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We consider a new class of multitime multiobjective variational problems of minimizing a vector
of quotients of functionals of curvilinear integral type. Based on the efficiency conditions for
multitime multiobjective ratio variational problems, we introduce a ratio dual of generalized
Mond-Weir-Zalmai type, and under some assumptions of generalized convexity, duality theorems
are stated. We prove our weak duality theorem for efficient solutions, showing that the value of the
objective function of the primal cannot exceed the value of the dual. Direct and converse duality
theorems are stated, underlying the connections between the values of the objective functions of
the primal and dual programs. As special cases, duality results of Mond-Weir-Zalmai type for a
multitime multiobjective variational problem are obtained. This work further develops our studies
in (Pitea and Postolache (2011)).

1. Introduction

The duality for scalar variational problems involving convex functions has been formulated
by Mond and Hanson in [1]. This study was further developed to various classes of convex
and generalized convex functions. In [2], Hanson extended the duality results (in the sense
of Wolfe) to a class of functions subsequently called invex. In order to weaken the convexity
conditions, Bector et al. [3], introduced a dual to a variational problem (in the sense of Mond
and Weir), different from that formulated by Mond and Hanson in [1]. Mond et al. [4],
extended the concept of invexity to continuous functions and used it to generalize earlier
Wolfe duality results for a class of variational problems. Duality theory for scalar optimization
can be found in many other works and see Mond and Husain [5] and Preda [6].

In [7], using a vector-valued Lagrangian function, Tanino and Sawaragi introduced
a duality theory for multiobjective optimization. This idea is employed by Bitran [8],
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which associated a matrix of dual variables with the constraints in the primal problem.
In [9], Mond and Weir considered a pair of symmetric dual nonlinear programs and
developed a duality theory under assumptions of pseudoconvexity. Under various types
of generalized convex functions, Mukherjee and Purnachandra [10], Preda [11] and Zalmai
[12] established several weak efficiency conditions and developed different types of dualities
for multiobjective variational problems. D. S. Kim and A. L. Kim [13] used the efficiency
property of nondifferentiable multiobjective variational problems in duality theory. In a
recent study [14], Pitea and Postolache considered a new class of multitime multiobjective
variational problems of minimizing a vector of functionals of curvilinear integral type.
Based on appropriate normal efficiency conditions, they studied duals of Mond-Weir type,
generalized Mond-Weir-Zalmai type, and under appropriate assumptions of generalized
convexity, stated duality theorems.

In time, several authors have been interested in the study of (vector) ratio programs
in connection with generalized convexity. This study is motivated by many practical
optimization problems whose objective functions are quotients of two functions. In [15],
Jagannathan introduced a duality study using some results connecting solutions of a
nonlinear ratio program with those of suitably defined parametric convex program.
Concerning advances on single-objective ratio programs, see [16] by Khan and Hanson and
[17] by Reddy and Mukherjee, which utilized invexity assumptions in the sense of Hanson
[18] to obtain optimality conditions and duality results. As concerns vector ratio problems,
Singh and Hanson [19] applied invex functions to derive duality results, while Jeyakumar
and Mond [20] generalized these results to the class of V -invex functions. Later, Liang et
al. [21] introduced a unified formulation of the generalized convexity to derive optimality
conditions and duality results for vector ratio problems.

In this paper, we are motivated by previous published research articles (please refer
to [22] by Antczak, [23] by Nahak and Mohapatra, and [14] by Pitea and Postolache)
to consider a new class of multitime multiobjective variational problems of minimizing a
vector of quotients of functionals of curvilinear integral type and, as a particular case, a
vector of functionals of curvilinear integral type. We state and prove new duality results,
of Mond-Weir-Zalmai type, for feasible solutions of our multitime multiobjective ratio
variational problems, under assumptions of (ρ, b)-quasi-invexity. This study is encouraged
by its possible application in mechanical engineering, where curvilinear integral objectives
are extensively used due to their physical meaning as mechanical work. The objective vector
function is of curvilinear integral type, the integrand depending on velocities; that is why we
consider it adequate to introduce our results within the framework offered by the first order
jet bundle, [24–26] by Pitea et al., [27] by Sounders, and [28] by Udriste et al.

2. Preliminaries

Before presenting our results, we need the following background, which is necessary for the
completeness of the exposition. For more details, we address the reader to [27].

2.1. The First Order Jet Bundle

Tomake our presentation self-contained and reader-friendly, we recall the notion of jet bundle
of the first order, J1(T,M).
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Let be given the smooth manifolds (M,g) and (T, h), of dimensions n, and p,
respectively. The corresponding local coordinates are x = (xi), i = 1, n, and t = (tα), α = 1, p,
respectively.

In the following, the set {1, 2, . . . , n} will be indexed by Latin characters, while the set
{1, 2, . . . , p}will be indexed by Greek characters.

Denote by C∞(T,M) the set of mappings of class C∞, from T toM.
Consider (t0, x0) an arbitrary point of the product manifold T × M. On the set

C∞(T,M), define the equivalence relation

f∼(t0,x0)g ⇐⇒
{
f(t0) = g(t0) = x0

dft0 = dgt0 .
(2.1)

If f and g are arbitrary mappings from C∞(T,M), we denote

tβ(t0) = t
β

0 , β = 1, p,

xi = xi ◦ f,

yi = xi ◦ g,

xi(x0) = xi
0, i = 1, n.

(2.2)

Thus, the equivalence relation f∼(t0,x0)g has the local expression

xi
(
t
β

0

)
= yi
(
t
β

0

)
= xi

0,

∂xi

∂tα

(
t
β

0

)
=

∂yi

∂tα

(
t
β

0

)
, i = 1, n, α = 1, p.

(2.3)

The equivalence class of a mapping f ∈ C∞(T,M)will be denoted by

[
f
]
(t0,x0)

=
{
g ∈ C∞(T,M) | g ∼(t0,x0)f

}
. (2.4)

The quotient space obtained by the factorization of the space C∞(T,M) by the equivalence
relation “∼(t0,x0)”,

J1(t0,x0)
(T,M) =

C∞(T,M)
∼(t0,x0)

, (2.5)

is called 1-jet at the point (t0, x0).
The total space of the set of 1-jets,

J1(T,M) =
⋃

(t0,x0)∈T×M
J1(t0,x0)

(T,M), (2.6)
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can be organized as a vector bundle over the base space T × M, endowed with the differ-
entiable structure of the product space.

Let ς be the canonical projection, defined as

ς : J1(T,M) −→ T ×M, ς
([

f
]
(t0,x0)

)
=
(
t0, f(t0)

)
. (2.7)

The mapping ς is well defined, having the property to be onto.
For every local chart U × V of the product manifold T ×M, we define the bijection

φU×V : ς−1(U × V ) −→ U × V × R
np,

φU×V
([

f
]
(t0,x0)

)
=

(
t0, x0,

∂xi

∂tα

(
t
β

0

))
, x0 = f(t0).

(2.8)

Therefore, the 1-jet space is endowed with a differentiable structure of dimension n +
p + np, such that the mappings φU×V are diffeomorphisms.

The local coordinates on the space J1(T,M) are (tα, xi, xi
α), where

tα
([

f
]
(t0,x0)

)
= tα(t0),

xi
([

f
]
(t0,x0)

)
= xi(x0),

xi
α

([
f
]
(t0,x0)

)
=

∂xi

∂tα

(
t
β

0

)
, α = 1, p, i = 1, n.

(2.9)

Remark 2.1. From physical viewpoint, the differentiable manifold T should be thought as a
“temporal manifold” or a “multitime”, while M is a “space manifold.”

Remark 2.2. From geometrical viewpoint, an element [f] of a fiber 1-jets J1(T,M) should be
thought as a class of parametrized sheet. The sections of fiber 1-jets are “physical fields.”

To simplify the notations, denote by xγ(t) = (∂x/∂tγ)(t), γ = 1, p, the partial velocities.
Also, in our subsequent theory, we will set πx(t) = (t, x(t), xγ(t)).

2.2. On Lagrange 1-Forms

A Lagrange 1-form of the first order on the jets space J1(T,M) has the form

ω = Lα(πx(t))dtα +Mi(πx(t))dxi +N
β

i (πx(t))dxi
β, (2.10)

where Lα, Mi and N
β

i are Lagrangians of the first order. The pullback

x∗ω =
(
Lα +Mix

i
α +N

β

i x
i
βα

)
dtα (2.11)
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is a Lagrange 1-form of the second order onM. The coefficients Lα+Mix
i
α+N

β

i x
i
βα

are second
order Lagrangians, which are linear in the partial accelerations.

A smooth Lagrangian L(πx(t)), t ∈ R
m
+ produces two smooth closed (completely

integrable) 1-forms:
(i) the differential

dL =
∂L

∂xi
dxi +

∂L

∂xi
γ

dxi
γ +

∂L

∂tγ
dtγ (2.12)

of components (∂L/∂tγ , ∂L/∂xi, ∂L/∂xi
γ), with respect to the basis (dtγ , dxi, dxi

γ);
(ii) the restriction of dL to πx(t), that is, the pullback

dL|πx(t) =

(
∂L

∂xi

∂xi

∂tβ
+

∂L

∂xi
γ

∂xi
γ

∂tβ
+

∂L

∂tβ

)
dtβ (2.13)

of components containing partial accelerations

DβL =
∂L

∂xi
(πx(t))

∂xi

∂tβ
(t) +

∂L

∂xi
γ

(πx(t))
∂xi

γ

∂tβ
(t) +

∂L

∂tβ
(πx(t)), (2.14)

with respect to the basis dtβ (for other ideas, see [28]).

3. Problem Description

Let (T, h) and (M,g) be Riemannian manifolds of dimensions p and n, respectively. Denote
by t = (tα), α = 1, p, and x = (xi), i = 1, n, the local coordinates on T and M, respectively.
Consider J1(T,M) the first order jet bundle associated to T and M.

To develop our theory, we recall the following relations between two vectors v = (vj)
and w = (wj), j = 1, δ:

v = w ⇐⇒ vj = wj, j = 1, δ,

v < w ⇐⇒ vj < wj, j = 1, δ ,

v � w ⇐⇒ vj ≤ wj, j = 1, δ
(
product order relation

)
,

v ≤ w ⇐⇒ v � w, v /=w.

(3.1)

Using the product order relation on R
p, the hyperparallelepiped Ωt0,t1 , in R

p, with
diagonal opposite points t0 = (t10, . . . , t

p

0) and t1 = (t11, . . . , t
p

1), can be written as being the
interval [t0, t1]. Suppose γt0,t1 is a piecewise C1-class curve joining the points t0 and t1.

The closed Lagrange 1-forms densities of C∞-class

fα =
(
f�
α

)
: J1(T,M) −→ R

r , kα =
(
k�
α

)
: J1(T,M) −→ R

r , � = 1, r, α = 1, p, (3.2)
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determine the following path independent curvilinear functionals (actions, mechanical
work):

F�(x(·)) =
∫
γt0 ,t1

f�
α (πx(t)) dtα, K�(x(·)) =

∫
γt0 ,t1

k�
α(πx(t)) dtα. (3.3)

The closeness conditions (complete integrability conditions) are

Dβf
�
α = Dαf

�
β , Dβk

�
α = Dαk

�
β, α, β = 1, p, α /= β, � = 1, r, (3.4)

where Dβ is the total derivative.
Suppose K�(x(·)) > 0, for all � = 1, r, and accept that the Lagrange matrix densities

g =
(
gb
a

)
: J1(T,M) −→ R

qs, a = 1, s, b = 1, q, q < n,

h =
(
hb
a

)
: J1(T,M) −→ R

q̃s, a = 1, s, b = 1, q̃, q̃ < n,

(3.5)

of C∞-class define the partial differential inequations (PDIs) (of evolution)

g(πx(t)) � 0, t ∈ Ωt0,t1 , (3.6)

and the partial differential equations (PDE) (of evolution)

h(πx(t)) = 0, t ∈ Ωt0,t1 . (3.7)

On the set C∞(Ωt0,t1 ,M) of all functions x : Ωt0,t1 → M of C∞-class, we set the norm
‖x‖ = ‖x‖∞ +

∑p

α=1 ‖xα‖∞.
For each � = 1, r, suppose K�(x(·)) > 0, and consider

F(x(·))
K(x(·)) =

(
F1(x(·))
K1(x(·)) , . . . ,

Fr(x(·))
Kr(x(·))

)
. (3.8)

The aim of this work is to introduce and study the variational problem of minimizing
a vector of quotients of functionals of curvilinear integral type:

min
x(·)

(
F(x(·))
K(x(·))

)

subject to x(·) ∈ F(Ωt0,t1),

(MFP)
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where F(Ωt0,t1) denotes the set of all feasible solutions of problem (MFP), defined as

F(Ωt0,t1) =
{
x ∈ C∞(Ωt0,t1 ,M) | x(t0) = x0, x(t1) = x1, or x(t)|∂Ωt0 ,t1

= χ = given, g(πx(t)) � 0, h(πx(t)) = 0, t ∈ Ωt0,t1

}
.

(3.9)

This kind of problems, of considerable interest, arises in various branches of
mathematical, engineering, and economical sciences. We especially have in mind mechanical
engineering, where curvilinear integral objectives are extensively used due to their physical
meaning as mechanical work. These objectives play an essential role in mathematical
modeling of certain processes in relation with robotics, tribology, engines, and much more.

4. Main Results

The following two definitions are crucial in developing our results. For more details, see [26]
by Pitea et al., and [14], by Pitea and Postolache.

Definition 4.1. A feasible solution x◦(·) ∈ F(Ωt0,t1) is called an efficient solution of (MFP) if
there is no x(·) ∈ F(Ωt0,t1), x(·)/=x◦(·), such that F(x(·))/K(x(·)) ≤ F(x◦(·))/K(x◦(·)).

Definition 4.2. Let ρ be a real number and let b : C∞(Ωt0,t1 ,M) × C∞(Ωt0,t1 ,M) → [0,∞) be
a functional. To any closed 1-form a = (aα) we associate the path independent curvilinear
functional

A(x(·)) =
∫
γt0 ,t1

aα(πx(t))dtα. (4.1)

The functional A is called [strictly] (ρ, b)-quasi-invex at the point x◦(·) if there is a
vector function η : J1(Ωt0,t1 ,M) × J1(Ωt0,t1 ,M) → R

n, vanishing at the point (πx◦(t), πx◦(t)),
and θ : C∞(Ωt0,t1 ,M) × C∞(Ωt0,t1 ,M) → R

n, such that for any x(·) in C∞(Ωt0,t1 ,M),
[x(·)/=x◦(·)], the following implication holds:

(A(x(·)) ≤ A(x◦(·)))

=⇒
(
b(x(·), x◦(·))

∫
γt0 ,t1

[〈
η(πx(t), πx◦(t)),

∂aα

∂x
(πx◦(t))

〉

+

〈
Dγη(πx(t), πx◦(t)),

∂aα

∂xγ
(πx◦(t))

〉]
dtα

[<]≤ −ρb(x(·), x◦(·))‖θ(x(·), x◦(·))‖2
)
.

(4.2)

Several examples which illustrate our concept could be found in [14]. However, the
following example is interesting. It is a generalization of Example 1 in [14].
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Example 4.3. Let a : [0, 1] × C∞([0, 1]) × C∞([0, 1]) → R, x(·) = (x1(·), x2(·), . . . , xn(·)). With
x◦(·) ∈ C∞([0, 1]), denote

G(t) =
〈
∂a

∂x
(t, x◦(t), ẋ◦(t)) −D

∂a

∂ẋ
(t, x◦(t), ẋ◦(t)),

∂a

∂ẋ
(t, x◦(t), ẋ◦(t))

〉
, t ∈ [0, 1], (4.3)

where by D we denoted the total derivative operator.
Suppose that G(1) −G(0) = 0. Then, the functional

A(x(·)) =
∫1
0
a(t, x(t), ẋ(t))dt (4.4)

is (ρ, 1)-quasi-invex, for ρ ≤ 0 and any θ, at the point x◦(·), with respect to

η(πx(t), πx◦(t)) = (A(x(·)) −A(x◦(·)))
(
∂a

∂x
(t, x◦(t), ẋ◦(t)) −D

∂a

∂ẋ
(t, x◦(t), ẋ◦(t))

)
. (4.5)

In their recent work [26], Pitea et al. established necessary efficiency conditions for
problem (MFP). More accurately, they proved that if x◦(·) is an efficient solution of problem
(MFP), then there are two vectors Λ10, Λ20 in R

r and the smooth functions μ◦ and ν◦, the first
from Ωt0,t1 to R

qsp, and the second from Ωt0,t1 to R
q̃sp, such that

〈
Λ10,

∂fα
∂x

(πx◦(t))
〉
−
〈
Λ20,

∂kα
∂x

(πx◦(t))
〉

+
〈
μ◦
α(t),

∂g

∂x
(πx◦(t))

〉
+
〈
ν◦α(t),

∂h

∂x
(πx◦(t))

〉

−Dγ

(〈
Λ10,

∂fα
∂xγ

(πx◦(t))

〉
−
〈
Λ20,

∂kα
∂xγ

(πx◦(t))

〉

+

〈
μ◦
α(πx◦(t)),

∂g

∂xγ
(πx◦(t))

〉
+

〈
ν◦α(t),

∂h

∂xγ
(πx◦(t))

〉)

= 0, t ∈ Ωt0,t1 , α = 1, p
(
Euler-Lagrange PDEs

)

(4.6)

〈
μ◦
α(t), g(πx◦(t))

〉
= 0, μ◦

α(t) � 0, t ∈ Ωt0,t1 , α = 1, p. (4.7)

If Λ10 ≥ 0 and Λ20 ≥ 0, then x◦(·), from conditions (4.6), is called normal efficient
solution.

Let x◦(·) be an efficient solution of primal (MFP), the scalars Λ10, Λ20 in R
r , and the

smooth functions μ◦ : Ωt0,t1 → R
qsp, ν◦ : Ωt0,t1 → R

q̃sp, given previously.
In order to use the idea of ”grouping the resources,” consider {P0, P1, . . . , Pq} and

{Q0, Q1, . . . , Qq} partitions of the sets {1, . . . , q} and {1, . . . , q̃}, respectively.
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For each � = 1, r and α = 1, p, we denote

f
�

α

(
πy(t)

)
= f�

α

(
πy(t)

)
+
〈
μαP0(t), g

P0
(
πy(t)

)〉
+
〈
ναQ0(t), h

Q0
(
πy(t)

)〉
,

F
�(
y(·)) =

∫
γt0 ,t1

f
�

α

(
πy(t)

)
dtα.

(4.8)

Consider a function y(·) ∈ C∞(Ωt0,t1 ,M) and associate to (MFP) the multiobjective
ratio variational problem

max
y(·)

⎛
⎝ F

1(
y(·))

K1
(
y(·)) , . . . ,

F
r(
y(·))

Kr
(
y(·))

⎞
⎠

subject to
〈
Λ10,

∂fα
∂y

(
πy(t)

)〉 −
〈
Λ20,

∂kα
∂y

(
πy(t)

)〉

+
〈
μα(t),

∂g

∂y

(
πy(t)

)〉
+
〈
να(t),

∂h

∂y

(
πy(t)

)〉

−Dγ

(〈
Λ10,

∂fα
∂yγ

(
πy(t)

)〉 −
〈
Λ20 ∂kα

∂yγ

(
πy(t)

)〉

+

〈
μα(t),

∂g

∂yγ

(
πy(t)

)〉
+

〈
να(t),

∂h

∂yγ

(
πy(t)

)〉)

= 0, α = 1, p, t ∈ Ωt0,t1 ,

(MFZD)

〈
μαPκ(t), g

Pκ
(
πy(t)

)〉
+
〈
ναQκ(t), h

Qκ
(
πy(t)

)〉 ≥ 0, κ = 1, q, α = 1, p, t ∈ Ωt0,t1

Λ10 ≥ 0,
(4.9)

taking into account that the function y(t) has to satisfy the boundary conditions y(t0) = x0,
y(t1) = x1, or y(t)|∂Ωt0 ,t1

= χ =given.
�(x◦(·)) is the value of the objective function of problem (MFP) at x◦(·) ∈ F(Ωt0,t1), and

δ(y(·), yγ(·),Λ10,Λ20, μ(·), ν(·)) is the maximizing functional vector of dual problem (MFZD)
at the point (y(·), yγ(·),Λ10,Λ20, μ(·), ν(·)) ∈ Δ, where Δ is the domain of problem (MFZD).

We prove three duality results in a generalized sense of Mond-Weir-Zalmai.

Theorem 4.4 (weak duality). Let x◦(·) be a feasible solution of problem (MFP) and let
(y(·), yγ(·),Λ10,Λ20, μ(·), ν(·)) be a feasible point of problem (MFZD). Assume that the following
conditions are satisfied:

(a) 〈μP0(t), g
P0(πy(t))〉 + 〈νQ0(t), h

Q0(πy(t))〉 ≤ 0, for all t ∈ Ωt0,t1 ;

(b) Λ20
�

> 0 and Λ10
�
F�(y(·)) −Λ20

�
K�(y(·)) = 0, for each � = 1, r;

(c) for each � = 1, r, the functional Λ10
� F�(x(·)) − Λ20

� K�(x(·)) is (ρ′�, b)-quasi-invex at the
point y(·) with respect to η and θ, on F(Ωt0,t1);
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(d)
∫
γt0 ,t1

[〈μαPκ(t), g
Pκ(πx(t))〉+〈ναQκ(t), h

Qκ(πx(t))〉]dtα is (ρ′′κ, b)-quasi-invex at y(·) with
respect to η and θ, for each κ = 1, q, on F(Ωt0,t1);

(e) at least one of the functionals of (c), (d) is strictly quasi-invex;

(f)
∑r

�=1 ρ
′� +
∑q

κ=1 ρ
′′
κ ≥ 0.

Then, the inequality �(x◦(·)) ≤ δ(y(·), yγ(·),Λ10,Λ20, μ(·), ν(·)) is false.

Proof. By reductio ad absurdum, suppose we have

F�(x◦(·))
K�(x◦(·)) ≤ F

�(
y(·))

K�
(
y(·)) , � = 1, r. (4.10)

From these inequalities, it follows

Λ10
�
F�(x◦(·))

Λ20
�
K�(x◦(·)) ≤ 1 +

1
F�
(
y(·))

∫
γt0 ,t1

[〈
μαP0(t), g

P0
(
πy(t)

)〉
+
〈
ναQ0(t), h

Q0
(
πy(t)

)〉]
dtα,

(4.11)

and taking into account the hypotheses (a) and (b), we get

Λ10
� F�(x◦(·)) ≤ Λ20

� K�(x◦(·)), ∀� = 1, r. (4.12)

We obtain the following implications:

(〈
Λ10, F(x◦(·))

〉
−
〈
Λ20, K(x◦(·))

〉
≤ 0
)

=⇒
(
b
(
x◦(·), y(·))

×
∫
γt0 ,t1

{〈
η
(
πx◦(t), πy(t)

)
,

〈
Λ10,

∂fα
∂y

(
πy(t)

)〉 −
〈
Λ20,

∂kα
∂y

(
πy(t)

)〉〉

+

〈
Dγη
(
πx◦(t), πy(t)

)
,

〈
Λ10,

∂fα
∂yγ

(
πy(t)

)〉〉

−
〈
Λ20,

∂kα
∂yγ

(
πy(t)

)〉〉}
dtα

≤ −b(x◦(·), y(·))∥∥θ(x◦(·), y(·))∥∥2 r∑
�=1

ρ
′�

)
.

(4.13)
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Hypothesis (d) regarding the (ρ′′κ, b)-quasi-invexity property of each functional
implies (κ = 1, q) :

(∫
γt0 ,t1

[〈
μαPκ(t), g

Pκ(πx◦(t))
〉
+
〈
ναQκ(t), h

Qκ(πx◦(t))
〉]

dtα

≤
∫
γt0 ,t1

[〈
μαPκ(t), g

Pκ
(
πy(t)

)〉
+
〈
ναQκ(t), h

Qκ
(
πy(t)

)〉]
dtα
)

=⇒
(
b
(
x◦(·), y(·))

×
∫
γt0 ,t1

[〈
η
(
πx◦(t), πy(t)

)
,

〈
μαPκ(t),

∂gPκ

∂y

(
πy(t)

)〉〉

+

〈
ναQκ(t),

∂hQκ

∂y

(
πy(t)

)〉

+

〈
Dγη
(
πx◦(t), πy(t)

)
,

〈
μαPκ(t),

∂gPκ

∂yγ

(
πy(t)

)〉〉

+

〈
ναQκ(t),

∂hQκ

∂yγ

(
πy(t)

)〉]
dtα

≤ −ρ′′κb
(
x◦(·), y(·))∥∥θ(x◦(·), y(·))∥∥2

)
.

(4.14)

Now, we make the sum of implications (4.13) and (4.14) side by side and from κ = 1
to κ = q. It follows

(〈
Λ10, F(x◦(·))

〉
−
〈
Λ20, K(x◦(·))

〉

+
∫
γt0 ,t1

[〈
μα(t), g(πx◦(t))

〉
+ 〈να(t), h(πx◦(t))〉]dtα

−
∫
γt0 ,t1

[〈
μα(t), g

(
πy(t)

)〉
+
〈
να(t), h

(
πy(t)

)〉]
dtα ≤ 0

)
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=⇒
(
b
(
x◦(·), y(·))

×
∫
γt0 ,t1

[〈
η
(
πx◦(t), πy(t)

)
,

〈
Λ10,

∂fα
∂y

(
πy(t)

)〉 −
〈
Λ20,

∂kα
∂y

(
πy(t)

)〉〉

+
〈
μα(t),

∂g

∂y

(
πy(t)

)〉
+
〈
να(t),

∂h

∂y

(
πy(t)

)〉

+

〈
Dγη
(
πx◦(t), πy(t)

)
,

〈
Λ10,

∂fα
∂yγ

(
πy(t)

)〉 −
〈
Λ20,

∂kα
∂yγ

(
πy(t)

)〉

+

〈
μα(t),

∂g

∂yγ

(
πy(t)

)〉
+

〈
να(t),

∂h

∂yγ

(
πy(t)

)〉〉]
dtα

− < b
(
x◦(·), y(·))∥∥θ(x◦(·), y(·))∥∥2

(
r∑

�=1

ρ
′� +

q∑
κ=1

ρ′′κ

))
.

(4.15)

Since b(x◦(·), y(·)) > 0, we obtain

∫
γt0 ,t1

[〈
η
(
πx◦(t), πy(t)

)
,
∂Vα

∂y

(
πy(t),Λ10,Λ20, μ(·), ν(·)

)〉

+

〈
Dγη
(
πx◦(t), πy(t)

)
,
∂Vα

∂yγ

(
πy(t),Λ10,Λ20, μ(·), ν(·)

)〉]
dtα

< −∥∥θ(x◦(·), y(·))∥∥2
(

r∑
�=1

ρ
′� +

q∑
κ=1

ρ′′κ

)
,

(4.16)

where

Vα

(
πy(·),Λ10,Λ20, μ(·), ν(·)

)
=
〈
Λ10, fα

(
πy(t)

)〉 − 〈Λ20, kα
(
πy(t)

)〉

+
〈
μα

(
y(t)
)
, g
(
πy(t)

)〉
+
〈
να(t), h

(
πy(t)

)〉
,

t ∈ Ωt0,t1 , α = 1, p.

(4.17)
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The following relation holds:

〈
Dγη
(
πx◦(t), πy(t)

)
,
∂Vα

∂yγ

(
πy(t),Λ10,Λ20, μ(t), ν(t)

)〉

= Dγ

〈
η
(
πx◦(t), πy(t)

)
,
∂Vα

∂yγ

(
πy(t),Λ10,Λ20, μ(t), ν(t)

)〉

−
〈
η
(
πx◦(t), πy(t)

)
, Dγ

(
∂Vα

∂yγ

)(
πy(t),Λ10,Λ20, μ(t), ν(t)

)〉
.

(4.18)

By replacing relations (4.18) and by using Euler-Lagrange PDE, relation (4.16)
becomes

∫
γt0 ,t1

Dγ

〈
η
(
πx◦(t), πy(t)

)
,
∂Vα

∂yγ

(
πy(t),Λ10,Λ20, μ(t), ν(t)

)〉
dtα

< −∥∥θ(x◦(·), y(·))∥∥2
(

r∑
�=1

ρ
′� +

q∑
κ=1

ρ′′κ

)
.

(4.19)

For α, γ = 1, p, let us denote by

Q
γ
α(t) =

〈
η
(
πx◦(t), πy(t)

)
,
∂Vα

∂yγ

(
πy(t),Λ10,Λ20, μ(t), ν(t)

)〉
,

I =
∫
γt0 ,t1

DγQ
γ
α(t) dtα.

(4.20)

According to [28], § 9, a total divergence is equal to a total derivative. Consequently,
there exists Q(t), with Q(t0) = 0 and Q(t1) = 0 such that DγQ

γ
α(t) = DαQ(t) and

I =
∫
γt0 ,t1

DαQ(t) dtα = Q(t1) −Q(t0) = 0. (4.21)

Replacing into inequality (4.19), it follows that

0 < −∥∥θ(x◦(·), y(·))∥∥2
(

r∑
�=1

ρ
′� +

q∑
a=1

ρ′′a

)
, (4.22)

contradicting hypothesis (f).
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From relation (4.15), it follows

0 ≤
〈
Λ10, F(x◦(·))

〉
−
〈
Λ20, K(x◦(·))

〉

+
∫
γt0 ,t1

[〈
μα(t), g(πx◦(t))

〉
+ 〈να(t), h(πx◦(t))〉]dtα

−
∫
γt0 ,t1

[〈
μα(t), g

(
πy(t)

)〉
+
〈
να(t), h

(
πy(t)

)〉]
dtα.

(4.23)

According to the constraints of problems (MFP) and (MFZD), the previously mentioned
relation becomes Λ10

�
F�(x◦(·)) −Λ20

�
K�(x◦(·)) > 0, that is:

K�(x◦(·))K�(y(·))
[
F�(x◦(·))
K�(x◦(·)) −

F�
(
y(·))

K�
(
y(·))

]
> 0. (4.24)

Because K�(x◦(·))K�(y(·)) > 0, � = 1, r, we conclude that

(
F1(x◦(·))
K1(x◦(·)) −

F1(y(·))
K1
(
y(·)) , . . . ,

Fr(x◦(·))
Kr(x◦(·)) −

Fr
(
y(·))

Kr
(
y(·))

)
� (0, . . . , 0), (4.25)

or

(
F1(x◦(·))
K1(x◦(·)) , . . . ,

Fr(x◦(·))
Kr(x◦(·))

)
�

(
F1(y(·))
K1
(
y(·)) , . . . ,

Fr
(
y(·))

Kr
(
y(·))

)
. (4.26)

Therefore, the inequality �(x◦(·)) ≤ δ(y(·), yγ(·),Λ10,Λ20, μ(·), ν(·)) contradicts
relations (4.12), and this completes the proof.

Theorem 4.5 (direct duality). Let x◦(·) be an efficient solution of primal (MFP) . Suppose the
hypotheses of Theorem 4.4 hold. Then there are Λ10 and Λ20 in R

r , and the smooth functions
μ◦ : Ωt0,t1 → R

qsp and ν◦ : Ωt0,t1 → R
qsp, such that (x◦(·), x◦

γ(·),Λ10,Λ20, μ◦(·), ν◦(·)) is an
efficient solution of dual program (MFZD). Moreover

�(x◦(·)) = δ
(
x◦(·), x◦

γ(·),Λ10,Λ20, μ◦(·), ν◦(·)
)
. (4.27)

Proof. x◦(·) being efficient solution of primal (MFP), there are Λ10 and Λ20 in R
r and the

smooth functions μ◦ : Ωt0,t1 → R
qsp and ν◦ : Ωt0,t1 → R

qsp, such that relations (4.6) are
verified. Therefore, 〈μα(t), g(πx◦(t))〉 = 0, α = 1, p. It follows (x◦(·), x◦

γ(·),Λ10,Λ20, μ◦(·), ν◦(·))
is a feasible solution for program (MFZD). Obviously,

�(x◦(·)) = δ
(
x◦(·), x◦

γ(·),Λ10,Λ20, μ◦(·), ν◦(·)
)
. (4.28)

The weak duality theorem assures the efficiency of x◦(·).
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If we remark that the notion of efficient solution of problem (MFZD) is similar to those
in Definition 4.1, we can state the result in the following.

Theorem 4.6 (converse duality). Let (x◦(·), x◦
γ(·),Λ10,Λ20, μ◦(·), ν◦(·)) be an efficient solution to

dual (MFZD) and suppose the following conditions are satisfied:

(i) x(·) is a normal efficient solution of primal (MFP);

(ii) the hypotheses of Theorem 4.4 hold at (x◦(·), x◦
γ(·),Λ10,Λ20, μ◦(·), ν◦(·)).

Then x◦(·) is an efficient solution to (MFP). Moreover, one has the equality

�(x◦(·)) = δ
(
x◦(·), x◦

γ(·),Λ10,Λ20, μ◦(·), ν◦(·)
)
. (4.29)

Proof. Suppose x(·)/=x◦(·). The efficiency of x(·) of primal (MFP) implies the existence of Λ
10

and Λ
20

in R
r and the smooth functions μ◦ : Ωt0,t1 → R

qsp and ν◦ : Ωt0,t1 → R
qsp, such that

relations (4.6) are satisfied. It follows that (x(·), xγ(·),Λ
10
,Λ

20
, μ◦(·), ν◦(·)) is a feasible solution

of (MFZD) and

�(x(·)) = δ
(
x(·), xγ(·),Λ

10
,Λ

20
, μ◦(·), ν◦(·)

)
. (4.30)

On the other hand, from the weak duality theorem,

�(x(·)) � δ
(
x◦(·), x◦

γ(·),Λ10,Λ20, μ◦(·), ν◦(·)
)

(4.31)

holds, that is:

δ
(
x(·), xγ(·),Λ

10
,Λ

20
, μ◦(·), ν◦(·)

)
� δ
(
x◦(·), x◦

γ(·),Λ10,Λ20, μ◦(·), ν◦(·)
)
. (4.32)

This last relation contradicts the efficiency of (x◦(·), x◦
γ(·),Λ10,Λ20, μ◦(·), ν◦(·)) for

program (MFZD). Therefore x(·) = x◦(·), and the theorem is proved.
We would like to conclude the study in this section with the following important

particular case.
In this respect, suppose that k�

α = positive constant, � = 1, r, α = 1, p. Denote F(x(·)) =
(F1(x(·)), . . . , Fr(x(·))). Then, program (MFP) becomes

min F(x)

subject to x(·) ∈ F(Ωt0,t1),
(MP)
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and its dual is

max
∫b
a

Le

(
πy(t)

)
dt

subject to

Λ10
�

∂f�
α

∂y

(
πy(t)

)
+
〈
μα(t),

∂g

∂y

(
πy(t)

)〉
+
〈
να(t),

∂h

∂y

(
πy(t)

)〉

−Dγ

(
Λ10

�

∂f�
α

∂yγ

(
πy(t)

)
+

〈
μα(t),

∂g

∂yγ

(
πy(t)

)〉
+

〈
να(t),

∂h

∂yγ

(
πy(t)

)〉)
= 0,

α = 1, p, t ∈ Ωt0,t1 ,

〈
μαPκ(t), g

Pκ
(
πy(t)

)〉
+
〈
ναQκ(t), h

Qκ
(
πy(t)

)〉 ≥ 0, κ = 1, q, α = 1, p, t ∈ Ωt0,t1 ,

Λ10 ≥ 0,
(GMWD)

where

Le

(
πy(t)

)
= f
(
πy(t)

)
+
[〈

μP0(t), g
P0(πx(t))

〉
+
〈
νQ0(t), h

Q0(πx(t))
〉]

e, (4.33)

with Le = (L1, . . . , Lr).
It can be seen that we have obtained precisely the programs studied in the work [14].

Therefore, the results in this paper are stronger than the ones mentioned before.

5. Conclusion

In our recent study [14], we initiated an optimization theory on the first order jet bundle.
As natural continuation, in this paper we considered a new class of multitime multiobjective
variational problems of minimizing a vector of quotients of functionals of curvilinear integral
type. We derived duality results for efficient solutions of multitime multiobjective ratio
variational problems under the assumptions of (ρ, b)-quasi-invexity. We proved our weak
duality theorem for efficient solutions, showing that the value of the objective function of the
primal cannot exceed the value of the dual. Direct and converse duality theorems are stated,
underlying the connections between the values of the objective functions of the primal and
dual programs. As special cases, duality results of Mond-Weir-Zalmai type for a multitime
multiobjective variational problem are obtained.

Having in mind the physical significance of the objective function, this study is
strongly motivated by its possible applications of nonlinear optimization to mechanical
engineering and economics [29].
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