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We introduce a newmethod for solving Riccati differential equations, which is based on reproduc-
ing kernel method and quasilinearization technique. The quasilinearization technique is used to re-
duce the Riccati differential equation to a sequence of linear problems. The resulting sets of differ-
ential equations are treated by using reproducing kernel method. The solutions of Riccati differen-
tial equations obtained using many existing methods give good approximations only in the neigh-
borhood of the initial position. However, the solutions obtained using the present method give
good approximations in a larger interval, rather than a local vicinity of the initial position. Numer-
ical results compared with other methods show that the method is simple and effective.

1. Introduction

In this paper, we consider the following Riccati differential equation:

u′(x) = p(x) + q(x)u(x) + r(x)u2(x), 0 ≤ x ≤ X,
u(0) = 0.

(1.1)

Without loss of generality, we only consider initial condition u(0) = 0, for u(0) = α can be eas-
ily reduced to u(0) = 0. Riccati differential equations play a significant role in many fields of
applied science [1]. For example, as is well known, a one-dimensional static Schrödinger
equation is closely related to a Riccati differential equation. Solitary wave solution of a
nonlinear partial differential equation can be expressed as a polynomial in two elementary
functions satisfying a projective Riccati equation [2]. Such type of problem also arises in
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the optimal control literature. Therefore, the problem has attracted much attention and has
been studied by many authors. However, deriving its analytical solution in an explicit form
seems to be unlikely except for certain special situations. For example, some Riccati equations
with constant coefficients can be solved analytically by various methods [3]. Therefore,
one has to go for the numerical techniques or approximate approaches for getting its solu-
tion. Recently, Adomian’s decomposition method and multistage Adomian’s decomposition
method have been proposed for solving Riccati differential equations in [4]. Abbasbandy
[5–7] solved a special Riccati differential equation, quadratic Riccati differential equa-
tion using He’s VIM, homotopy perturbation method (HPM) and iterated He’s HPM
and compared the accuracy of the obtained solution with that derived by Adomians
decomposition method. Dehghan and Lakestani [8] solved Riccati differential equations by
using the cubic B-spline scaling functions and Chebyshev cardinal functions and obtained
good approximate solutions. Geng et al. [9] introduced a piecewise variational iteration
method for Riccati differential equations, which is a modified variational iteration method.
Tang and Li [10] introduced a new method for determining the solution of Riccati differen-
tial equations. Ghorbani and Momani [11] proposed an effective variational iteration algo-
rithm for solving Riccati differential equations. In [12–14], the authors presented some
methods for solving fractional Riccati differential equations. Mohammadi and Hosseini [15]
introduced a comparison of some numerical methods for solving quadratic Riccati differen-
tial equations.

Reproducing kernel theory has important application in numerical analysis, differen-
tial equation, probability, statistics, and so on [16, 17]. Recently, Cui et al. present reproducing
kernel method for solving linear and nonlinear differential equations [18–22].

In this paper, based on reproducing kernel method (RKM) and quasilinearization tech-
nique, we present a new method for (1.1) and obtain a highly accurate numerical solution.
The advantage of the present method over existing methods for solving this problem is that
the solution of (1.1) obtained using the present method is efficient not only for a smaller value
of x but also for a larger value.

The rest of the paper is organized as follows. In the next section, the RKM for first
order linear ordinary differential equations (ODEs) is introduced. The method for solving
(1.1) is presented in Section 3. The numerical examples are presented in Section 4. Section 5
ends this paper with a brief conclusion.

2. Analysis of RKM for First-Order Linear ODEs

In this section, we illustrate how to solve the following linear first order ODEs using RKM:

Lu(x) = u′(x) + a(x)u(x) = f(x), 0 < x < 1,

u(0) = 0,
(2.1)

where a(x) and f(x) are continuous.
In order to solve (2.1) using RKM,we first construct a reproducing kernel Hilbert space

W2
2 [0, 1], in which every function satisfies the initial condition of (2.1).

Definition 2.1 (Reproducing kernel). Let E be a nonempty abstract set. A functionK : E×E →
C is a reproducing kernel of the Hilbert spaceH if and only if
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(a)

∀ t ∈ E, K(·, t) ∈ H, (2.2)

(b)

∀ t ∈ E, ∀ϕ ∈ H, (ϕ(·), K(·, t)) = ϕ(t). (2.3)

The last condition is called “the reproducing property”: the value of the function ϕ at
the point t is reproduced by the inner product of ϕ(·)with K(·, t).

A Hilbert space which possesses a reproducing kernel is called a reproducing kernel
Hilbert space (RKHS).

2.1. The Reproducing Kernel Hilbert Space W2
2 [0, X]

The inner product space W2
2 [0, X] is defined as W2

2 [0, X] = {u(x) | u, u′ are absolutely con-
tinuous real value functions, u′′ ∈ L2[0, X], u(0) = 0}. The inner product inW2

2 [0, X] is given
by

(
u
(
y
)
, v

(
y
))

W2
2
= u(0)v(0) + u(X)v(X) +

∫X

0
u′′v′′dy, (2.4)

and the norm ‖u‖W2
2
is denoted by ‖u‖W2

2
=
√
(u, u)W2

2
, where u, v ∈W2

2 [0, X].

Theorem 2.2. The space W2
2 [0, X] is a reproducing kernel Hilbert space. That is, there exists

Rx(y) ∈ W2
2 [0, X], for any u(y) ∈ W2

2 [0, X], and each fixed x ∈ [0, X], y ∈ [0, X], such that
(u(y), Rx(y))W2

2
= u(x). The reproducing kernel Rx(y) can be denoted by

Rx

(
y
)
=

⎧
⎨

⎩

R1
(
x, y

)
, y ≤ x,

R1
(
y, x

)
, y > x,

(2.5)

where R1(x, y) = y((x −X)Xy2 + x(2X3 − 3xX2 + x2X + 6))/(6X2) .

The method for obtaining unknown coefficients of (2.5) can be found in [16].
In [22], Li and Cui defined a reproducing kernel Hilbert space W1

2 [0, X] and gave its
reproducing kernel Rx(y).

2.2. The Solution of (2.1)

In (2.1), it is clear that L : W2
2 [0, X] → W1

2 [0, X] is a bounded linear operator. Put ϕi(x) =
Rxi(x) and ψi(x) = L∗ϕi(x), where L∗ is the adjoint operator of L. The orthonormal system
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{ψi(x)}∞i=1 of W2
2 [0, X] can be derived from Gram-Schmidt orthogonalization process of

{ψi(x)}∞i=1:

ψi(x) =
i∑

k=1

βikψk(x),
(
βii > 0, i = 1, 2, . . .

)
. (2.6)

Theorem 2.3. For (2.1), if {xi}∞i=1 is dense on [0, X], then {ψi(x)}∞i=1 is the complete system of
W2

2 [0, 1] and ψi(x) = LyRx(y)|y=xi . The subscript y by the operator L indicates that the operator
L applies to the function of y.

Theorem 2.4. If {xi}∞i=1is dense on [0, X] and the solution of (2.1) is unique, then the solution of
(2.1) is

u(x) =
∞∑

i=1

i∑

k=1

βikf(xk)ψi(x). (2.7)

Proof. Applying Theorem 2.3, it is easy to see that {ψi(x)}∞i=1 is the complete orthonormal
basis ofW2

2 [0, X]. Note that (v(x), ϕi(x)) = v(xi) for each v(x) ∈W1
2 [0, 1]. Hence we have

u(x) =
∞∑

i=1

(
u(x), ψi(x)

)
ψi(x)

=
∞∑

i=1

i∑

k=1

βik
(
u(x), L∗ϕk(x)

)
ψi(x)

=
∞∑

i=1

i∑

k=1

βik
(
Lu(x), ϕk(x)

)
ψi(x)

=
∞∑

i=1

i∑

k=1

βik
(
f(x), ϕk(x)

)
ψi(x)

=
∞∑

i=1

i∑

k=1

βikf(xk)ψi(x),

(2.8)

and the proof of the theorem is complete.

Now, an approximate solution uN(x) can be obtained by the N-term intercept of the
exact solution u(x) and

uN(x) =
N∑

i=1

i∑

k=1

βikf(xk)ψi(x). (2.9)
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3. Solution of Riccati Differential Equation (1.1)

To solve Riccati differential equation (1.1), quasilinearization technique is used to reduce (1.1)
to a sequence of linear problems. Let f(x, u) = p(x) + r(x)u2. By choosing a reasonable ini-
tial approximation u0(x) for the function u(x) in f(x, u) and expanding f(x, u) around the
function u0(x), one obtains

f(x, u1) = (x, u0) + (u1 − u0)
∂f

∂u

∣
∣
∣
∣
u=u0

+ . . . . (3.1)

In general, one can write for k = 1, 2, . . ., (k = iteration index):

f(x, uk) = f(x, uk−1) + (uk − uk−1)
∂f

∂u

∣
∣∣
∣
u=uk−1

+ . . . . (3.2)

Hence, we can obtain the following iteration formula for Riccati differential equation: (1.1)

u′k(x) − ak(x)uk(x) = fk(x), k = 1, 2, . . . ,

uk(0) = 0,
(3.3)

where ak(x) = q(x) + ∂f/∂u|u=uk−1 = q(x) + 2r(x)uk−1(x), fk(x) = f(x, uk−1) − ∂f/∂u|u=uk−1 =
p(x) − r(x)u2

k−1(x), u0(x) is the initial approximation.
Therefore, to solve Riccati differential equation (1.1), it is suffice for us to solve the ser-

ies of linear problem (3.3).
By using RKM presented in Section 2, one can obtain the solution of problem (3.3)

uk(x) =
∞∑

j=1

Ajψj(x), (3.4)

where Aj =
∑j

l=1 βjlfk(xl).
Therefore, N-term approximations uk,N(x) to uk(x) are obtained

uk,N(x) =
N∑

j=1

Ajψj(x). (3.5)

4. Numerical Examples

In this section, we apply the method presented in Section 3 to some Riccati differential equa-
tions. Numerical results show that the MVIM is very effective.

Example 4.1. Consider the following Riccati differential equation [4–7, 9]:

u′(x) = 1 + 2u(x) − u2(x), 0 ≤ x ≤ 4,

u(0) = 0.
(4.1)
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Figure 1: Comparison of approximate solutions with the exact solutions for Example 4.1. ((a): exact solu-
tion; (b): approximate solution.).
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Figure 2:Comparison of absolute errors using the present method, MVIM [9] and VIM [6] for Example 4.1.
((a): The present method; (b): MVIM [9]; (c): VIM [6]).

The exact solution can be easily determined to be

u(x) = 1 +
√
2 tanh

⎛

⎜
⎝

√
2 x +

log
((

−1 +√
2
)
/
(
1 +

√
2
))

2

⎞

⎟
⎠. (4.2)

According to (3.3), (3.4), and (3.5), taking k = 3 and N = 100, we can obtain the approxi-
mations of (4.1) on [0, 4]. The numerical results are shown in Figures 1 and 2. Figure 1 shows
a comparison of approximations obtained using the present method with the exact solution.
From Figure 1, it is easily found that the present approximations are effective for a larger
interval, rather than a local vicinity of the initial position. The comparison of absolute errors
using the present method with conventional VIM [6] and piecewise VIM [9] is shown in
Figure 2. From Figure 2, we find that the solution derived by VIM [6] gives a good appro-
ximation only in the neighborhood of the initial position.

Remark 4.2. The solutions of Example 4.1 derived by ADM [4], HPM [5], and VIM [6] give
good approximations only in the neighborhood of the initial position. The approximations
derived by the present piecewise VIM [9] and iterated HPM [7] are both efficient for the
whole interval. However, the present method is more accurate than piecewise VIM [9] and
iterated HPM [7].
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Figure 3: The numerical results for Example 4.3. ((a): exact solution; (b): approximate solution; (c): absol-
ute error.).

Example 4.3. Consider the following Riccati differential equation [9]:

u′(x) = 1 + x2 − u2(x), 0 ≤ x ≤ 4,

u(0) = 1.
(4.3)

The exact solution can be easily determined to be

u(x) = x +
e−x

2

1 +
∫x
0 e

−t2dt
. (4.4)

According to (3.3), (3.4), and (3.5), taking k = 3 and N = 100, we can obtain the approxima-
tions of (4.1) on [0, 4]. The numerical results are shown in Figure 3.

5. Conclusion

In this paper, based on reproducing kernel method and quasilinearization technique, a new
method is presented to solve Riccati differential equations. Compared with other methods,
the results of numerical examples demonstrate that the present method is more accurate than
existing methods. Therefore, our conclusion is that the present method is quite effective for
solving Riccati differential equations.
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