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Population control has become a major problem in many wildlife species. Sterility control through
contraception has been proposed as amethod for reducing population size. In this paper, the single
species with sterility control and feedback controls is considered. Sufficient conditions are obtained
for the permanence and extinction of the system. The results show that the feedback controls do
not influence the permanence of the species.

1. Introduction

Control of wildlife pest populations has usually relied on methods like chemical pesticides,
biological pesticides, remote sensing and measure, computers, atomic energy, and so forth.
Some brilliant achievements have been obtained. However, the warfare will never be over.
Although a large variety of pesticide were used to control wildlife pest populations, the
wildlife pests impairing crops are increasing especially because of resistance to the pesticide.
So the pesticides are invalid. Moreover, wildlife pests will continue. On the other hand, the
chemical pesticide kills not only wildlife pests but also their natural enemies. Therefore,
wildlife pests are rampant. Now, sterile control to suppress wildlife pests is one of the most
important measures in wildlife pest control. Sterile control [1–5] is especially for the purpose
of suppressing the abundance of the pest in a new target region to a level at which it no
longer causes economic damage. This can be achieved by releasing sterile insects into the
environment in very large numbers in order to mate with the native insects that are present
in the environment. A native female that mates with a sterile male will produce eggs, but
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the eggs will not hatch (the same effect will occur for the reciprocal cross). If there is a
sufficiently high number of sterile insects than most of the crosses are sterile, and as time
goes on, the number of native insects decreases and the ratio of sterile to normal insects
increases, thus driving the native population to extinction. Sterile male techniques were first
used successfully in 1958 in Florida to control Screwworm fly (Cochliomya omnivorax). A
number of mathematical models have been done to assist the effectiveness of the SIT (see,
e.g., [2–4]). Recently, Liu and Li [6] considered the following contraception control model:

x′
1(t) = x1(t)

(
b − k(x1(t) + x2(t)) − μ

)
,

x′
2(t) = μx1(t) − [d + k(x1(t) + x2(t))]x2(t),

(1.1)

where x1(t), x2(t) represent, respectively, the density of the fertile species and the sterile
species at time t. The authors proved the equilibrium point of system (1.1) is stable under
appropriate conditions. In view of the effects of a periodically changing environment, we
consider the following nonautonomous contraception model:

x′
1(t) = x1(t)

(
b(t) − k(t)(x1(t) + x2(t)) − μ(t)

)
,

x′
2(t) = μ(t)x1(t) − [d(t) + k(t)(x1(t) + x2(t))]x2(t).

(1.2)

However, we note that ecosystem in the real world are continuously disturbed by
unpredictable forces which can result in changes in the biological parameters such as survival
rates. Of practical interest in ecosystem is the question of whether or not an ecosystem
can withstand those unpredictable forces which persist for a finite period of time. In the
language of control variables, we call the disturbance functions as control variables. So it is
necessary to study models with control variables which are so-called disturbance functions,
and to find some suitable conditions to prevent a particular species from dying out. In 1993,
Gopalsamy andWeng [7] introduced a feedback control variable into the delay logistic model
and discussed the asymptotic behavior of solution in logistic models with feedback controls,
in which the control variables satisfy certain differential equation.

In recent years, the population dynamical systems with feedback controls have been
studied in many articles, for example, see [7–12] and references cited therein. However, to
the best of the authors knowledge, to this day, still less scholars consider the nonautonomous
single species with contraception control and feedback controls.

Motivated by the above works, we focus our attention on the permanence of species
for the following single species nonautonomous systems with delays and feedback control:

x′
1(t) = x1(t)

(
b(t) − k(t)(x1(t) + x2(t)) − μ(t) − c1(t)u(t − σ1(t))

)
,

x′
2(t) = μ(t)x1(t) − [d(t) + k(t)(x1(t) + x2(t)) + c2(t)u(t − σ2(t))]x2(t),
u′(t) = −e(t)u(t) + f1(t)x1(t − τ1(t)) + f2(t)x2(t − τ2(t)),

(1.3)

where x1(t), x2(t) represent, respectively, the density of the fertile population and the sterile
population at time t. u(t) is the control variable at time t. b(t), k(t) represent, respectively,
the intrinsic growth rate and density-dependent rate of the species at time t, respectively.
μ(t) is the migration rates from the fertile population to the sterile population. The function
b(t) is bounded continuous defined on R+ = [0, ∞); functions μ(t), k(t), d(t), e(t), ci(t),
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fi(t), σi(t), and τi(t) (i = 1, 2) are continuous, bounded, and nonnegative defined on R+. Let
τ = sup{τ1(t), τ2(t), σ1(t), σ2(t) : t ≥ 0}.

We will consider (1.3) together with initial conditions:

xi(θ) = φi(θ), u(θ) = ψ(θ), (1.4)

where φi(θ), ψ(θ) ∈ BC+[−τ, 0] and

BC+[−τ, 0] = {
φ ∈ C([−τ, 0], [0,+∞]) : φ(0) > 0, φ (θ) is bounded

}
. (1.5)

By the fundamental theory of functional differential equations [12], it is not difficult to
see that the solution (x1(t), x2(t), u(t)) of (1.3) is unique and positive if initial functions satisfy
initial condition (1.4). So, in this paper, the solution of (1.3) satisfying initial conditions (1.4)
is said to be positive.

The main purpose of this paper is to establish a new general criterion for the
permanence and the extinction of (1.3), which is described by integral form and independent
feedback controls. The paper is organized as follows. In the next section, we will give
some assumptions and useful lemmas. In Section 3, some new sufficient conditions which
guarantee the permanence of all positive solutions for (1.3) are obtained. In Section 4, we
obtained some new sufficient conditions which guarantee the extinction of all positive
solutions for (1.3).

2. Preliminaries

Throughout this paper, we will introduce the following assumptions:

(H1) there exist constants ωi > 0 (i = 1, 2) such that

lim inf
t→∞

∫ t+ω1

t

[
b(s) − μ(s)]ds > 0, lim inf

t→∞

∫ t+ω2

t

μ(s)ds > 0; (2.1)

(H2) there exist constants λi > 0 (i = 1, 2), such that

lim inf
t→∞

∫ t+λ1

t

k(s)ds > 0, lim inf
t→∞

∫ t+λ2

t

d(s)ds > 0; (2.2)

(H3) there exists a constant γ > 0 such that

lim inf
t→∞

∫ t+γ

t

e(s)ds > 0. (2.3)

In addition, for a function g(t) defined on set I ⊂ R, we denote

gL = inf
t∈I

g(t), gM = sup
t∈I

g(t). (2.4)
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Now, we state several lemmas which will be useful in the proving of main results in
this paper.

First, we consider the following nonautonomous logistic equation:

x′(t) = x(t)(r(t) − a(t)x(t)), (2.5)

where functions a(t), r(t) are bounded and continuous on R+. Furthermore, a(t) ≥ 0 for all
t ≥ 0. We have the following result which is given in [13] by Teng and Li.

Lemma 2.1. Suppose that there exist constants λ, σ such that

lim inf
t→∞

∫ t+λ

t

r(s)ds > 0, lim inf
t→∞

∫ t+σ

t

a(s)ds > 0. (2.6)

Then,

(a) there exist positive constantsm andM such that

m ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤M. (2.7)

for any positive solution x(t) of (2.5);

(b) limt→∞(x(1)(t) − x(2)(t)) = 0 for any two positive solutions x(1)(t) and x(2)(t) of (2.5).

Further, consider the following nonautonomous linear equation:

u′(t) = r(t) − e(t)u(t), (2.8)

where functions r(t) and e(t) are bounded continuous defined on R+, and r(t) ≥ 0 for all t ≥ 0.
One has the following result.

Lemma 2.2. Suppose that (H3) holds. Then,

(a) there exists a positive constantU such that lim supt→∞u(t) ≤ U for any positive solution
u(t) of (2.8);

(b) limt→∞(u(1)(t) − u(2)(t)) = 0 for any two positive solutions u(1)(t) and u(2)(t) of (2.8).

The proof of Lemma 2.2 is very simple by making a transformation with u(t) = 1/x(t).
This produces the calculations: u′(t) = −(1/x2(t))x′(t) and x′(t) = x(t)(e(t) − r(t)x(t)). Then,
according to the Lemma 2.1 one can obtain Lemma 2.2.

Lemma 2.3. Suppose that (H3) holds. Then, for any constants ε > 0 andM > 0, there exist constants
δ = δ(ε) > 0 and T = T(ε,M) > 0 such that for any t0 ∈ R+ and u0 ∈ R with |u0| ≤ M, when
|r(t)| < δ for all t ≥ t0, one has

|u(t, t0, u0)| < ε ∀t ≥ t0 + T, (2.9)

where u(t, t0, u0) is the solution of (2.8) with initial condition u(t0) = u0.
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The proof of Lemma 2.3 can be found as Lemma 2.4 in [11] by Wang et al.

3. Main Results

In this section, we study the permanence of species x1(t), x2(t) of (1.3). First, we have the
theorem on the ultimate boundedness of all positive solutions of (1.3).

Theorem 3.1. Suppose that assumptions (H1)–(H3) hold. Then, any positive solution of (1.3) is
ultimate bounded, in the sense that there exists a positive constantM > 0 such that

lim sup
t→∞

x1(t) < M, lim sup
t→∞

x2(t) < M, lim sup
t→∞

u(t) < M, (3.1)

for any positive solution (x1(t), x2(t), u(t)) of (1.3).

Proof. Let (x1(t), x2(t), u(t)) be any positive solution of (1.3). We first prove that the
component x1(t) of (1.3) is ultimately bounded. From the first equation of (1.3), we have

dx1(t)
dt

≤ x1(t)
(
b(t) − μ(t) − k(t)x1(t)

)
. (3.2)

We consider the following auxiliary equation:

dy(t)
dt

= y(t)
(
b(t) − μ(t) − k(t)y(t)), (3.3)

then by (H1) and applying Lemma 2.1, there exists a constantM1 such that

lim sup
t→∞

y(t) < M1 (3.4)

for any positive solution y(t) of (3.3). Let y∗(t) be the solution of (3.3) satisfying initial
condition y∗(t0) = x1(t0). Further, from comparison theorem, it follows that

x1(t) < y∗(t) ∀t > t0. (3.5)

Thus, we finally obtain that

lim sup
t→∞

x1(t) < M1. (3.6)

From inequality (3.6), we obtain that there exists a positive constant T1 such that

x1(t) < M1 ∀t ≥ T1. (3.7)
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Hence, from the second equation of (1.3), one has

dx2(t)
dt

≤ μ(t)M1 − d(t)x2(t) (3.8)

for all t ≥ T1. Further, consider the following auxiliary equation:

dv(t)
dt

= μ(t)M1 − d(t)v(t), (3.9)

from assumptions (H1) and (H2) and according to Lemma 2.2, there exists constant M2 > 0
such that

lim sup
t→∞

v(t) < M2 (3.10)

for the solution v(t) of (3.9)with initial condition v(T1) = x2(T1). By the comparison theorem,
we have

x2(t) ≤ v(t) ∀t ≥ T1. (3.11)

From this, we further obtain

lim sup
t→∞

x2(t) < M2. (3.12)

Then, we obtain that there exists constant T2 > T1 such that

x2(t) < M2 ∀t ≥ T2. (3.13)

From the third equation of (1.3), we have

du(t)
dt

≤ −e(t)u(t) +M1f1(t) +M2f2(t) (3.14)

for all t ≥ T2 + τ . Consider the following auxiliary equation:

dv(t)
dt

= −e(t)v(t) +M1f1(t) +M2f2(t). (3.15)

By assumption (H3) and conclusions of Lemma 2.2, we can get that there exists a constant
M3 > 0 such that

lim sup
t→∞

v(t) < M3 (3.16)



Abstract and Applied Analysis 7

for the solution v(t) of (3.15) with initial condition v(T2 + τ) = u(T2 + τ). By the comparison
theorem, we have

u(t) ≤ v(t) ∀t ≥ T2 + τ. (3.17)

Hence, we further obtain

lim sup
t→∞

u(t) < M3. (3.18)

Choose the constantM = max{M1,M2,M3}, then we finally obtain

lim sup
t→∞

x1(t) < M, lim sup
t→∞

x2(t) < M, lim sup
t→∞

u(t) < M. (3.19)

This completes the proof.

Theorem 3.2. Suppose that assumptions (H1)–(H3) hold. Then, there exists a constant η > 0, which
is independent of any solution of (1.3), such that

lim inf
t→∞

x1(t) > η, lim inf
t→∞

x2(t) > η, (3.20)

for any positive solution (x1(t), x2(t), u(t)) of (1.3).

Proof. Let (x1(t), x2(t), u(t)) be a solution of (1.3) satisfying initial condition (1.4). In view of
Theorem 3.1, there exists a T0 such that for all t > T0 we have xi(t) < M, u(t) < M (i = 1, 2).
According to (H1), we can choose constants ε0 > 0 and T1 > 0 such that, for all t ≥ T1, we have

∫ t+ω1

t

(
b(s) − μ(s) − 2k(s)ε0 − c1(s)ε0

)
ds > ε0. (3.21)

Next, we consider the following equation:

du(t)
dt

= −e(t)u(t) + f1(t)α0 + f2(t)α0, (3.22)

where α0 was given in the later. By (H3), we have (3.22) satisfying all the conditions of
Lemma 2.3. So, we can obtain that, for given constants ε0 > 0 and M > 0 (M was given
in Theorem 3.1), there exist constants δ0 = δ0(ε0) > 0 and T ∗ = T ∗(ε0,M) > 0 such that for any
t0 ∈ R+ and 0 ≤ u0 ≤M, when α0f1(t) + α0f2(t) < δ0 for all t ≥ t0, we have

u(t, t0, u0) < ε0 ∀t ≥ t0 + T ∗, (3.23)

where u(t, t0, u0) is the solution of (3.22)with initial condition u(t0) = u0.
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Further, consider the following equation:

dz(t)
dt

= μ(t)α0 − d(t)z(t), (3.24)

where α0 was given in (3.22). By (H2), we have (3.24) satisfying all the conditions of
Lemma 2.3, so by Lemma 2.3, for given constants α0 > 0 and M > 0, there exist constants
δ1 = δ1(α0) > 0 and T ∗∗ = T ∗∗(α0,M) > 0 such that for any t0 ∈ R+ and 0 ≤ z0 ≤ M, when
μ(t)α0 < δ1 for all t ≥ t0, we have

z(t, t0, z0) < α0 ∀t ≥ t0 + T ∗∗, (3.25)

where z(t, t0, z0) is the solution of (3.24) with initial condition z(t0) = z0.
Let α0 ≤ min{ε0, (δ1/(μM + 1)), (δ0/(fM1 + fM2 + 1))} such that for all t ≥ T1, we have

∫ t+ω1

t

(
b(s) − μ(s) − 2k(s)α0 − f1(s)ε0

)
ds > ε0. (3.26)

We first prove that

lim sup
t→∞

x1(t) ≥ α0. (3.27)

In fact, if (3.27) is not true, then there exist a positive solution (x1(t), x2(t), u(t)) of (1.3) and a
constant T2 ≥ T1 such that

x1(t) < α0, (3.28)

for all t ≥ T2.
From the second equation of (1.3), we have

dx2(t)
dt

≤ μ(t)α0 − d(t)x2(t) (3.29)

for all t ≥ T2. Let ẑ(t) be the solution of (3.24) with initial condition ẑ(T2) = x2(T2), by the
comparison theorem, we have x2(t) ≤ ẑ(t) for all t ≥ T2. In (3.25), we choose t0 = T2 and
ẑ0 = x2(T2), since μ(t)α0 < δ1, we obtain ẑ(t, t0, ẑ0) < α0 for all t ≥ T2 + T ∗∗. Hence, we further
obtain

x2(t, T2, x2(T2)) < α0 ∀t ≥ T2 + T ∗∗. (3.30)

By applying (3.28) and (3.30) to the third equation of (1.3), it follows that

du(t)
dt

≤ −e(t)u(t) + f1(t)α0 + f2(t)α0, (3.31)
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for all t ≥ T2 + T ∗∗ + τ . Let û(t) be the solution of (3.22)with initial condition û(T2 + T ∗∗ + τ) =
u(T2 + T ∗∗ + τ), by the comparison theorem, we have

u(t) ≤ û(t) ∀t ≥ T2 + T ∗∗ + τ. (3.32)

In (3.23), we choose t0 = T2 + T ∗∗ + τ and û0 = u(T2 + T ∗∗ + τ), since α0f1(t) + α0f2(t) < δ0 for
all t ≥ T2 + T ∗∗ + τ , we obtain

û(t, T2 + T ∗∗ + τ, u(T2 + T ∗∗ + τ)) < ε0 ∀t ≥ T2 + T ∗∗ + τ + T ∗. (3.33)

Hence, from (3.32), we further obtain

u(t, T2 + T ∗∗ + τ, u(T2 + T ∗∗ + τ)) < ε0 ∀t ≥ T2 + T ∗∗ + τ + T ∗. (3.34)

Hence, by (3.30) and (3.34) it follows that

dx1(t)
dt

≥ x1(t)
(
b(t) − μ(t) − 2k(t)α0 − c1(t)ε0

)
, (3.35)

for any t > T2 + T ∗∗ + T ∗ + 2τ . Integrating (3.35) from T3 = T2 + T ∗∗ + T ∗ + 2τ to t we have

x1(t) ≥ x1(T3) exp
∫ t

T3

(
b(s) − μ(s) − 2k(s)α0 − c1(s)ε0

)
ds. (3.36)

Thus, from (3.26), we have x1(t) → ∞ as t → ∞, which leads to a contradiction. So, (3.27)
holds.

Now, we prove the conclusion of Theorem 3.2. In fact, if it is not true, then there exists
an initial functions sequence {Z(m)} = {(φ(m)

1 (θ), φ(m)
2 (θ), ψ(m)(θ))}, θ ∈ [−τ, 0] such that

lim inf
t→∞

x1
(
t, Z(m)

)
<

α0

(m + 1)2
∀ m = 1, 2, . . . , (3.37)

for the solution (x1(t, Z(m)), x2(t, Z(m)), u(t, Z(m))) of (1.3). From (3.27) and (3.37), for every
m, there are two time sequences {s(m)

q } and {t(m)
q }, satisfying 0 < s

(m)
1 < t

(m)
1 < s

(m)
2 < t

(m)
2 <

· · · < s(m)
q < t

(m)
q < · · · and limq→∞s

(m)
q = ∞, such that

x1
(
s
(m)
q , Z(m)

)
=

α0
m + 1

, x1
(
t
(m)
q , Z(m)

)
=

α0

(m + 1)2
, (3.38)

α0

(m + 1)2
≤ x1

(
t, Z(m)

)
≤ α0
m + 1

∀t ∈
(
s
(m)
q , t

(m)
q

)
. (3.39)
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From Theorem 3.1, we can choose a positive constant T (m) such that x1(t, Z(m)) < M

and x2(t, Z(m)) < M and u(t, Z(m)) < M, for all t > T (m). Further, there is an integer K(m)
1 > 0

such that s(m)
q > T (m) + τ for all q ≥ K(m)

1 . Let q ≥ K(m)
1 , for any t ∈ (s(m)

q , t
(m)
q ), we have

dx1
(
t, Z(m))

dt
≥ x1

(
t, Z(m)

)[
b(t) − μ(t) − k(t)M − k(t)M − c1(t)M

]

≥ −γ1x1
(
t, Z(m)

)
,

(3.40)

where γ1 = supt∈R+
{|b(t)−μ(t)−2k(t)M−c1(t)M|}. Integrating the above inequality from s

(m)
q

to t(m)
q , we further have

α0

(m + 1)2
= x1

(
t
(m)
q , Z(m)

)
≥ x1

(
s
(m)
q , Z(m)

)
exp

[
−γ1

(
t
(m)
q − s(m)

q

)]

=
α0

m + 1
exp

[
−γ1

(
t
(m)
q − s(m)

q

)]
.

(3.41)

Consequently,

t
(m)
q − s(m)

q ≥ ln(m + 1)
γ1

∀q ≥ K(m)
1 , m = 1, 2, . . . , (3.42)

we can choose a large enoughN0 such that

t
(m)
q − s(m)

q ≥ T ∗∗ + T ∗ + 2τ +ω1 ∀m ≥N0, q ≥ K(m)
1 . (3.43)

For anym ≥N0, q ≥ K(m)
1 , and t ∈ [s(m)

q , t
(m)
q ], from (3.39), we can obtain

dx2
(
t, Z(m))

dt
≤ μ(t) α0

m + 1
− d(t)x2

(
t, Z(m)

)

≤ μMα0 − d(t)x2
(
t, Z(m)

)
.

(3.44)

Let ẑ(t) be solution of (3.24) with initial condition ẑ(s(m)
q ) = x2(s

(m)
q ), by the comparison

theorem, we have x2(t) ≤ ẑ(t) for all t ≥ s
(m)
q . In (3.25), we choose t0 = s

(m)
q and ẑ0 = z(s(m)

q ),

since μMα0 < δ1 and x2(s
(m)
q < M, we obtain ẑ(t, s(m)

q , z(s(m)
q )) < α0 for all t ≥ s

(m)
q + T ∗∗.

By Lemma 2.3, we can obtain that T ∗∗ = T ∗∗(α0,M) is independent of m. Hence, we further
obtain

x2
(
t, s

(m)
q , x2

(
s
(m)
q

))
< α0, (3.45)
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for all t > s(m)
q + T ∗∗. From the third equation of (1.3), we obtain

du
(
t, Z(m))

dt
= −e(t)u

(
t, Z(m)

)
+ f1(t)x1

(
t − τ1(t), Z(m)

)
+ f2(t)x2

(
t − τ2(t), Z(m)

)

≤ −e(t)u
(
t, Z(m)

)
+ f1(t)α0 + f2(t)α0,

(3.46)

for all t ≥ s
(m)
q + T ∗∗ + τ . Assume that ũ(t) is the solution of (3.22) with initial condition

ũ(s(m)
q + T ∗∗ + τ) = u(s(m)

q + T ∗∗ + τ), then we have

u
(
t, Z(m)

)
≤ ũ(t) ∀t ∈

[
s
(m)
q + T ∗∗ + τ, t(m)

q

]
, m ≥N0, q ≥ K(m)

1 . (3.47)

In (3.23), we choose t0 = s
(m)
q +T ∗∗+τ and u0 = u(s

(m)
q +T ∗∗+τ). Obviously, α0(f1(t)+f2(t)) < δ0

for all t ≥ s(m)
q + T ∗∗ + τ . So, we have

ũ(t) = ũ
(
t, s

(m)
q + T ∗∗ + τ, u

(
s
(m)
q + T ∗∗ + τ

))
< ε0 (3.48)

for all t ∈ [s(m)
q + T ∗∗ + τ + T ∗, t(m)

q ]. Using the comparison theorem, it follows that

u
(
t, Z(m)

)
< ε0 (3.49)

for all t ∈ [s(m)
q + T ∗∗ + τ + T ∗, t(m)

q ], q ≥ K(m)
1 , andm ≥N0.

So, for anym ≥N0, q ≥ K(m)
1 , and t ∈ [s(m)

q + T ∗∗ + T ∗ + 2τ, t(m)
q ], from (3.26), (3.45), and

(3.49), it follows

dx1
(
t, Z(m))

dt
=x1

(
t, Z(m)

)(
b(t)−μ(t)−k(t)

(
x1
(
t, Z(m)

)
+x2

(
t, Z(m)

))
−c1(t)u

(
t−σ1(t), Z(m)

))

≥ x1
(
t, Z(m)

)(
b(t) − μ(t) − 2k(t)α0 − c1(t)ε0

)
.

(3.50)

Integrating the above inequality from t
(m)
q −ω1 to t

(m)
q , then from (3.26), we obtain

α0

(m + 1)2
= x1

(
t
(m)
q , Z(m)

)

≥ x1
(
t
(m)
q −ω1, Z

(m)
)
exp

∫ t
(m)
q

t
(m)
q −ω1

(
b(t) − μ(t) − 2k(t)α0 − c1(t)ε0

)
dt

≥ α0

(m + 1)2
exp(α0) >

α0

(m + 1)2
,

(3.51)
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which leads to a contradiction. Therefore, this contradiction shows that there exists constant
η1 > 0 such that

lim inf
t→∞

x1(t) > η1, (3.52)

for any positive solution (x1(t), x2(t), u(t)) of (1.3). Therefore, there exists constant η2 > 0
such that

lim inf
t→∞

x2(t) > η2, (3.53)

for any positive solution (x1(t), x2(t), u(t)) of (1.3). This completes the proof.

Remark 3.3. In Theorem 3.2, we note that (H1)–(H3) are decided by (1.3), which is
independent of the feedback controls. So, the feedback controls have no influence on the
permanence of (1.3).

4. Extinction

In this section, we discuss the extinction of the component x1(t), x2(t) of (1.3).

Theorem 4.1. Suppose that there exist constants σ1, σ2, such that

lim sup
n→∞

∫ t+σ1

t

(
b(s) − μ(s))ds < 0; lim inf

t→∞

∫ t+σ2

t

k(s)ds > 0 (4.1)

hold. Then,

lim
t→∞

x1(t) = 0, lim
t→∞

x2(t) = 0, (4.2)

for any positive solution (x1(t), x2(t), u(t)) of (1.3).

Proof. By the condition, for every given positive constant ε, there exist constants ε1 and T1
such that

∫ t+σ1

t

(
b(s) − μ(s) − k(s)ε)ds < −ε1, (4.3)

for all t > T1. First, we show that there exists a T2 > T1, such that x1(T2) < ε. Otherwise, we
have

x1(t) ≥ ε, ∀t > T1. (4.4)

Hence, for all t ≥ T1, one has

x′
1(t) < x1(t)

(
b(t) − k(t)ε − μ(t)). (4.5)
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Thus, as t → +∞, we have

ε ≤ x1(t) < x1(T1) exp
{∫ t

T1

(
b(s) − μ(s) − k(s)ε)ds

}

< x1(T1) exp{−ε1(t − T1)} −→ 0.

(4.6)

So, ε < 0, which leads to a contradiction. Therefore, there exists a T2 > T1, such that x1(T2) < ε.
Second, we show that

x1(t) < ε exp
{
μ1σ1

} ∀t > T2, (4.7)

where μ1 = maxt∈[0,+∞]{b(t)+μ(t)+k(t)ε}. Otherwise, there exists a T3 > T2, such that x1(T3) >
ε exp{μ1σ1}. By the continuity of x1(t), there must exist T4 ∈ (T2, T3) such that x1(T4) = ε and
x1(t) > ε for t ∈ (T4, T3). Let P1 be the nonnegative integer such that T3 ∈ (T4 + P1σ1, T4 + (P1 +
1)σ1). Further, we obtain that

ε exp
{
μ1σ1

}
< x1(T3) < x1(T4) exp

{∫T3

T4

(
b(s) − μ(s) − k(s)ε)ds

}

= x1(T4) exp

{∫T4+P1σ1

T4

(
b(s) − μ(s) − k(s)ε)ds

+
∫T3

T4+P1σ1

(
b(s) − μ(s) − k(s)ε)ds

}

< ε exp
{
μ1σ1

}
,

(4.8)

which leads to contradiction. This shows that (4.7) holds. By the arbitrariness of ε, it
immediately follows that x1(t) → 0 as t → +∞. Further, we can obtain that x2(t) → 0
as t → +∞. This completes the proof of Theorem 4.1.
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