
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 594802, 14 pages
doi:10.1155/2012/594802

Research Article
Existence and Uniqueness of
Solutions for the System of Nonlinear Fractional
Differential Equations with Nonlocal and Integral
Boundary Conditions

Allaberen Ashyralyev1, 2 and Yagub A. Sharifov3

1 Department of Mathematics, Fatih University, 34500 Buyucekmece, Turkey
2 ITTU, Ashgabat, Turkmenistan
3 Institute of Cybernetics, ANAS, and Baku State University, 1141 Baku, Azerbaijan

Correspondence should be addressed to Yagub A. Sharifov, sharifov22@rambler.ru

Received 20 March 2012; Accepted 6 May 2012

Academic Editor: Ravshan Ashurov

Copyright q 2012 A. Ashyralyev and Y. A. Sharifov. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

In the present study, the nonlocal and integral boundary value problems for the system of non-
linear fractional differential equations involving the Caputo fractional derivative are investigated.
Theorems on existence and uniqueness of a solution are established under some sufficient con-
ditions on nonlinear terms. A simple example of application of the main result of this paper is
presented.

1. Introduction

Differential equations of fractional order have been proved to be valuable tools in the model-
ing of many phenomena of various fields of science and engineering. Indeed, we can obtain
numerous applications in viscoelasticity [1–3], dynamical processes in self-similar structures
[4], biosciences [5], signal processing [6], system control theory [7], electrochemistry [8],
diffusion processes [9], and linear time-invariant systems of any order with internal point
delays [10]. Furthermore, fractional calculus has been found many applications in classical
mechanics [11], and the calculus of variations [12], and is a very useful means for obtaining
solutions of nonhomogenous linear ordinary and partial differential equations. For more
details, we refer the reader to [13].

There are several approaches to fractional derivatives such as Riemann-Liouville,
Caputo, Weyl, Hadamar and Grunwald-Letnikov, and so forth. Applied problems require
those definitions of a fractional derivative that allow the utilization of physically interpretable
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initial and boundary conditions. The Caputo fractional derivative satisfies these demands,
while the Riemann-Liouville derivative is not suitable for mixed boundary conditions. The
details can be found in [14–17].

The study of existence and uniqueness, periodicity, asymptotic behavior, stability, and
methods of analytic and numerical solutions of fractional differential equations have been
studied extensively in a large cycle works (see, e.g., [10, 18–37] and the references therein).
However, many of the physical systems can better be described by integral boundary
conditions. Integral boundary conditions are encountered in various applications such
as population dynamics, blood flow models, chemical engineering, and cellular systems.
Moreover, boundary value problems with integral boundary conditions constitute a very
interesting and important class of problems. They include two-point, three-point, multipoint,
and nonlocal boundary value problems as special cases, see [38–41].

In the present paper, we study existence and uniqueness of the problem for the system
of nonlinear fractional differential equations of form

cDα
0+x(t) = f(t, x(t)), t ∈ [0, T], (1.1)

with the nonlocal and integral boundary condition

Ex(0) + Bx(T) =
∫T
0
g(s, x(s))ds, (1.2)

where E ∈ Rn×n is an identity matrix, B ∈ Rn×n is the given matrix, and

‖B‖ < 1. (1.3)

Here, f(t, x(t)) and g(t, x(t)) ∈ Rn are smooth vector functions, cDα
0+ is the Caputo fractional

derivative of order α, 0 < α ≤ 1.
The organization of this paper is as follows. In Section 2, we provide necessary

background. In Section 3, theorems on existence and uniqueness of a solution are established
under some sufficient conditions on nonlinear terms. Finally, in Section 4, a simple example
of application of the main result of this paper is presented.

2. Preliminaries

In this section, we present some basic definitions and preliminary facts which are used
throughout the paper. By C([0, T], Rn), we denote the Banach space of all vector continuous
functions x(t) from [0, T] into Rn with the norm

‖x‖ = max{|x(t)| : t ∈ [0, T]}. (2.1)

Definition 2.1. If g(t) ∈ C[a, b] and α > 0, then the operator Iαa+, defined by

Iαa+g(t) =
1

Γ(α)

∫ t
a

g(s)

(t − s)1−α
ds, (2.2)
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for a ≤ t ≤ b, is called the Riemann-Liouville fractional integral operator of order α. Here Γ(·)
is the Gamma function defined for any complex number z as

Γ(z) =
∫∞

0
tz−1e−tdt. (2.3)

Definition 2.2. The Caputo fractional derivative of order α > 0 of a continuous function g :
(a, b) → R is defined by

cDα
a+g(t) =

1
Γ(n − α)

∫ t
a

g(n)(s)

(t − s)α−n+1
ds, (2.4)

where n = [α] + 1, (the notation [α] stands for the largest integer not greater than α).

Remark 2.3. Under natural conditions on g(t), the Caputo fractional derivative becomes the
conventional integer order derivative of the function g(t) as α → n.

Remark 2.4. Let α, β > 0 and n = [α] + 1, then the following relations hold:

cDα
0+t

β =
Γ
(
β
)

Γ
(
β − α) tβ−1, β > n, cDα

0+t
k = 0, k = 0, 1, . . . , n − 1. (2.5)

Lemma 2.5 (see, [42]). For α > 0, g(t) ∈ C(0, 1) ∩ L1(0, 1), the homogenous fractional differential
equation

cDα
0+g(t) = 0, (2.6)

has a solution

g(t) = c0 + c1t + c2t2 + · · · + cn−1tn−1, (2.7)

where, ci ∈ R, i = 0, 1, . . . , n − 1, and n = [α] + 1.

Lemma 2.6 (see, [42]). Assume that g(t) ∈ C(0, 1)∩ L1(0, 1), with derivative of order n that belongs
to C(0, 1) ∩ L1(0, 1), then

Iα0+
cDα

0+g(t) = g(t) + c0 + c1t + c2t
2 + · · · + cn−1tn−1, (2.8)

where ci ∈ R, i = 0, 1, . . . , n − 1, and n = [α] + 1.

Lemma 2.7 (see, [42]). Let p, q ≥ 0, f(t) ∈ L1[0, T]. Then

I
p

0+I
q

0+f(t) = I
p+q
0+ f(t) = Iq0+I

p

0+f(t) (2.9)

is satisfied almost everywhere on [0, T]. Moreover, if f(t) ∈ C[0, T], then identity (2.9) is true for all
t ∈ [0, T].
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Lemma 2.8 (see, [42]). If α > 0, f(t) ∈ C[0, T], then cDα
0+I

α
0+f(t) = f(t) for all t ∈ [0, T].

3. Main Results

Lemma 3.1. Let 0 < α ≤ 1, y(t) and g(t) ∈ C([0, T], Rn). Then, nonlocal boundary value problem

cDα
0+x(t) = y(t), t ∈ [0, T], (3.1)

Ex(0) + Bx(T) =
∫T
0
g(s)ds (3.2)

has a unique solution x(t) ∈ C([0, T], Rn) given by

x(t) =
∫T
0
G(t, s)y(s)ds + C, (3.3)

where

G(t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E
(t − s)α−1
Γ(α)

− (E + B)−1B
(T − s)α−1

Γ(α)
, 0 ≤ s ≤ t,

−(E + B)−1B
(T − s)α−1

Γ(α)
, t ≤ s ≤ T,

(3.4)

C = (E + B)−1
∫T
0
g(s)ds. (3.5)

Proof. Assume that x(t) is a solution of nonlocal boundary value problem (3.1) and (3.2), then
using Lemma 2.6, we get

x(t) = Iα0+y(t) + c1, c1 ∈ Rn. (3.6)

Applying condition (3.2) and identity (3.6), we get

c1 + B
(
Iα0+y(T) + c1

)
=
∫T
0
g(s)ds. (3.7)

From condition (1.3) it follows that the inverse of the matrix E + B exists. Therefore, we can
write

c1 = (E + B)−1
∫T
0
g(s)ds − (E + B)−1BIα0+y(T). (3.8)
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Using formulas (3.6) and (3.8), we obtain

x(t) = Iα0+y(t) + (E + B)−1
∫T
0
g(s)ds − (E + B)−1BIα0+y(T), (3.9)

which can be written as (3.3). Lemma 3.1 is proved.

Lemma 3.2. Assume that f and g ∈ C ([0, T]×Rn, Rn). Then, the vector function x(t) ∈ C ([0, T],
Rn) is a solution of the boundary value problem (1.1) and (1.2) if and only if it is a solution of the
integral equation

x(t) =
∫T
0
G(t, s)f(s, x(s))ds + (E + B)−1

∫T
0
g(s, x(s))ds. (3.10)

Proof. If x(t) solves boundary value problem (1.1) and (1.2). Then, by the same manner as in
Lemma 3.1, we can prove that x(t) is solution of integral equation (3.10). Conversely, let x(t)
is solution of integral equation (3.10). We denote that

v(t) =
∫T
0
G(t, s)f(s, x(s))ds + (E + B)−1

∫T
0
g(s, x(s))ds. (3.11)

Then, by Lemmas 2.7 and 2.8, we obtain

v(t) = Iα0+f(t, x(t)) − (E + B)−1B

(∫T
0

(T − s)α−1
Γ(α)

f(s, x(s))ds

)

+ (E + B)−1
∫T
0
g(s, x(s))ds.

(3.12)

The application of the fractional differential operator cDα
0+ to both sides of (3.12) yields

cDα
0+v(t) =

cDα
0+I

α
0+f(t, x(t)) − (E + B)−1BcDα

o+

(∫T
0

(T − s)α−1
Γ(α)

f(s, x(s))ds

)

+cDα
o+C = f(t, x(t)).

(3.13)

Hence, x(t) solves fractional differential equation (1.1). Also, it is easy to see that x(t) satisfies
nonlocal boundary condition (1.2).

The first main statement of this paper is an existence and uniqueness of boundary
value problem (1.1) and (1.2) result that it is based on a Banach fixed point theorem.
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Theorem 3.3. Assume that:

(H1) There exists a constant L > 0 such that

∣∣f(t, x) − f(t, y)∣∣ ≤ L∣∣x − y∣∣, (3.14)

for each t ∈ [0, T] and all x, y ∈ Rn.

(H2) There exists a constantM > 0 such that

∣∣g(t, x) − g(t, y)∣∣ ≤M∣∣x − y∣∣, (3.15)

for each t ∈ [0, T] and all x, y ∈ Rn.

If

1
Γ(α + 1)

[
LTα
(
1 + (1 − ‖B‖)−1‖B‖

)]
+ (1 − ‖B‖)−1MT < 1, (3.16)

then boundary value problem (1.1) and (1.2) has unique solution on [0, T].

Proof . Transform problem (1.1) and (1.2) into a fixed point problem. Consider the operator

P : C([0, T], Rn) −→ C([0, T], Rn), (3.17)

defined by

P(x)(t) =
∫T
0
G(t, s)f(s, x(s))ds + (E + B)−1

∫T
0
g(s, x(s))ds. (3.18)

Clearly, the fixed points of the operator P are solution of problem (1.1) and (1.2). We will use
the Banach contraction principle to prove that under assumption (3.16) operator P has a fixed
point. It is clear that the operator P maps into itself and that

∣∣P(x)(t) − P(y)(t)∣∣
≤
∫T
0
|G(t, s)|∣∣f(s, x(s)) − f(s, y(s))∣∣ds + ∥∥∥(E + B)−1

∥∥∥∫T
0

∣∣g(s, x(s)) − g(s, y(s))∣∣ds
≤ 1

Γ(α)

[∫ t
0
(t − s)α−1∣∣f(s, x(s)) − f(s, y(s))∣∣ds + ∥∥∥(E + B)−1B

∥∥∥

×
∫T
0
(T − s)α−1∣∣f(s, x(s)) − f(s, y(s))∣∣ds

]
+
∥∥∥(E + B)−1

∥∥∥MT
∥∥x − y∥∥

≤
{

1
Γ(α + 1)

[
LTα
(
1 +
∥∥∥(E + B)−1B

∥∥∥)] + ∥∥∥(E + B)−1
∥∥∥MT

}∥∥x − y∥∥,
(3.19)
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for any x, y ∈ C([0, T], Rn) and t ∈ [0, T]. From condition (1.3) it follows that

∥∥∥(E + B)−1
∥∥∥ ≤ 1

1 − ‖B‖ . (3.20)

Then, using estimates (3.19) and (3.20), we get

∥∥P(x)(·) − P(y)(·)∥∥

≤
{

1
Γ(α + 1)

[
LTα
(
1 + (1 − ‖B‖)−1‖B‖

)]
+ (1 − ‖B‖)−1MT

}∥∥x − y∥∥.
(3.21)

Consequently, by assumption (3.16) operator P is a contraction. As a consequence of Banach’s
fixed point theorem, we deduce that operator P has a fixed point which is a solution of
problem (1.1) and (1.2). Theorem 3.3 is proved.

The second main statement of this paper is an existence of boundary value problem
(1.1) and (1.2) result that it is based on Schaefer’s fixed point theorem.

Theorem 3.4. Assume that:

(H3) The function f : [0, T] × Rn → Rn is continuous.

(H4) There exists a constantN1 > 0 such that |f(t, x)| ≤N1 for each t ∈ [0, T] and all x ∈ Rn.

(H5) The function g : [0, T] × Rn → Rn is continuous.

(H6) There exists a constantN2 > 0 such that |g(t, x)| ≤N2 for each t ∈ [0, T] and all x ∈ Rn.

Then, boundary value problem (1.1) and (1.2) has at least one solution on [0, T].

Proof. We will divide the proof into four main steps in which we will show that under the
assumptions of theorem operator P has a fixed point.
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Step 1. Operator P under the assumptions of theorem is continuous. Let {xn} be a sequence
such that xn → x in C([0, T], Rn). Then, for each t ∈ [0, T]

|P(xn)(t) − P(x)(t)|

≤
∫T
0
|G(t, s)|∣∣f(s, xn(s)) − f(s, x(s))∣∣ds + ∥∥∥(E + B)−1

∥∥∥∫T
0

∣∣g(s, xn(s)) − g(s, x(s))∣∣ds
≤ 1

Γ(α)

[∫ t
0
(t − s)α−1 max

∣∣f(s, xn(s)) − f(s, x(s))∣∣ds

+(1 − ‖B‖)−1‖B‖
∫T
0
(T − s)α−1 max

∣∣f(s, xn(s)) − f(s, x(s))∣∣ds
]

+ (1 − ‖B‖)−1MT max
∣∣g(s, xn(s)) − g(s, x(s))∣∣

≤ 1
Γ(α + 1)

[
LTα
(
1 + (1 − ‖B‖)−1‖B‖

)]
max

∣∣f(s, xn(s)) − f(s, xn(s))∣∣
+ (1 − ‖B‖)−1MT max

∣∣g(s, xn(s)) − g(s, x(s))∣∣.
(3.22)

Since f and g are continuous functions, we have

‖P(xn)(·) − P(x)(·)‖

≤ 1
Γ(α + 1)

[
LTα
(
1 + (1 − ‖B‖)−1‖B‖

)]
max

∣∣f(s, xn(s)) − f(s, xn(s))∣∣
+ (1 − ‖B‖)−1MT max

∣∣g(s, xn(s)) − g(s, x(s))∣∣ −→ 0

(3.23)

as n → ∞.

Step 2. Operator P maps bounded sets in bounded sets in C([0, T], Rn). Indeed, it is enough
to show that for any η > 0, there exists a positive constant l such that for each x ∈ Bη = {x ∈
C([0, T], Rn) : ‖x‖ ≤ η}, we have ‖P(x(·))‖ ≤ l. By assumptions (H4) and (H6), we have for
each t ∈ [0, T],

|P(x)(t)| ≤
∫T
0
|G(t, s)|∣∣f(s, x(s))∣∣ds + ∥∥∥(E + B)−1

∥∥∥∫T
0

∣∣g(s, x(s))∣∣ds. (3.24)

Hence,

|P(x)(t)| ≤ N1T
α

Γ(α + 1)

[
1 + (1 − ‖B‖)−1‖B‖

]
+N2(1 − ‖B‖)−1T. (3.25)
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Thus,

‖P(x)(·)‖ ≤ N1T
α

Γ(α + 1)

[
1 + (1 − ‖B‖)−1‖B‖

]
+N2(1 − ‖B‖)−1T = l. (3.26)

Step 3. Operator P maps bounded sets into equicontinuous sets of ([0, T], Rn).
Let t1, t2 ∈ (0, T], t1 < t2, Bη be a bounded set ofC([0, T], Rn) as in Step 2, and let x ∈ Bη.

Then,

|P(x)(t2) − P(x)(t1)| =
∣∣∣∣∣ 1
Γ(α)

∫ t1
0

[
(t2 − s)α−1 − (t1 − s)α−1

]
f(s, x(s))ds

+
1

Γ(α)

∫ t2
t1

(t2 − s)α−1f(s, x(s))ds
∣∣∣∣∣ ≤ N1

Γ(α + 1)
[
2(t2 − t1)α +

(
tα2 − tα1

)]
.

(3.27)

As t1 → t2, the right-hand side of the above inequality tends to zero. As a consequence
of Steps 1 to 3 together with the Arzela-Ascoli theorem, we can conclude that the operator
P : C([0, T], Rn) → C([0, T], Rn) is completely continuous.

Step 4. A priori bounds. Now, it remains to show that the set

Δ = {x ∈ C([0, T], Rn) : x = λP(x) for some 0 < λ < 1} (3.28)

is bounded.
Let x = λ(Px) for some 0 < λ < 1. Then, for each t ∈ [0, T] we have

x(t) = λ

[∫T
0
G(t, s)f(s, x(s))ds + (E + B)−1

∫T
0
g(s, x(s))ds

]
. (3.29)

This implies by assumptions (H4) and (H6) (as in Step 2) that for each t ∈ [0, T]we have

|P(x)(t)| ≤ N1T
α

Γ(α + 1)

[
1 + (1 − ‖B‖)−1‖B‖

]
+N2(1 − ‖B‖)−1T. (3.30)

Thus, for every t ∈ [0, T], we have

|x(t)| ≤ N1T
α

Γ(α + 1)

[
1 + (1 − ‖B‖)−1‖B‖

]
+N2(1 − ‖B‖)−1T = R. (3.31)

Therefore,

‖x‖ ≤ R. (3.32)
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This shows that the setΔ is bounded. As a consequence of Schaefer’s fixed point theorem, we
deduce that P has a fixed point which is a solution of problem (1.1) and (1.2). Theorem 3.4 is
proved.

Moreover, we will give an existence result for problem (1.1) and (1.2) by means of an
application of a Leray-Schauder type nonlinear alternative, where conditions (H4) and (H6)
are weakened.

Theorem 3.5. Assume that (H3), (H5) and the following conditions hold.

(H7) There exist θf ∈ L1([0, T], R+) and continuous and nondecreasing

ψf : [0,∞) −→ [0,∞), (3.33)

such that |f(t, x)| ≤ θf(t)ψf(|x|) for each t ∈ [0, T] and all x ∈ Rn.

(H8) There exist θg ∈ L1([0, T], R+) and continuous nondecreasing

ψg : [0,∞) −→ [0,∞), (3.34)

such that |g(t, x)| ≤ θg(t)ψg(|x|) for each t ∈ [0, T] and all x ∈ Rn.

(H9) There exists a number K > 0 such that

K

ψf(K)
[∥∥Iαθf∥∥L1

+ (1 − ‖B‖)−1‖B‖(Iαθf)(T)] + ψg(K)(1 − ‖B‖)−1∥∥θg∥∥L1

> 1. (3.35)

Then, boundary value problem (1.1) and (1.2) has at least one solution on [0, T].

Proof. Consider the operator P defined in Theorems 3.3 and 3.4. It can be easily shown that
operator P is continuous and completely continuous. Let x(t) = (Px)(t) for each t ∈ [0, T].
Then, from assumptions (H7) and (H8) if follows that for each t ∈ [0, T]

|x(t)| ≤ 1
Γ(α)

∫ t
0
(t−s)α−1θf(s)ψf(|x(s)|)ds + 1

Γ(α)

∥∥∥(E+B)−1B∥∥∥∫T
0
(T−s)α−1θf(s)ψf(|x(s)|)ds

+
∥∥∥(E + B)−1

∥∥∥∫T
0
θg(s)ψg(|x(s)|)ds ≤ ψf(‖x‖) 1

Γ(α)

∫ t
0
(t − s)α−1θf(s)ds

+ ψf(‖x‖) 1
Γ(α)

∥∥∥(E+B)−1B∥∥∥∫T
0
(T−s)α−1θf(s)ds+ψg(‖x‖)

∥∥∥(E+B)−1∥∥∥
×
∫T
0
θg(s)ds≤ψf(‖x‖)

[∥∥Iαθf∥∥L1
+ (1 − ‖B‖)−1‖B‖(Iαθf)(T)]

+ ψg(‖x‖)(1 − ‖B‖)−1∥∥θg∥∥L1
.

(3.36)
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Thus,

‖x‖
ψf(‖x‖)

[∥∥Iαθf∥∥L1
+ (1 − ‖B‖)−1‖B‖(Iαθf)(T)] + ψg(‖x‖)(1 − ‖B‖)−1∥∥θg∥∥L1

≤ 1. (3.37)

Then, by condition (H9), there exists K such that ‖x‖/=K.
Let

U = {x ∈ C([0, T], R) : ‖x‖ < K}. (3.38)

The operator P : U → C([0, T], R) is continuous and completely continuous. By the choice
of U, there exists x ∈ ∂U such that x = λP(x) for some λ ∈ (0, 1). As a consequence of the
nonlinear alternative of Leray-Schauder type [43], we deduce that P has a fixed point x inU,
which is a solution of problem (1.1) and (1.2). This completes of proof of Theorem 3.5.

4. An Example

In this section, we give an example to illustrate the usefulness of our main results. Let
us consider the following nonlocal boundary value problem for the system of fractional
differential equation

cDαx1(t) =
1
10

sinx2, t ∈ [0, 1], 0 < α < 1,

cDαx2(t) =
|x1|

(9 + et)(1 + |x1|)
,

x1 =
∫1

0
sin 0.1x2(t)dt, x2(0) + 0.5x1(1) = 1.

(4.1)

Evidently,

E + B =
(

1 0
0.5 1

)
, B =

(
0 0
0.5 0

)
, ‖B‖ = 0.5, (1 − ‖B‖)−1 = 2. (4.2)

Hence, conditions (H1) and (H2) hold with L =M = 0, 1. We will check that condition (3.16)
is satisfied for appropriate values of 0 < α ≤ 1 with T = 1. Indeed,

0.2
Γ(α + 1)

+ 0.2 < 1. (4.3)

Then, by Theorem 3.3 boundary value problem (4.1) has a unique solution on [0, 1] for values
of α satisfying condition (4.3). For example, if α = 0.2 then

Γ(α + 1) = Γ(1.2) = 0.92,
0.2

Γ(α + 1)
+ 0.2 = 0.418 < 1. (4.4)
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5. Conclusion

In this work, some existence and uniqueness of a solution results have been established for the
system of nonlinear fractional differential equations under the some sufficient conditions on
nonlinear terms. Of course, such type existence and uniqueness results hold under the same
sufficient conditions on nonlinear terms for the system of nonlinear fractional differential
equations (1.1), subject to multipoint nonlocal and integral boundary conditions

Ex(0) +
J∑
j=1

Bjx
(
tj
)
=
∫T
0
g(s, x(s))ds, (5.1)

where Bj ∈ Rn×n are given matrices and
∑J

j=1 ‖Bj‖ < 1. Here, 0 < t1 < · · · < tJ ≤ T .
Moreover, applying the result of the paper [44] the first order of accuracy difference

scheme for the numerical solution of nonlocal boundary value problem (1.1) and (5.1) can be
presented. Of course, such type existence and uniqueness results hold under the some suf-
ficient conditions on nonlinear terms for the solution system of this difference scheme.
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