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This paper investigates the consensus problem in mean square for uncertain multiagent systems
with stochastic measurement noises and symmetric or asymmetric time-varying delays. By
combining the tools of stochastic analysis, algebraic graph theory, and matrix theory, we analyze
the convergence of a class of distributed stochastic approximation type protocols with time-
varying consensus gains. Numerical examples are also given to illustrate the theoretical results.

1. Introduction

In recent years, more and more researchers in the control community have focused their
attention on distributed coordination of multiagent systems due to its broad applications
in many fields such as unmanned aerial vehicles, mobile robots, autonomous underwater
vehicles, automated highway systems, and formation control of satellite clusters.

In the cooperative control, a key problem is to design distributed protocols such
that group of agents can achieve consensus through local communications. So far,
many consensus results have been established for both discrete-time and continuous-time
multiagent systems [1–9]. A simple but interesting model of multiple agents moving in the
plane was proposed and discussed in [3]. A theoretical framework for consensus problems
of continuous-time multi-agent systems was presented in [5]. Some recent progress on
consensus of multi-agent systems was given in [6, 7]. When there exist time-varying delays
between agents, a reduced-order system approach is used to consensus of multi-agent
systems in [8, 9].

For most of consensus results in the literature, it is usually assumed that each agent
can obtain its neighbor’s information precisely. Since real networks are often in uncertain
communication environments, it is necessary to consider consensus problems under



2 Abstract and Applied Analysis

measurement noises. Such consensus problems have been studied by several researchers [10–
15]. In [10, 11], the authors studied consensus problemswhen there exist noisymeasurements
of the states of neighbors, and a stochastic approximation approach was applied to obtain
mean square and almost sure convergence in models with fixed network topologies or with
independent communications failures. Necessary and/or sufficient conditions for stochastic
consensus of multiagent systems were established for the case of fixed topology and time-
varying topologies in [12, 13]. The distributed consensus problem for linear discrete-time
multiagent systems with delays and noises was investigated in [14] by introducing a novel
technique to overcome the difficulties induced by the delays and noises. In [15], a novel kind
of cluster consensus of multiagents systems with several different subgroups was considered
based on Markov chains and nonnegative matrix analysis.

Generally speaking, multiagent systems usually can be regarded as a special kind of
complex networks. Complex networks have been intensively investigated over the last two
decades [16–18]. Note that measurement noises, time delays, and parametric uncertainties
may arise naturally in the process of information transmission between agents, for example,
because of the congestion of the communication channels, the asymmetry of interactions, and
the finite transmission speed due to the physical characteristics of the medium transmitting
the information. Then, it is natural to consider the effect of measurement noises, time-varying
delays, and parametric uncertainties on consensus problem of multi-agent systems.

To the best of our knowledge, little has been known about the consensus of uncertain
multi-agent systems with measurement noises and time-varying delays. In [19], the authors
proposed an algorithm which is robust against the bounded time-varying delays and
bounded noises. It is natural to conjecture that consensus of multi-agent systems should
also be robust to uncertainties. However, it leads to difficulties due to the existence of
measurement noises, parametric uncertainties, and symmetric or asymmetric time-varying
delays, since most of methods in the literature fail to apply.

In this paper, by taking measurement noises, symmetric or asymmetric time-varying
delays, and parametric uncertainties into consideration, we will study the consensus problem
for networks of continuous-time integrator agents under dynamically changing and directed
topologies. Based on a reduced-order transformation and a new Lyapunov function, we
establish two sufficient conditions in terms of linear matrix inequalities such that mean
square consensus is achieved asymptotically for all admissible delays and uncertainties. The
feasibility of the given linear matrix inequalities is also analyzed.

Throughout this paper, AT means the transpose of the matrix A. We say that X > Y
if X − Y is positive definite, where X and Y are symmetric matrices of same dimensions.
‖ · ‖ refers to the Euclidean norm for vectors. a = [a · · ·a]T is a column vector of appropriate
dimension, where a is a constant. I means an identity matrix of appropriate dimension.

2. Preliminaries

We denote a weighted digraph by G = (V, E,A), where V = {1, 2, . . . , n} is the set of nodes
with n ≥ 2, node i represents the ith agent; E ⊆ V × V is the set of edges, and an edge of
G is denoted by an order pair (i, j); A = [aij] is an n × n-dimensional weighted adjacency
matrix with aii = 0. Say (i, j) ∈ E if aji > 0. The set of neighbors of the ith agent is denoted
by Ni = {j ∈ V : (j, i) ∈ E}. If (i, j) is an edge of G, node i is called the parent of node j.
A directed tree is a directed graph, where every node, except one special node without any
parent, which is called the root, has exactly one parent, and the root can be connected to any
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other nodes through paths. A spanning tree of a digraph is a directed tree formed by graph
edges that connect all the nodes of the graph.

The n × n-dimensional Laplacian matrix L(G) = [lij] of digraph G is defined by lij =
∑n

k=1 aik for i = j and lij = −aij for i /= j. It is easy to see that L(G) has at least one zero
eigenvalue and L(G)1 = 0. Below is an important property of Laplacian matrices shown in
[9].

G = (V, E,A) has a spanning tree if and only if the matrix EL(G)F is Hurwitz stable,
where

E = [1 − In−1], F =

[
0T

In−1

]

. (2.1)

Consider a network of continuous-time first-order integrator agents with the dynamics

ẋi(t) = ui(t), i ∈ V, (2.2)

where xi ∈ R is the state of the ith agent, ui ∈ R is the control input. When only taking
measurement noises into consideration, the control input ui (or protocol) is designed to take
the form [12]:

ui(t) =
∑

j∈Ni

a(t)aij

[
yij(t) − xi(t)

]
, i ∈ V, (2.3)

where the consensus-gain function a(t) : [0,∞) → (0,∞) is piecewise continuous; yij(t) =
xj(t)+σijηij(t) denotes the measurement of the jth agent’s state xj(t) by the ith agent; {ηij(t) :
i, j ∈ V } are independent standard white noises; σij ≥ 0 is the noise intensity; σij = 0 for
j /∈ Ni. It has been shown that the consensus-gain function plays a key role in the convergence
analysis of the designed protocol.

Note that time delays and parametric uncertainties may arise naturally in the process
of information transmission between agents. We consider the following protocol of the form:

ui(t) =
∑

j∈Ni

a(t)
(
aij + Δaij(t)

)[
zij(t) − xi

(
t − τij(t)

)]
, (2.4)

where zij(t) = xj(t − τij(t)) + σijηij(t); time delays τij(t) : [0,∞) → [0,∞), i ∈ V , j ∈ Ni,
are piecewise continuous and bounded functions; a(t) and σij are defined as above; Δaij(t),
i, j ∈ V are parametric uncertainties satisfying |Δaij(t)| ≤ εij (εij > 0) and Δaii(t) = 0.
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For the sake of convenience, let τij(t) ∈ {τk(t) : k = 1, 2, . . . , m}. Denote the ith row of
the matrix A(t) = A + ΔA(t) by αi(t),

Σi = diag{σi1, σi2, . . . , σin},

Σt = diag{α1(t)Σ1, α2(t)Σ2, . . . , αn(t)Σn},

ηi(t) =
[
ηi1(t), ηi2(t), . . . , ηin(t)

]T
,

η(t) =
[
ηT
1 (t), η

T
2 (t), . . . , η

T
n(t)
]T
,

(2.5)

and x(t) = [x1(t), x2(t), . . . , xn(t)]
T . Substituting the control (2.4) into the system (2.1) leads

to

ẋ(t) = −a(t)
m∑

k=1

Lk(t)x(t − τk(t)) + a(t)Σtη(t), (2.6)

where the n × n-dimensional matrix Lk(t) = [l(k)ij (t)] is defined as followings:

l
(k)
ij (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−aij −Δaij(t), j /= i, τk(·) = τij(·)

0, j /= i, τk(·)/= τij(·)

−
n∑

p=1

l
(k)
ip (t), j = i.

(2.7)

It is easy to see

Lk(t)1 = 0,
m∑

k=1

Lk(t) = L(G) + ΔL(t), (2.8)

where ΔL(t) = [Δlij(t)]with Δlij(t) =
∑n

k=1 Δaik(t) for i = j and Δlij(t) = −Δaij(t) for i /= j.
Let y = Ex, E, and F be defined by (2.1). From (2.6), we have the following reduced-

order system:

ẏ(t) = a(t)
m∑

k=1

ELk(t)Fy(t − τk(t)) + a(t)EΣtη(t). (2.9)

It is a system driven by an n2-dimensional standard white noise, which can be written in the
form of the Itô stochastic differential equation

dy(t) = a(t)
m∑

k=1

ELk(t)Fy(t − τk(t))dt + a(t)EΣtdw(t), (2.10)
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where w(t) = [w11(t), . . . , w1n(t), . . . , wnn(t)]
T is an n2-dimensional standard Brownian

motion. Without loss of generality, we let τk(t) ≡ τ(t) for k = 1, 2, . . . , m since the case of
multiple delays can be similarly studied. In this case, the protocol (2.4) takes the following
simple form:

ui(t) =
∑

j∈Ni

a(t)
(
aij + Δaij(t)

)[
yij(t − τ(t)) − xi(t − τ(t))

]
, (2.11)

and the system (2.10) reduces to

dy(t) = a(t)E(L + ΔL(t))Fy(t − τ(t))dt + a(t)EΣtdw(t). (2.12)

In the sequel, we assume that the parametric uncertainty ΔL(t) to be of the form

ΔL(t) = DG(t)H, (2.13)

whereD andH are constant matrices with appropriate dimensions, and G(t) is an unknown
matrix satisfying GT (t)G(t) ≤ I. Suppose also that there exists at least one edge (j, i) ∈ E
such that σij > 0, and τ(t) is a piecewise continuous function on [0,∞) and 0 ≤ τ(t) ≤ h,
where h > 0 is a constant. Here, the initial function of the system (2.12) is assumed to satisfy
φ(t) ≡ x(0) = [x1(0) · · ·xn(0)]

T on [−h, 0].
We say the system (2.2) under protocol (2.11) asymptotically achieves mean square

consensus if limt→∞E[(xi(t) − xj(t))
2] = 0 for all i, j ∈ V and i /= j.

3. Convergence Analysis of Protocol (2.11)

Before establishing the main result of this paper, we first show the relation between a linear
matrix inequality and the collectivity of graph G, which can be used to analyze the feasibility
of the given consensus condition.

Lemma 3.1. If G has a spanning tree, then there exist matrices P > 0, Q > 0, P1, P2 of compatible
dimensions, constants h > 0, and γ > 0 such that

Φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Φ11 Φ12 PT
1 L̃ PT

1 L̃

∗ Φ22 PT
2 L̃ PT

2 L̃

∗ ∗ −h−1Q 0

∗ ∗ ∗ −γIn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.1)

where Φ11 = L̃TP1 + PT
1 L̃, Φ12 = P − PT

1 + L̃TP2, Φ22 = −PT
2 − P2 + hQ, and L̃ = EL(G)F, E, and F

is defined by (2.1).
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Proof. By Lemma 3.1, we have that there exists a matrix P > 0 such that L̃TP + PL̃ < 0 if G has
a spanning tree. Based on the Finsler Lemma [20], there exist matrices P1 and P2 such that

⎡

⎣
L̃TP1 + PT

1 L̃ P − PT
1 + L̃TP2

∗ −PT
2 − P2

⎤

⎦ < 0. (3.2)

Let Q = In. Then, (3.2) implies (3.1) by choosing h and γ sufficiently small.

The following two lemmas will be used in the proof of the main result.

Lemma 3.2 (see [21]). For any continuous vector z(t) on [t − τ(t), t] and matrix W > 0, where
t ∈ [0,∞) and 0 ≤ τ(t) ≤ h, the following inequality holds:

(∫ t

t−τ(t)
z(u)du

)T

W

∫ t

t−τ(t)
z(u)du ≤ h

∫ t

t−τ(t)
zT (u)Wz(u)du. (3.3)

Lemma 3.3 (see [22]). Let U, V , and F be real matrices of appropriate dimensions with FTF ≤ I,
then for any scalar ε > 0, one has UFV + V TFTUT ≤ ε−1UUT + εV TV .

Now, let us present the main result of this paper. We assume that the positive
consensus-gain function a(t) satisfies one of the following assumptions:

(A1)
∫∞
0 a(t)dt = +∞,

∫∞
0 a2(t)dt < ∞, and a(t) ≤ 1 for sufficiently large t;

(A2)
∫∞
0 a(t)dt = +∞, limt→∞a(t) = 0.

Theorem 3.4. Assume that (A1) or (A2) holds and 0 ≤ τ(t) ≤ h. If there exist matrices P > 0,Q > 0,
P1, P2 of compatible dimensions, constants γ > 0 and ε > 0 such that

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ̃11 Φ̃12 Φ̃13 Φ̃14 PT
1 D̃

∗ Φ̃22 PT
2 L̃ PT

2 L̃ PT
2 D̃

∗ ∗ Φ̃33 Φ̃34 0

∗ ∗ ∗ Φ̃44 0

∗ ∗ ∗ ∗ −εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.4)

where Φ̃11 = Φ11 + εFTHTHF, Φ̃12 = Φ12, Φ̃13 = PT
1 L̃ + εFTHTHF, Φ̃14 = PT

1 L̃ + εFTHTHF,
Φ̃22 = Φ22, Φ̃33 = −h−1Q + εFTHTHF, Φ̃34 = εFTHTHF, Φ̃44 = −γI + εFTHTHF, Φ11, Φ12, and
Φ22 are defined as in Lemma 3.1, E and F is defined by (2.1), and D̃ = ED, then the system (2.2)
under protocol (2.11) asymptotically achieves mean square consensus for all admissible uncertainties
satisfying (2.13).

Proof. For the reduced order system (2.12), let

ξ(t) = E(L + ΔL(t))Fy(t − τ(t)) = L̃ty(t − τ(t)). (3.5)
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Then, (2.12) reduces to

dy(t) = a(t)ξ(t)dt + a(t)EΣdw(t). (3.6)

Note that (3.4) holds. We can choose a constant λ > 0 sufficiently small such that

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ̃11 + λP Φ̃12 PT
1 L̃ Φ̃14 PT

1 D̃

∗ Φ̃22 PT
2 L̃ PT

2 L̃ PT
2 D̃

∗ ∗ −h̃−1Q 0 0

∗ ∗ ∗ Φ̃44 0

∗ ∗ ∗ ∗ −εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.7)

where h̃ = e−λhh−1.
Let

V (t) = yT (t)Py(t) +
∫ t

t−h
e−λ

∫ t
s a(u)du(s − t + h)a2(s)ξT (s)Qξ(s)ds

+ β

∫ t

t−h
e−λ

∫ t
s a(u)du(s − t + h)a2(s)ds,

(3.8)

where β > 0 is a constant to be determined. By the Itô formula, we have

dV (t) =
[
2a(t)yT (t)Pξ(t) + c(t)a2(t)

]
dt + 2a(t)yT (t)PEΣtdw(t)

+

[

ha2(t)ξT (t)Qξ(t) −
∫ t

t−h
e−λ

∫ t
s a(u)dua2(s)ξT (s)Qξ(s)ds

− λa(t)
∫ t

t−h
e−λ

∫ t
s a(u)du(s − t + h)a2(s)ξT (s)Qξ(s)dsdt

−β
∫ t

t−h
e−λ

∫ t
s a(u)dua2(s)ds − λβa(t)

∫ t

t−h
e−λ

∫ t
s a(u)du(s − t + h)a2(s)ds

]

dt,

(3.9)

where c(t) = tr(ΣT
t E

TPEΣt) + βh. It is not difficult to see that there exists a scalar m1 > 0 such
that c(t) ≤ m1 due to the fact that |Δaij(t)| ≤ εij . Thus,

dV (t) + λa(t)V (t)dt = LV (t)dt + 2a(t)yT (t)PEΣtdw(t), (3.10)
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where

LV (t) = λa(t)yT (t)Py(t) + 2a(t)yT (t)Pξ(t) + c(t)a2(t)

+ ha2(t)ξT (t)Qξ(t) −
∫ t

t−h
e−λ

∫ t
s a(u)dua2(s)ξT (s)Qξ(s)ds

− β

∫ t

t−h
e−λ

∫ t
s a(u)dua2(s)ds.

(3.11)

Without loss of generality, say a(t) ≤ 1 for t ≥ 0. Then, we have

LV (t) ≤ λa(t)yT (t)Py(t) + 2a(t)yT (t)Pξ(t) +m1a
2(t)

+ ha(t)ξT (t)Qξ(t) − e−λha(t)
∫ t

t−τ(t)
a2(s)ξT (s)Qξ(s)ds − βe−λh

∫ t

t−τ(t)
a2(s)ds.

(3.12)

On the other hand, integrating (3.7) from t − τ(t) to t yields

y(t) − y(t − τ(t)) =
∫ t

t−τ(t)
a(s)ξ(s)ds +

∫ t

t−τ(t)
a(s)EΣsdw(s). (3.13)

Therefore, by the definition of ξ(t), we have

0 = L̃ty(t − τ(t)) − ξ(t)

= L̃ty(t) − ξ(t) − L̃t

∫ t

t−τ(t)
a(s)ξ(s)ds

− L̃t

∫ t

t−τ(t)
a(s)EΣsdw(s),

(3.14)

which implies that

0 = 2a(t)
[
yT (t)PT

1 + ξT (t)PT
2

]

×
[

L̃t

(

y(t) −
∫ t

t−τ(t)
a(s)ξ(s)ds −

∫ t

t−τ(t)
a(s)EΣdw(s)

)

− ξ(t)

]

.

(3.15)

By Lemma 3.2, we have

∫ t

t−τ(t)
a2(s)ξT (s)Qξ(s)ds ≥ h−1

(∫ t

t−τ(t)
a(s)ξ(s)ds

)T

Q

∫ t

t−τ(t)
a(s)ξ(s)ds. (3.16)
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Using the basic inequality −2uTv ≤ γuTu + γ−1vTv for any vector u and v, we have

− 2
[
yT (t)PT

1 + ξT (t)PT
2

]
L̃t

∫ t

t−τ(t)
a(s)EΣsdw(s)

= −2[yT (t) ξT (t)
]
[
PT
1

PT
2

]

L̃t

∫ t

t−τ(t)
a(s)EΣsdw(s)

≤ γ−1
[
yT (t) ξT (t)

]
[
PT
1

PT
2

]

L̃tL̃
T
t

[
P1 P2

]
[
y(t)

ξ(t)

]

+ γ

(∫ t

t−τ(t)
a(s)EΣsdw(s)

)T ∫ t

t−τ(t)
a(s)EΣsdw(s).

(3.17)

Substituting (3.15)–(3.17) into (3.12) gives

LV (t) ≤ a(t)ωT (t)Ω(t)ω(t) +m1a
2(t) − βe−λh

∫ t

t−τ(t)
a2(s)ds

+ γ

(∫ t

t−τ(t)
a(s)EΣdw(s)

)T ∫ t

t−τ(t)
a(s)EΣdw(s),

(3.18)

where ω(t) = [yT (t) ξT (t) − ∫ tt−τ(t) a(s)ξT (s)ds]T , and

Ω(t) =

⎡

⎢
⎢
⎢
⎢
⎣

Ω11 Ω12 PT
1 L̃t

∗ Ω22 PT
2 L̃t

∗ ∗ −h̃−1Q

⎤

⎥
⎥
⎥
⎥
⎦
+ γ−1

⎡

⎣
PT
1

PT
2

⎤

⎦L̃tL̃
T
t

[
P1 P2

]
, (3.19)

with Ω11 = L̃T
t P1 + PT

1 L̃t + λP , Ω12 = P − PT
1 + L̃T

t P2, Ω22 = Φ22. It is easy to see that Ω(t) < 0 if
and only if

Φ +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

PT
1 D̃

PT
2 D̃

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

G(t)
[
H̃ 0 H̃ H̃

]
+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

H̃T

0

H̃T

H̃T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

G(t)
[
D̃T P1 D̃T P2 0 0

]
< 0, (3.20)

where Φ is defined by (3.1) and H̃ = HF. By Lemma 3.3, we have that (3.20) is implied by
(3.7). Thus, (3.7) yields that Ω(t) < 0 for t ≥ 0.



10 Abstract and Applied Analysis

Note that Ω(t) < 0 for t ≥ 0, and

E

⎡

⎣

(∫ t

t−τ(t)
a(s)EΣsdw(s)

)T ∫ t

t−τ(t)
a(s)EΣsdw(s)

⎤

⎦ =
∫ t

t−τ(t)
d(s)a2(s)ds, (3.21)

where d(t) = tr(ΣT
t E

TEΣt) satisfying d(t) ≤ m2 for some m2 > 0. By choosing β = γm2e
λh, we

get from (3.10) and (3.18) that

E[V (t)] ≤ E[V (0)] − λ

∫ t

0
a(s)E[V (s)]ds +m1

∫ t

0
a2(s)ds. (3.22)

By the comparison theorem [23], we have

E[V (t)] ≤ E[V (0)]e−λ
∫ t
0 a(s)ds +m1

∫ t

0
e−λ

∫ t
s a(u)dua2(s)ds. (3.23)

If (A1) holds, that is,
∫∞
0 a(s)ds = ∞ and

∫∞
0 a2(s)ds < ∞, then, similar to the proof of

Theorem 3.2 in [12], we can conclude from (3.23) that limt→∞E[V (t)] = 0. If (A2) holds,
by the L’Hopital rule, we have

lim
t→∞

∫ t

0
e−λ

∫ t
s a(u)dua2(s)ds = lim

t→∞
a(t)
λ

= 0, (3.24)

which also implies limt→∞E[V (t)] = 0. Based on the construction of V (t) and the transforma-
tion y = Ex, we have

lim
t→∞

E
[
(x1(t) − xi+1(t))2

]
= lim

t→∞
E
[
y2
i (t)
]
= 0, i = 1, 2, . . . , n − 1. (3.25)

It implies that limt→∞E[(xi(t) − xj(t))
2] = 0 for i, j ∈ V and i /= j. The proof is complete.

Remark 3.5. By Lemma 3.1, we can easily see that (3.4) holds for appropriate constant h >
0 and admissible uncertainties (e.g., ‖H‖ is sufficiently small) if G has a spanning tree.
Therefore, Theorem 3.4 shows that mean square consensus of the system (2.2) under protocol
(2.11) is robust to delays and uncertainties if (A1) or (A2) holds. For given matrices D and
H, the tolerable upper bound of delay can be derived from (3.4) by using the Matlab’s LMI
Toolbox.

Remark 3.6. For the case of multiple delays, it is not difficult to conclude that the system
(2.2) under protocol (2.4) asymptotically achieves mean square consensus for admissible
delays and parametric uncertainties if G has a spanning tree and (A1) or (A2) holds. Since
the analysis procedure is similar to the above, we omit it here and leave it to the interested
readers.
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4. Convergence Analysis for the Case of Asymmetric Delays

Themethod used in this paper can also be applied to the case when delay only affects the state
of neighbors. Assume that there exists at least one agent such that the information exchange
between this agent and its neighbors is free of delay, stochastic noises, and parametric
uncertainties. For example, among agents there exists a leader xi0 satisfying ẋi0 = 0. Without
loss of generality, consider the following protocol:

u1(t) =
∑

j∈N1

a(t)a1j
[
xj(t) − x1(t)

]
,

ui(t) =
∑

j∈Ni

a(t)
(
aij + Δaij(t)

)[
z̃ij(t) − xi(t)

]
, i = 2, . . . , n,

(4.1)

where z̃ij(t) = xj(t − τ(t)) + σijηij , τ , a, aij , Δaij , σij and ηij are defined as above. The case of
multiple time-varying delays can be similarly discussed.

Note that

xj(t − τ(t)) − xi(t) =
[
xj(t − τ(t)) − x1(t − τ(t))

]
+ [x1(t) − xi(t)]

− [x1(t) − x1(t − τ(t))], i, j = 2, 3, . . . , n,

x1(t) − x1(t − τ(t)) =
∫ t

t−τ(t)
ẋ1(s)ds.

(4.2)

If we set y = Ex, where E is defined as above, then we have the following reduced-order
system:

ẏ(t) = a(t)

[

L1(t)y(t) + L2(t)y(t − τ(t)) + L3(t)
∫ t

t−τ(t)
a(s)y(s)ds

]

+ a(t)Σ̂tη̂(t), (4.3)

where Li(t) = Li + ΔLi(t) for i = 1, 2, 3,

L1 = −diag

⎧
⎨

⎩

n∑

j=1

a2j ,
n∑

j=1

a3j , . . . ,
n∑

j=1

anj

⎫
⎬

⎭
− 1
[
a12 a13 · · · a1n

]
,

ΔL1(t) = −diag

⎧
⎨

⎩

n∑

j=1

Δa2j(t),
n∑

j=1

Δa3j(t), . . . ,
n∑

j=1

Δanj(t)

⎫
⎬

⎭
,
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L2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a22 a23 · · · a2n

a32 a33 · · · a3n

...
...

. . .
...

an2 an3 · · · ann

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ΔL2(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Δa22(t) Δa23(t) · · · Δa2n(t)

Δa32(t) Δa33(t) · · · Δa3n(t)

...
...

. . .
...

Δan2(t) Δan3(t) · · · Δann(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

L3 = −diag

⎧
⎨

⎩

n∑

j=1

a2j ,
n∑

j=1

a3j , . . . ,
n∑

j=1

anj

⎫
⎬

⎭
1
[
a12 a13 · · · a1n

]
,

ΔL3(t) = −diag

⎧
⎨

⎩

n∑

j=1

Δa2j(t),
n∑

j=1

Δa3j(t), . . . ,
n∑

j=1

Δanj(t)

⎫
⎬

⎭
1
[
a12 a13 · · · a1n

]
,

(4.4)

Σ̂t = −diag{α2(t)Σ2, . . . , αn(t)Σn}, η̂(t) = [ηT
2 (t)η

T
3 (t) · · ·ηT

n(t)]
T , αi(t), Σi and ηi are defined as

above. Therefore, (4.3) can be written in the form of the Itô stochastic differential equation.

dy(t) = a(t)

[

L1(t)y(t) + L2(t)y(t − τ(t)) + L3(t)
∫ t

t−τ(t)
a(s)y(s)ds

]

dt + a(t)Σ̂tdw(t).

(4.5)

It is not difficult to verify that L1 + L2 = EL(G)F. In the following, we assume that the uncer-
tainties ΔLi(t) to be of the form

ΔL1(t) + ΔL2(t) = D1F(t)H1, ΔLi(t) = DiF(t)Hi, i = 2, 3, (4.6)

where Di, Hi are constant matrices of appropriate dimensions and F(t) satisfies (2.13).
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Theorem 4.1. Assume that (A1) or (A2) holds and 0 ≤ τ(t) ≤ h. If there exist matrices P > 0,Q > 0,
S > 0, P1, P2, and P3 of compatible dimensions, constants h > 0, γ > 0 and εi > 0 for i = 1, 2, 3 such
that

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ11 Ψ12 PT
1 L2 Ψ14 PT

1 L2 PT
1 D1 PT

1 D2 PT
1 D3

∗ Ψ22 PT
2 L2 Ψ24 PT

2 L2 PT
2 D1 PT

2 D2 PT
2 D3

∗ ∗ Ψ33 LT
2P3 ε2E

T
2E2 0 0 0

∗ ∗ ∗ Ψ44 PT
3 L2 PT

3 D1 PT
3 D2 0

∗ ∗ ∗ ∗ Ψ55 0 0 0

∗ ∗ ∗ ∗ ∗ −ε1I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε3I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (4.7)

where Ψ11 = (L1 + L2)
TP1 + PT

1 (L1 + L2) + hS + ε1E
T
1E1, Ψ12 = P − PT

1 + (L1 + L2)
TP2, Ψ14 =

PT
1 L3 + (L1 + L2)

TP3, Ψ22 = −PT
2 − P2 + hQ, and Ψ24 = PT

2 L3 − P3, Ψ33 = −h−1Q + ε2E
T
2E2,

Ψ44 = −h−1S+εET
3E3,Ψ55 = −γI+ε2ET

2E2, then the system (2.2) under protocol (4.1) asymptotically
achieves mean square consensus for all admissible uncertainties satisfying (2.13).

Proof. Let

ξ(t) = L1(t)y(t) + L2(t)y(t − τ(t)) + L3(t)
∫ t

t−τ(t)
a(s)y(s)ds. (4.8)

Then, (4.5) reduces to

dy(t) = a(t)ξ(t) + a(t)Σ̂tdw(t). (4.9)

Choose the Lyapunov function as the following:

V (t) = yT (t)Py(t) +
∫ t

t−h
e−λ

∫ t
s a(u)du(s − t + h)a2(s)ξT (s)Qξ(s)ds

+
∫ t

t−h
e−λ

∫ t
s a(u)du(s − t + h)a2(s)yT (s)Sy(s)ds

× β

∫ t

t−h
e−λ

∫ t
s a(u)du(s − t + h)a2(s)ds,

(4.10)

where β > 0 is an appropriate constant to be determined. Without loss of generality, say
a(t) ≤ 1 for t ≥ 0. By (4.9) and the Itô formula, we have

dV (t) + λa(t)V (t)dt = LV (t)dt + 2a(t)yT (t)P Σ̂tdw(t), (4.11)
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where

LV (t) ≤ λa(t)yT (t)Py(t) + 2a(t)yT (t)Pξ(t) + c̃(t)a2(t)

+ ha(t)ξT (t)Qξ(t) + ha(t)yT (t)Sy(t)

− e−λha(t)
∫ t

t−τ(t)
a2(s)ξT (s)Qξ(s)ds

− e−λha(t)
∫ t

t−τ(t)
a2(s)yT (s)Sy(s)ds

− βe−λh
∫ t

t−τ(t)
a2(s),

(4.12)

and c̃(t) = tr(Σ̂T
t PΣt) + βh. On the other hand, by the definition of ξ(t), we have

0 = L1(t)y(t) + L2(t)y(t − τ(t)) + L3(t)
∫ t

t−τ(t)
a(s)y(s)ds − ξ(t)

= (L1(t) + L2(t))y(t) + L3(t)
∫ t

t−τ(t)
a(s)y(s)ds − ξ(t)

− L2(t)
∫ t

t−τ(t)
a(s)ξ(s)ds − L2(t)

∫ t

t−τ(t)
a(s)Σ̂dw(s).

(4.13)

Then, proceeding as in the proof of Theorem 3.4, we can get a desired result. This completes
the proof of Theorem 4.1.

Remark 4.2. By Lemma 3.1, we can also show that (4.7) holds for appropriate constant h > 0
and admissible uncertainties ifG has a spanning tree. For givenmatricesDi andHi(i = 1, 2, 3),
the tolerable upper bound of delay can be derived from (4.7).

5. Simulation Results

Consider a digraph G = (V, E,A) with six nodes and 0-1 weights, where a21 = a32 = a43 =
a54 = a65 = a16 = 1. It is evident that G has a spanning tree. Let a(t) = 1/(t + 1). Using Matlab
to solve (3.4)without uncertainties yields that h ≤ 0.4995. Thus, by Theorem 3.4, we have that
protocol (2.11) asymptotically solves mean square consensus for any time-varying delay τ(t)
satisfying 0 ≤ τ(t) ≤ 0.4995 if (A1) or (A2) holds. Let a(t) = 1/(t + 1) and the intensity of the
measurement noises σ21 = σ32 = σ43 = σ54 = σ16 = 1. The state trajectories of the system under
protocol (2.11) and a random initial state x(0) are shown in Figure 1 when a(t) = 1/(t + 1).
Figure 2 shows that the system is divergent when a(t) = 1.

Consider again the digraph defined above. Solving (4.7) without uncertainties gives
h ≤ 0.5315. By Theorem 4.1, we have that protocol (4.1) asymptotically solves mean square
consensus for any time-varying delay τ(t) satisfying 0 ≤ τ(t) ≤ 0.5315 if (A1) or (A2) holds.
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Figure 1: State trajectories under protocol (2.11) and a(t) = 1/(t + 1).
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Figure 2: State trajectories under protocol (2.11) and a(t) = 1.

Let a(t) = 1/(t+1) and the intensity of the measurement noises σ21 = σ32 = σ43 = σ54 = σ16 = 1.
Under protocol (4.1) and a stochastic initial state x(0), the state trajectories of the system are
shown in Figures 3 and 4 for a(t) = 1/(t+1) and a(t) = 1, respectively. We see that the system
is divergent for the case of a(t) = 1.

6. Conclusions

In this paper, we study the mean square consensus problem for continuous-time multi-agent
systems with measurement noises, time-varying delays, and parametric uncertainties. By
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Figure 3: State trajectories under protocol (4.1) and a(t) = 1/(t + 1).
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Figure 4: State trajectories under protocol (4.1) and a(t) = 1.

introducing a reduced-order transformation and a new Lyapunov function, we combine
the tools of stochastic analysis, algebraic graph theory, and matrix theory to analyze the
convergence of a class of distributed stochastic approximation type protocols with the time-
varying consensus gain. When imposing appropriate conditions on the consensus gain, we
show that mean square consensus will be achieved asymptotically for admissible delays and
uncertainties if the digraph G has a spanning tree.
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