

where −α, β, γ, η are nonnegative constants. We will refer to the class of FIDEs of the form
(1.4) which satisfies (2.1)-(2.2) as FIDEs of class FID (α, β, γ, η).

In order to study the stability of solutions to (1.4), we need to consider the systemwith
a different initial function ψ(t),

d

dt

[
x̃(t) −

∫ t
t−τ

g(t, ξ, x̃(ξ))dξ

]
= f(t, x̃(t), x̃(t − τ)), t ≥ t0,

x̃(t) = ψ(t), t0 − τ ≤ t ≤ t0,
(2.3)

which also belongs to the class FID (α, β, γ, η).

Definition 2.1. System (1.4) is called globally stable if there exists a constant C > 0 such that

‖x(t) − x̃(t)‖ ≤ C max
ξ∈[t0−τ,t0]

∥∥ϕ(ξ) − ψ(ξ)∥∥, t ≥ t0. (2.4)

Moreover, system (1.4) is called asymptotically stable if

lim
t→+∞

‖x(t) − x̃(t)‖ = 0. (2.5)

In order to gain insight into the global and asymptotical stability of system (1.4), we
will use the generalized Halanay inequality as presented in Wang [12], compare also to [13].

Lemma 2.2 (see [12]). Assume that the functions u, v : [t0,+∞) → R satisfy the inequalities

u′(t) ≤ −a(t)u(t) + b(t) max
ξ∈[t−τ,t]

u(ξ) + c(t) max
ξ∈[t−τ,t]

v(ξ), t ≥ t0,

v(t) ≤ d(t) max
ξ∈[t−τ,t]

u(ξ) + e(t) max
ξ∈[t−τ,t]

v(ξ), t ≥ t0.
(2.6)
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Here, a, b, c, d, e are given nonnegative continuous functions on [t0,+∞) for which there exist
constants â, b̂, ĉ such that

a(t) ≥ â > 0, e(t) ≤ b̂ < 1,
b(t)
a(t)

+
c(t)d(t)

a(t)[1 − e(t)] ≤ ĉ < 1, ∀t ≥ t0. (2.7)

Then the following inequalities hold:

u(t) ≤ max
ξ∈[t0−τ,t0]

u(ξ) exp[σ̂(t − t0)], ∀t ≥ t0,

v(t) ≤ max
ξ∈[t0−τ,t0]

v(ξ) exp[σ̂(t − t0)], ∀t ≥ t0,
(2.8)

where

σ̂ := sup
t≥t0

{
σ(t) : σ(t) + a(t) − b(t)e−σ(t)τ − c(t)d(t)e−2σ(t)τ

1 − e(t)e−σ(t)τ = 0

}
< 0. (2.9)

With this lemma, we will be able to obtain an analytical stability result for the system
(1.4). In order to do so, we introduce some notations:

z(t) =
∫ t
t−τ

g(t, ξ, x(ξ))dξ, z̃(t) =
∫ t
t−τ

g(t, ξ, x̃(ξ))dξ, y(t) = x(t) − z(t),

ỹ(t) = x̃(t) − z̃(t), x̂(t) = ‖x(t) − x̃(t)‖2,

ŷ(t) =
∥∥y(t) − ỹ(t)∥∥2, ẑ(t) = ‖z(t) − z̃(t)‖2.

(2.10)

Theorem 2.3. Assume that the system (1.4) belongs to the class FDI (α, β, γ, η) with

α < 0, 2η2τ2 < 1, 4
[
β +
(
γ − α)η2τ2] < −α

(
1 − 2η2τ2

)
. (2.11)

Then this system is globally and asymptotically stable.

Proof. It follows from (2.1), (1.4), and (2.3) that

ŷ′(t) = 2�〈f(t, x(t), x(t − τ)) − f(t, x̃(t), x̃(t − τ)), y(t) − ỹ(t)〉
≤ 2
[
αx̂(t) + βx̂(t − τ) + γẑ(t)], ∀t ≥ t0.

(2.12)

By (2.2), it holds that

ẑ(t) ≤
[
η

∫ t
t−τ

√
x̂(ξ)dξ

]2
≤ η2τ2 max

ξ∈[t−τ,t]
x̂(ξ), ∀t ≥ t0. (2.13)
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Substituting (2.13) into (2.12) yields

ŷ′(t) ≤ 2αx̂(t) + 2
(
β + γη2τ2

)
max
ξ∈[t−τ,t]

x̂(ξ), ∀t ≥ t0. (2.14)

Note that

ŷ(t) = ‖x(t) − x̃(t) − [z(t) − z̃(t)]‖2 ≤ 2[x̂(t) + ẑ(t)], ∀t ≥ t0. (2.15)

This, together with α < 0 and (2.13), implies that

2αx̂(t) ≤ α[ŷ(t) − 2ẑ(t)
] ≤ αŷ(t) − 2αη2τ2 max

ξ∈[t−τ,t]
x̂(ξ), ∀t ≥ t0. (2.16)

Hence, by combining (2.14) and (2.16) we are led to

ŷ′(t) ≤ αŷ(t) + 2
(
β + γη2τ2 − αη2τ2

)
max
ξ∈[t−τ,t]

x̂(ξ), ∀t ≥ t0. (2.17)

On the other hand, we have

x̂(t) =
∥∥y(t) − ỹ(t) + [z(t) − z̃(t)]∥∥2 ≤ 2

[
ŷ(t) + ẑ(t)

]
≤ 2ŷ(t) + 2η2τ2 max

ξ∈[t−τ,t]
x̂(ξ), ∀t ≥ t0,

(2.18)

where we have used (2.13). Therefore, under the condition (2.11), an application of
Lemma 2.2 to (2.17)-(2.18) yields the conclusion.

As an application of Theorem 2.3, we present several examples as follows.

Example 2.4. Consider the d-dimensional system of linear functional-integrodifferential
equation

d

dt

[
x(t) −

∫ t
t−τ

N(t, ξ)x(ξ)dξ

]
= L(t)x(t) +M(t)x(t − τ) +G(t), t ≥ t0,

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,
(2.19)

where G : [t0,+∞) → C
d is a known continuous function such that (2.19) has a unique

solution. It is easy to check that system (2.19) belongs to the class FID (μ + (ι + κ)/2, κ, (ι +
κ)/2, 
) if, provided there exist constants μ, ι, κ, 
 such that, for all t ≥ t0 and (t, ξ) ∈ D,

μ(L(t)) ≤ μ ≤ − (ι + κ)
2

, ‖L(t)‖ ≤ ι, ‖M(t)‖ ≤ κ, ‖N(t, ξ)‖ ≤ 
, (2.20)
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in which the matrix norm ‖ · ‖ and the logarithmic norm μ(·) are induced by the vector inner-
product norm. A direct application of Theorem 2.3 shows that the system (2.19) is globally
and asymptotically stable whenever condition (2.20) and the following condition hold:

2
2τ2 < 1, 4
(
κ − μ
2τ2

)
< −
[
μ +

(ι + κ)
2

](
1 − 2
2τ2

)
. (2.21)

Example 2.5. Consider the system of partial functional-integrodifferential equations

∂

∂t

[
u(v, t) − 1

4

∫ t
t−√3/4

exp(ξ − t)u(v, ξ)dξ
]

= −1
2
u(v, t) +

u
(
v, t − √

3/4
)

24
[
1 + u2

(
v, t − √

3/4
)] + g(v, t), t ≥ 0, v ∈ (0, 2π), u(v, t),

u(v, t) = sinv exp(−vt), t ∈
[
−
√
3
4
, 0

]
, v ∈ [0, 2π],

u(0, t) = u(2π, t) = 0, t ≥ 0,

(2.22)

where g(v, t) is a continuous function chosen such that this system has the exact solution
u(v, t) = sinv exp(−vt). By discretizing the spatial variable v by a uniform mesh vi = iΔv (i =
0, 1, . . . , l, Δv = 2π/l), the system (2.22) can be transformed into a system of ordinary
functional-integrodifferential equations,

d

dt

[
x(t) − 1

4

∫ t
t−√3/4

exp(ξ − t)x(ξ)dξ
]
= −1

2
x(t) +

1
24
x

(
t −

√
3
4

)
+G(t), t ≥ 0,

x(t) =
(
sinv1 exp(−v1t), sinv2 exp(−v2t), . . . , sinvl−1 exp(−vl−1t)

)T
, t ∈

[
−
√
3
4
, 0

]
,

(2.23)

where

x(t) = (x1(t), x2(t), . . . , xl−1(t))T , G(t) =
(
g(v1, t), g(v2, t), . . . , g(vl−1, t)

)T
,

x(t) =

(
x1(t)

1 + x2
1(t)

,
x2(t)

1 + x2
2(t)

, . . . ,
xl−1(t)

1 + x2
l−1(t)

)T

, xi(t) ≈ u(vi, t).
(2.24)

When the standard inner product and its induced norm are used, one easily verifies that
the system (2.23) belongs to the class FID (−11/48, 1/24, 13/48, 1/4). Moreover, in light of
Theorem 2.3, we know that the system (2.23) is globally and asymptotically stable.
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3. The Pouzet-Runge-Kutta Discretization

In order to obtain a class of effective numerical schemes for FIDEs of the form (1.4), we first
recall some related concepts and results on the underlying Runge-Kutta methods for ordinary
differential equations (see, e.g., [14]). An s-stage Runge-Kutta method is described by the
Butcher tableau

c A

bT
(3.1)

where

A :=
(
aij
) ∈ R

s×s, b := (b1, b2, . . . , bs)
T ∈ R

s,
s∑
i=1

bi = 1.

c = (c1, c2, . . . , cs)T , 0 ≤ ci ≤ 1 (i = 1, 2, . . . , s).

(3.2)

A Runge-Kutta method (3.1) is called algebraically stable if

D := diag(b1, b2, . . . , bs) ≥ 0, M := DA +ATD − bbT ≥ 0, (3.3)

where the notation “≥” means that a matrix is nonnegative definite. It is said to be strictly
stable at infinity if R(∞) := limz→∞R(z) exists and satisfies |R(∞)| < 1, where

R(z) = 1 + zbT (Is − zA)−1e (z ∈ C), e = (1, 1, . . . , 1)T ∈ R
s, (3.4)

and Is denotes the s × s identity matrix; it is said DJ-irreducible if there is no nonempty index
set L ⊂ {1, 2, . . . , s} such that

bj = 0 for j ∈ L, aij = 0 for i /∈ L, j ∈ L, (3.5)

S-irreducible if there is no partition (S1,S2, . . . ,Sr) of {1, 2, . . . , s} with r < s such that for all l
andm

∑
k∈Sm

aik =
∑
k∈Sm

ajk, for i, j ∈ Sl, (3.6)

and irreducible if it is both DJ-irreducible and S-irreducible.

Proposition 3.1 (cf. [15]). A DJ-irreducible, algebraically stable Runge-Kutta methods satisfies bi >
0 for all i.

Proposition 3.2 (cf. [14]). Assume that a Runge-Kutta method (3.1) with distinct ci and positive
bi satisfies the simplifying condition B(2s − 2), C(s − 1), D(s − 1). Then this method is algebraically
stable if and only if |R(∞)| ≤ 1.
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The class of extended Pouzet-Runge-Kutta methods for FIDEs (1.4) with underlying
Runge-Kutta method (3.1) is given by

x
(n)
i − z

(n)
i = xn − zn + h

s∑
j=1

aijf
(
t
(n)
j , x

(n)
j , x

(n−m)
j

)
, i = 1, 2, . . . , s,

xn+1 − zn+1 = xn − zn + h
s∑
j=1

bjf
(
t
(n)
j , x

(n)
j , x

(n−m)
j

)
, n ≥ 0.

(3.7)

Here, the stepsize h is chosen as h = τ/m (m ∈ N), tn := t0 + nh, t
(n)
j := tn + cjh, xn, zn, x

(n)
i

and z(n)i are approximations to x(tn), z(tn), x(t
(n)
i ) and z(t(n)i ), respectively, with z(t) denoting

the memory term

z(t) :=
∫ t
t−τ

g(t, ξ, x(ξ))dξ. (3.8)

The integral approximations zn and z
(n)
j are given by the Pouzet quadrature rules

zn = h
n−1∑

q=n−m

s∑
j=1

bjg
(
tn, t

(q)
j , x

(q)
j

)
, n ≥ 0, (3.9)

z
(n)
i = h

s∑
j=1

aijg
(
t
(n)
i , t

(n)
j , x

(n)
j

)
+ h

n−1∑
q=n−m

s∑
j=1

bjg
(
t
(n)
i , t

(q)
j , x

(q)
j

)

− h
s∑
j=1

aijg
(
t
(n)
i , t

(n−m)
j , x

(n−m)
j

)
, i = 1, 2, . . . , s; n ≥ 0.

(3.10)

Moreover, it is assumed that

xn = ϕ(tn), x
(n)
i = ϕ

(
t
(n)
i

)
for t0 − τ ≤ tn, t(n)i ≤ t0. (3.11)

4. Some Basic Lemmas

In the subsequent numerical analysis we will imply the following notations:

x̂n := xn − x̃n, ẑn := zn − z̃n, yn := xn − zn, ỹn := x̃n − z̃n, ŷn := yn − ỹn,

x̂
(n)
i := x(n)

i − x̃(n)
i , ẑ

(n)
i := z(n)i − z̃(n)i , y

(n)
i := x(n)

i − z(n)i , ỹ
(n)
i := x̃(n)

i − z̃(n)i ,

ŷ
(n)
i := y(n)

i − ỹ(n)
i , f̂

(n)
i := f

(
t
(n)
i , x

(n)
i , x

(n−m)
i

)
− f
(
t
(n)
i , x̃

(n)
i , x̃

(n−m)
i

)
.

(4.1)
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Moreover, when the method (3.7)–(3.10) is applied to the problem (2.3), we set

z̃(t) :=
∫ t
t−τ

g(t, ξ, x̃(ξ))dξ (4.2)

and denote the corresponding approximations of x̃(tn), z̃(tn), x̃(t
(n)
i ), and z̃(t(n)i ), by

x̃n, z̃n, x̃
(n)
i , and z̃(n)i , respectively. Similarly, it is assumed that

x̃n = ψ(tn), x̃
(n)
i = ψ

(
t
(n)
i

)
, for t0 − τ ≤ tn, t(n)i ≤ t0. (4.3)

As mentioned in Section 1, the following lemmas will play key roles in derivation of
our main results.

Lemma 4.1. Assume that the underlying Runge-Kutta method (3.1) is algebraically stable, and the
conditions (2.1)-(2.2) hold. Then the extended Pouzet-Runge-Kutta scheme (3.7) satisfies

∥∥ŷn+1∥∥2 ≤ (2βτ + η2τ2
)

max
t0−τ≤ξ≤t0

∥∥ϕ(ξ) − ψ(ξ)∥∥2

+ 2h
n∑
i=0

s∑
j=1

bj

[(
α + β

)∥∥∥x̂(i)
j

∥∥∥2 + γ∥∥∥ẑ(i)j
∥∥∥2], n ≥ 0.

(4.4)

Proof. A straightforward computation and the assumption of algebraic stability lead to

∥∥ŷn+1∥∥2 − ∥∥ŷn∥∥2 − 2h
s∑
j=1

bj�
〈
ŷ
(n)
j , f̂

(n)
j

〉
= −h2

s∑
i=1

s∑
j=1

mij

〈
f̂i, f̂j
〉
≤ 0, ∀n ≥ 0, (4.5)

whereM = (mij). Hence, it holds that

∥∥ŷn+1∥∥2 ≤ ∥∥ŷn∥∥2 + 2h
s∑
j=1

bj�
〈
ŷ
(n)
j , f̂

(n)
j

〉
, ∀n ≥ 0. (4.6)

By (2.1), we further have for n ≥ 0,

∥∥ŷn+1∥∥2 ≤ ∥∥ŷn∥∥2 + 2h
s∑
j=1

bj

[
α
∥∥∥x̂(n)

j

∥∥∥2 + β∥∥∥x̂(n−m)
j

∥∥∥2 + γ∥∥∥ẑ(n)j

∥∥∥2]. (4.7)

An induction argument shows that the inequality (4.7) implies

∥∥ŷn+1∥∥2 ≤ ∥∥ŷ0∥∥2 + 2h
n∑
i=0

s∑
j=1

bj

[
α
∥∥∥x̂(i)

j

∥∥∥2 + β∥∥∥x̂(i−m)
j

∥∥∥2 + γ∥∥∥ẑ(i)j
∥∥∥2], n ≥ 0, (4.8)
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in which

∥∥ŷ0∥∥2 = ‖x0 − z0 − (x̃0 − z̃0)‖2

=

∥∥∥∥∥
∫ t0
t0−τ

[
g
(
t0, ξ, ϕ(ξ)

) − g(t0, ξ, ψ(ξ))]dξ
∥∥∥∥∥
2

≤ η2τ2 max
t0−τ≤ξ≤t0

∥∥ϕ(ξ) − ψ(ξ)∥∥2.
(4.9)

Also, the assumptionsmh = τ and
∑s

j=1 bj = 1 allow us to write

h
n∑
i=0

s∑
j=1

bj
∥∥∥x̂(i−m)

j

∥∥∥2 = h s∑
j=1

bj

( −1∑
i=−m

∥∥∥x̂(i)
j

∥∥∥2 + n−m∑
i=0

∥∥∥x̂(i)
j

∥∥∥2
)

≤ τ max
t0−τ≤ξ≤t0

∥∥ϕ(ξ) − ψ(ξ)∥∥2 + h n∑
i=0

s∑
j=1

bj
∥∥∥x̂(i)

j

∥∥∥2, n ≥ 0.

(4.10)

A combination of (4.8), (4.9), and (4.10) yields (4.4). Hence the lemma is proven.

Lemma 4.2. Under the condition (2.2), the Pouzet quadrature rule (3.9) satisfies

‖ẑn‖2 ≤ hη2τ
⎛
⎝ s∑

j=1

∣∣bj∣∣2
⎞
⎠
⎛
⎝n−1∑

i=0

s∑
j=1

∥∥∥x̂(i)
j

∥∥∥2
⎞
⎠

+ η2τ2s

⎛
⎝ s∑

j=1

∣∣bj∣∣
⎞
⎠ max

t0−τ≤ξ≤t0

∥∥ϕ(ξ) − ψ(ξ)∥∥2, n ≥ 0.

(4.11)

Proof. By (2.2),mh = τ and the Cauchy-Schwarz inequality, we have

‖ẑn‖2 ≤
⎛
⎝hη

n−1∑
i=n−m

s∑
j=1

∣∣bj∣∣∥∥∥x̂(i)
j

∥∥∥
⎞
⎠

2

≤ h2η2
⎛
⎝ n−1∑

i=n−m

s∑
j=1

∣∣bj∣∣2
⎞
⎠
⎛
⎝ n−1∑

i=n−m

s∑
j=1

∥∥∥x̂(i)
j

∥∥∥2
⎞
⎠

= hη2τ

⎛
⎝ s∑

j=1

∣∣bj∣∣2
⎞
⎠
⎛
⎝ n−1∑

i=n−m

s∑
j=1

∥∥∥x̂(i)
j

∥∥∥2
⎞
⎠.

(4.12)
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Also, it follows from (3.11), (4.3), andmh = τ that

h
n−1∑

i=n−m

s∑
j=1

∥∥∥x̂(i)
j

∥∥∥2 ≤ τs max
t0−τ≤ξ≤t0

∥∥ϕ(ξ) − ψ(ξ)∥∥2, for n = 0, (4.13)

h
n−1∑

i=n−m

s∑
j=1

∥∥∥x̂(i)
j

∥∥∥2 ≤ h
⎛
⎝ −1∑

i=−m

s∑
j=1

∥∥∥x̂(i)
j

∥∥∥2 + n−1∑
i=0

s∑
j=1

∥∥∥x̂(i)
j

∥∥∥2
⎞
⎠

≤ τs max
t0−τ≤ξ≤t0

∥∥ϕ(ξ) − ψ(ξ)∥∥2 + hn−1∑
i=0

s∑
j=1

∥∥∥x̂(i)
j

∥∥∥2, for 1 ≤ n < m,
(4.14)

h
n−1∑

i=n−m

s∑
j=1

∥∥∥x̂(i)
j

∥∥∥2 ≤ hn−1∑
i=0

s∑
j=1

∥∥∥x̂(i)
j

∥∥∥2, for n ≥ m. (4.15)

A combination of (4.13)–(4.15) yields that for all n ≥ 0,

h
n−1∑

i=n−m

s∑
j=1

∥∥∥x̂(i)
j

∥∥∥2 ≤ τs max
t0−τ≤ξ≤t0

∥∥ϕ(ξ) − ψ(ξ)∥∥2 + hn−1∑
i=0

s∑
j=1

∥∥∥x̂(i)
j

∥∥∥2. (4.16)

Inserting (4.16) into (4.12) generates (4.11). This completes the proof.

Lemma 4.3 (cf. [5]). Under the condition (2.2), the Pouzet quadrature rule (3.10) satisfies

∥∥∥ẑ(i)j
∥∥∥2 ≤ 3h2η2

⎡
⎣
(

s∑
r=1

∣∣ajr∣∣2
) (

s∑
r=1

∥∥∥x̂(i)
r

∥∥∥2
)

+m
m∑
q=1

(
s∑
r=1

|br |2
) (

s∑
r=1

∥∥∥x̂(i−q)
r

∥∥∥2
)

+

(
s∑
r=1

∣∣ajr∣∣2
)(

s∑
r=1

∥∥∥x̂(i−m)
r

∥∥∥2
)]

, i ≥ 0, j = 1, 2, . . . , s.

(4.17)

5. Numerical Stability

This section will involve the analysis of the global and asymptotical stability properties of
the Pouzet-Runge-Kutta method (3.7)–(3.10). The relevant numerical stability concepts are
defined as follows.

Definition 5.1. The Pouzet-Runge-Kutta method (3.7)–(3.10) is called globally stable for the
problems of class FID (α, β, γ, η) if there exists a stability constant H > 0, which depends
only on α, β, γ, η, τ and the method, such that

‖xn − x̃n‖ ≤ H max
t0−τ≤ξ≤t0

∥∥ϕ(ξ) − ψ(ξ)∥∥, ∀n ≥ 1. (5.1)
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Moreover, the method (3.7)–(3.10) is called asymptotically stable for the problems of class
FID (α, β, γ, η) if

lim
n→∞

‖xn − x̃n‖ = 0. (5.2)

We first establish a result on the global stability of Pouzet-Runge-Kutta methods. An
analogous result on their asymptotical stability will be given in Theorem 5.7.

Theorem 5.2. Assume that the underlying Runge-Kutta method (3.1)with positive bi is algebraically
stable. Then the corresponding Pouzet-Runge-Kutta method (3.7)–(3.10) is globally stable for the class
FID (α, β, γ, η), with stability constant

H =

√√√√√2τ

⎡
⎣2β + η2τ(1 + s) + 6sγη2τ2

s∑
j=1

bj

(
bj +

s∑
r=1

∣∣ajr∣∣2
)⎤
⎦ , (5.3)

whenever

2
(
α + β

)
+
η2τ

σ

s∑
j=1

bj

[(
1 + 6γτ

)
bj + 12γτ

s∑
r=1

∣∣ajr∣∣2
]
≤ 0, (5.4)

where σ = min1≤i≤s{bi} > 0.

Proof. It follows from Lemma 4.3 and
∑s

j=1 bj = 1 (bj > 0) that

h
n∑
i=0

s∑
j=1

bj
∥∥∥ẑ(i)j
∥∥∥2 ≤ 3h3η2

⎡
⎣
⎛
⎝ s∑

j=1

bj
s∑
r=1

∣∣ajr∣∣2
⎞
⎠( n∑

i=0

s∑
r=1

∥∥∥x̂(i)
r

∥∥∥2
)

+m

(
s∑
r=1

b2r

)⎛⎝ s∑
r=1

n∑
i=0

m∑
q=1

∥∥∥x̂(i−q)
r

∥∥∥2
⎞
⎠

+

⎛
⎝ s∑

j=1

bj
s∑
r=1

∣∣ajr∣∣2
⎞
⎠( n∑

i=0

s∑
r=1

∥∥∥x̂(i−m)
r

∥∥∥2
)⎤
⎦.

(5.5)

Also, we have that

n∑
i=0

s∑
r=1

∥∥∥x̂(i−m)
r

∥∥∥2 = n−m∑
i=−m

s∑
r=1

∥∥∥x̂(i)
r

∥∥∥2

≤
n∑
i=0

s∑
r=1

∥∥∥x̂(i)
r

∥∥∥2 +m s∑
r=1

max
−m≤i≤−1

∥∥∥x̂(i)
r

∥∥∥2
(5.6)
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and, by the inequality (3.13) in [1],

n∑
i=0

m∑
q=1

∥∥∥x̂(i−q)
r

∥∥∥2 ≤ m n∑
i=0

∥∥∥x̂(i)
r

∥∥∥2 + m(m + 1)
2

max
−m≤i≤−1

∥∥∥x̂(i)
r

∥∥∥2. (5.7)

Inserting both (5.6) and (5.7) into (5.5) yields

h
n∑
i=0

s∑
j=1

bj
∥∥∥ẑ(i)j
∥∥∥2 ≤ 3h3η2

⎡
⎣ s∑
j=1

bj

(
2

s∑
r=1

∣∣ajr∣∣2 +m2bj

)
n∑
i=0

s∑
r=1

∥∥∥x̂(i)
r

∥∥∥2

+m
s∑
j=1

bj

(
m(m + 1)

2
bj +

s∑
r=1

∣∣ajr∣∣2
)

s∑
r=1

max
−m≤i≤−1

∥∥∥x(i)
r

∥∥∥2
⎤
⎦. (5.8)

With h = τ/m ≤ τ , (3.11) and (4.3), the left side of (5.8) can be bounded by

3η2τ2
⎡
⎣h
σ

s∑
j=1

bj

(
2

s∑
r=1

∣∣ajr∣∣2 + bj
)

n∑
i=0

s∑
r=1

br
∥∥∥x̂(i)

r

∥∥∥2

+τs
s∑
j=1

bj

(
bj +

s∑
r=1

∣∣ajr∣∣2
)

max
t0−τ≤ξ≤t0

∥∥ϕ(ξ) − ψ(ξ)∥∥2
⎤
⎦.

(5.9)

Substituting this bound into (4.4) yields

∥∥ŷn+1∥∥2 ≤ τ
⎡
⎣2β + η2τ + 6sγη2τ2

s∑
j=1

bj

(
bj +

s∑
r=1

∣∣ajr∣∣2
)⎤
⎦ max
t0−τ≤ξ≤t0

∥∥ϕ(ξ) − ψ(ξ)∥∥2

+ 2h

⎡
⎣α + β +

3γη2τ2

σ

s∑
j=1

bj

(
bj + 2

s∑
r=1

∣∣ajr∣∣2
)⎤
⎦ n∑
i=0

s∑
r=1

br
∥∥∥x̂(i)

r

∥∥∥2, n ≥ 0,

(5.10)

which, together with (4.11), (5.10), and
∑s

j=1 bj = 1 (bj > 0), implies that for n ≥ 1,

‖x̂n‖2 =
∥∥ŷn + ẑn∥∥2 ≤ 2

(∥∥ŷn∥∥2 + ‖ẑn‖2
)

≤ 2τ

⎡
⎣2β + η2τ(1 + s) + 6sγη2τ2

s∑
j=1

bj

(
bj +

s∑
r=1

∣∣ajr∣∣2
)⎤
⎦ max
t0−τ≤ξ≤t0

∥∥ϕ(ξ) − ψ(ξ)∥∥2

+ 2h

⎡
⎣2(α + β

)
+
η2τ

σ

s∑
j=1

bj

((
1 + 6γτ

)
bj + 12γτ

s∑
r=1

∣∣ajr∣∣2
)⎤
⎦n−1∑
i=0

s∑
r=1

br
∥∥∥x̂(i)

r

∥∥∥2.
(5.11)
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Observing the condition (5.4) to (5.11), we readily derive the global stability conclusion.
Hence, the theorem is proven.

Applying Proposition 3.1 and Proposition 3.2 to Theorem 5.2, respectively, we can
obtain the following corollaries.

Corollary 5.3. Assume that an underlying Runge-Kutta method is DJ-irreducible and algebraically
stable. Then the corresponding Pouzet-Runge-Kutta method (3.7)–(3.10) is globally stable for the class
FID (α, β, γ, η) whenever (5.4) holds.

Corollary 5.4. Assume that an underlying Runge-Kutta method, with distinct ci and positive
bi, satisfies the simplifying condition B(2s − 2), C(s − 1), D(s − 1), and |R(∞)| ≤ 1.
Then the corresponding Pouzet-Runge-Kutta method (3.7)–(3.10) is globally stable for the class
FID (α, β, γ, η) whenever (5.4) holds.

Remark 5.5. In [14, Chapters IV.5 and IV.12], Hairer and Wanner have shown that the Runge-
Kutta methods of type Gauss, Radau IA, Radau IIA, and Lobatto IIIC are all algebraically
stable and have invertible matrices A, distinct ci, and bi > 0 for all i. Hence, by Theorem 5.2,
we have a more concrete stability result for the Pouzet-Runge-Kutta schemes based on these
important Runge-Kutta methods.

Corollary 5.6. Assume that an underlying Runge-Kutta method (3.1) is of type Gauss, Radau IA,
Radau IIA, or Lobatto IIIC. Then the corresponding Pouzet-Runge-Kutta method (3.7)–(3.10) is
globally stable for the class FID (α, β, γ, η) whenever (5.4) holds.

Next, we will address the asymptotic stability of the extended Pouzet-Runge-Kutta
methods. The notation,

X̂n :=
(
x̂
(n)T

1 , . . . , x̂
(n)T
s

)T
, Ẑn :=

(
ẑ
(n)T

1 , . . . , ẑ
(n)T
s

)T
, F̂n :=

(
f̂
(n)T

1 , . . . , f̂
(n)T
s

)T
, (5.12)

will subsequently be used, and we define a vector norm on the space C
ds by

‖U‖ =

√√√√ s∑
r=1

‖ur‖2, ∀U =
(
u1

T , u2
T , . . . , us

T
)T

∈ C
ds. (5.13)

Moreover, we will employ the Kronecker product ⊗ and its well-known properties (cf. [16]).

Theorem 5.7. Assume that an underlying Runge-Kutta method (3.1) is irreducible, algebraically
stable, and strictly stable at infinity. Then the corresponding Pouzet-Runge-Kutta method (3.7)–
(3.10) is asymptotically stable for the class FDI (α, β, γ, η) whenever (5.4) holds.

Proof. By (3.7) we have

X̂n − Ẑn = (e ⊗ Id)(x̂n − ẑn) + h(A ⊗ Id)F̂n,

x̂n+1 − ẑn+1 = x̂n − ẑn + h
(
bT ⊗ Id

)
F̂n, n ≥ 0.

(5.14)
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When the matrix A is invertible, it follows from the first equation of (5.14) that

hF̂n =
(
A−1 ⊗ Id

)(
X̂n − Ẑn

)
−
(
A−1e ⊗ Id

)
(x̂n − ẑn). (5.15)

Insertion of (5.15) into the second equation of (5.14) yields

x̂n+1 − ẑn+1 =
(
1 − bTA−1e

)
(x̂n − ẑn) +

(
bTA−1 ⊗ Id

)(
X̂n − Ẑn

)
. (5.16)

When A is singular, we adopt a technique, proposed by Hairer and Wanner [14]. It consists
in replacing A by the regular matrix A + εIs everywhere, followed by considering the limit
limε→ 0(A + εIs)

−1, whose existence is assured by irreducibility and algebraic stability of the
method (see Lemma 3.2 in [14]). Thus, we set

A−1 :=

⎧⎨
⎩

A−1, if A is invertible,

lim
ε→ 0

(A + εIs)−1, if A is singular.
(5.17)

Hence, it holds that

x̂n+1 − ẑn+1 = R(∞)(x̂n − ẑn) +
(
bTA−1 ⊗ Id

)(
X̂n − Ẑn

)
, (5.18)

where R(∞) = 1 − bTA−1e. Applying Lemma 4.6 in [2] to (5.18) we obtain

lim
n→∞

‖x̂n+1 − ẑn+1‖ = 0, (5.19)

if and only if

|R(∞)| < 1, lim
n→∞

∥∥∥X̂n − Ẑn

∥∥∥ = 0. (5.20)

Next, we prove (5.19). We need only to show that

lim
n→∞

∥∥∥X̂n − Ẑn

∥∥∥ = 0, (5.21)

since |R(∞)| < 1 is a known condition. In fact, by Proposition 3.1 we know that bi > 0 for all
i. According to this and (5.4), we derive from (5.11) that

lim
n→∞

∥∥∥x̂(n)
r

∥∥∥ = 0, r = 1, 2, . . . , s. (5.22)
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This implies that

lim
n→∞

∥∥∥X̂n

∥∥∥ = lim
n→∞

√√√√ s∑
r=1

∥∥∥x̂(n)
r

∥∥∥2 = 0. (5.23)

Combining (4.17) and (5.22) yields limn→∞‖ẑ(n)j ‖ = 0 for all j, which leads to

lim
n→∞

∥∥∥Ẑn

∥∥∥ = lim
n→∞

√√√√ s∑
j=1

∥∥∥ẑ(n)j

∥∥∥2 = 0. (5.24)

A combination of (5.23) and (5.24) gives (5.21). Hence, (5.19) is true.
Finally, we prove that limn→∞‖x̂n‖ = 0. By (3.9), (2.2), and (5.22), we have

‖ẑn‖ ≤ hη
n−1∑

q=n−m

s∑
j=1

bj
∥∥∥x̂(q)

j

∥∥∥ −→ 0, as n −→ ∞, (5.25)

which means that limn→∞‖ẑn‖ = 0. This, together with (5.19), implies that

‖x̂n‖ ≤ ‖x̂n − ẑn‖ + ‖ẑn‖ −→ 0, as n −→ ∞. (5.26)

Accordingly, the theorem is proven.

The proof of the above theorem reveals that the irreducibility of the method is used
only for the case where the Runge-Kutta matrixA is singular. Hence, for Pouzet-Runge-Kutta
methods whose underlying Runge-Kutta has an invertible the matrix A, the irreducibility
condition in Theorem 5.7 can be dropped. This is made precise in the following theorem.

Theorem 5.8. Assume that an underlying Runge-Kutta method (3.1) with invertible matrix A
and positive bi is algebraically stable and strictly stable at infinity. Then the corresponding Pouzet-
Runge-Kutta method (3.7)–(3.10) is asymptotically stable for the class FDI (α, β, γ, η) whenever the
condition (5.4) holds.

In light of Theorem 5.7, Propositions 3.1, and Propositions 3.2, we obtain the following
analogues of Corollaries 5.3 and 5.4.

Corollary 5.9. Assume that an underlying Runge-Kutta method (3.1) with distinct ci is irreducible,
algebraically stable, and satisfies |R(∞)|/= 1 and the simplifying condition B(2s−2), C(s−1), D(s−1).
Then the corresponding Pouzet-Runge-Kutta method (3.7)–(3.10) is asymptotically stable for the class
FDI (α, β, γ, η) whenever (5.4) holds.

Corollary 5.10. Assume that an underlying Runge-Kutta method (3.1) with distinct ci and positive
bi is irreducible, strictly stable at infinity, and satisfies the simplifying condition B(2s − 2), C(s −
1), D(s − 1). Then the corresponding Pouzet-Runge-Kutta method (3.7)–(3.10) is asymptotically
stable for the class FDI (α, β, γ, η) whenever (5.4) holds.



Abstract and Applied Analysis 17

Similar to Theorem 5.8, the irreducibility condition can be dropped in Corollary 5.10
when the matrix A is invertible. Moreover, by Remark 5.5, Theorem 5.8, and the fact that the
stability functions of Radau IA, Radau IIA, and Lobatto IIIC methods all satisfy R(∞) = 0 (cf.
[14]), one can establish an asymptotic stability result analogous to the one in Corollary 5.6.

Corollary 5.11. Assume that the underlying Runge-Kutta method (3.1) is of type Radau IA,
Radau IIA, or Lobatto IIIC. Then the corresponding Pouzet-Runge-Kutta method (3.7)–(3.10) is
asymptotically stable for the class FDI (α, β, γ, η) whenever (5.4) holds.

6. Numerical Illustration

In order to illustrate the effectiveness of the extended Pouzet-Runge-Kutta methods (3.7)–
(3.10), we will apply the two-stage methods of type Gauss, Radau IA, Radau IIA, or Lobatto
IIIC to the system (2.23), respectively, where the solution domain is chosen as [0, 4

√
3].

These methods produce a series of high-precision numerical solutions for the (2.22) on
[0, 4

√
3; 0, 2π].
Let

Γ := 2
(
α + β

)
+

η2τ

min1≤i≤s{bi}
s∑
j=1

bj

[(
1 + 6γτ

)
bj + 12γτ

s∑
r=1

∣∣ajr∣∣2
]
. (6.1)

The corresponding Γ−values of the above methods applied to the system (2.23) are listed in
the Table 1(a), indicating that the methods satisfy the condition (5.4). Hence, the methods are
globally stable by Corollary 5.6, and asymptotically stable by Corollary 5.11, except for the
Gauss-type method.

The excellent stability properties of the methods lead us to expect good numerical
results. In order to confirm this, we use the Newton-Raphson iteration technique to
implement the above numerical schemes. Taking the following four groups of space-time
stepsizes:

(Δv, h) =

(
π

30
,

√
3

16

)
,

(
π

60
,

√
3

32

)
,

(
π

120
,

√
3

64

)
,

(
π

240
,

√
3

128

)
, (6.2)

and then applying the above Pouzet-Runge-Kutta schemes to the system (2.23) on [0, 4
√
3],

respectively, we obtain sixteen sets of numerical solutions. The numerical solution generated
by the extended two-stage Gauss-type method with space-time stepsizes (π/240,

√
3/128) is

plotted in Figure 1. The solution figures for the other methods are quite similar to Figure 1,
and hence we omit them here. In order to show the computational precision of the obtained
numerical solutions, we use

err := max
1≤n≤N

‖xn − û(tn)‖∞ (6.3)

to characterize the errors of the methods, where

û(tn) :=
(
sinv1 exp(−v1tn), sinv2 exp(−v2tn), . . . , sinvl−1 exp(−vl−1tn)

)T (6.4)
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Figure 1: Numerical solution of (2.22) by 2-stage Gauss-type method.

is the vector whose entries consist of the system (2.22) true solutions at themeshpoints (vi, tn),
i = 1, 2, . . . , l − 1. The errors of the above four methods with different stepsizes are displayed
in Table 1(b); they confirm again that the methods are rather effective.

7. Concluding Remarks

In paper [1], with a combination of Runge-Kutta methods and Pouzet quadrature rules, the
authors also obtained an alternative type of numerical methods for (1.1), namely,

x
(n)
i = xn + h

s∑
j=1

aijF
(
t
(n)
j , x

(n)
j , x

(n−m)
j , z

(n)
j

)
, i = 1, 2, . . . , s,

xn+1 = xn + h
s∑
j=1

bjF
(
t
(n)
j , x

(n)
j , x

(n−m)
j , z

(n)
j

)
, n ≥ 0,

(7.1)

where the meanings of the notations are similar to those indicated in method (3.7) and
{z(n)j }sj=1 are determined by (3.10). But such methods cannot be applied directly to systems
(1.4) unless the integrated function g is continuously differentiable on its domain. When the
latter holds, the system (1.4) can be transformed into

x′(t) = F

(
t, x(t), x(t − τ),

∫ t
t−τ

gt(t, ξ, x(ξ))dξ

)
, t ≥ t0,

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,
(7.2)

where

F
(
t, x, y, z

)
= f
(
t, x, y

)
+ g(t, t, x) − g(t, t − τ, y) + z. (7.3)
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Table 1: (a) The Γ-values of the methods for (2.23), (b) The errors of the numerical solutions of (2.22) by
methods (3.7)–(3.10).

(a)

Gauss Radau IA Radau IIA Lobatto IIIC

−3.1302e−001 −2.2800e−001 −2.1530e−001 −2.9081e−001
(b)

(Δv, h) Gauss Radau IA Radau IIA Lobatto IIIC

(π/30,
√
3/16) 9.1064e−006 3.7388e−004 3.8044e−004 1.3926e−002

(π/60,
√
3/32) 5.7295e−007 4.6647e−005 4.8352e−005 3.5011e−003

(π/120,
√
3/64) 3.5879e−008 5.8133e−006 6.0818e−006 8.7739e − 004

(π/240,
√
3/128) 2.2433e−009 7.2537e−007 7.6236e−007 2.1957e − 004

Table 2: (a) The errors of the numerical solutions of (2.22) by methods {(7.1), (3.10)}, (b) The CPU times
(in second) of methods (3.7)–(3.10) for (2.23) and (c) The CPU times (in second) of methods {(7.1), (3.10)}
for (2.23).

(a)

(Δv, h) Gauss Radau IA Radau IIA Lobatto IIIC

(π/30,
√
3/16) 9.0193e − 006 3.7273e − 004 3.8966e − 004 1.4083e − 002

(π/60,
√
3/32) 5.6739e − 007 4.6491e − 005 4.9558e − 005 3.5453e − 003

(π/120,
√
3/64) 3.5534e − 008 5.7933e − 006 6.2360e − 006 8.8912e − 004

(π/240,
√
3/128) 2.2217e − 009 7.2284e − 007 7.8186e − 007 2.2261e − 004

(b)

(Δv, h) Gauss Radau IA Radau IIA Lobatto IIIC

(π/30,
√
3/16) 7.0780e + 000 6.8750e + 000 6.9060e + 000 6.9380e + 000

(π/60,
√
3/32) 4.4468e + 001 4.4500e + 001 4.4766e + 001 4.5172e + 001

(π/120,
√
3/64) 3.3039e + 002 3.3156e + 002 3.3281e + 002 3.3264e + 002

(π/240,
√
3/128) 2.7117e + 003 2.7042e + 003 2.7109e + 003 2.7291e + 003

(c)

(Δv, h) Gauss Radau IA Radau IIA Lobatto IIIC

(π/30,
√
3/16) 4.2180e + 000 4.2350e + 000 4.2650e + 000 4.2820e + 000

(π/60,
√
3/32) 3.0953e + 001 3.0234e + 001 3.1031e + 001 3.1125e + 001

(π/120,
√
3/64) 2.7055e + 002 2.8400e + 002 2.7213e + 002 2.7105e + 002

(π/240,
√
3/128) 2.7821e + 003 2.8164e + 003 2.7950e + 003 2.8006e + 003

This is just of the form (1.1) and implies, under the condition that g is continuously
differentiable, that systems (1.4) can be solved bymethods {(7.1), (3.10)}. Thus, the numerical
stability theory in [1] is applicable and hence a series of global and asymptotical stability
results can be followed immediately. However, it is difficult to compare the theoretical results
in this way with those in previous sections since both discretization schemes are different and
there is no direct relationship between the condition (2.1)-(2.2) and the condition imposed on
(1.1) (see [1]). Moreover, we have noted that a system (1.4) can be solved by scheme {(7.1),
(3.10)} only when g continuously differentiable, which shows that schemes (3.7)–(3.10) have
a wider applicable range than schemes {(7.1), (3.10)} do.
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In the following, we give a comparison between methods (3.7)–(3.10) and methods
{(7.1), (3.10)} with some numerical experiments. It is evident that the system (2.23) can
be changed into the form (1.1). Hence this system also can be solved by methods {(7.1),
(3.10)}. Similarly, we take the space-time stepsizes in (6.2) and apply the two-stage methods
{(7.1), (3.10)} of type Gauss, Radau IA, Radau IIA, and Lobatto IIIC to the system (2.23) on
[0, 4

√
3], respectively, then a series of high-precision numerical solutions can be worked out,

whose errors are displayed in Table 2(a). It follows from Tables 1(b) and 2(a)–2(c) that the
numerical precisions and the computational times of the both methods based on the same
type of underlying Runge-Kutta method are almost similar under the same stepsize. This
implies that methods (3.7)–(3.10) are comparable.
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