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This paper studies the problem of guaranteed cost control for a class of uncertain delayed neural
networks. The time delay is a continuous function belonging to a given interval but not necessary
to be differentiable. A cost function is considered as a nonlinear performance measure for the
closed-loop system. The stabilizing controllers to be designed must satisfy some exponential
stability constraints on the closed-loop poles. By constructing a set of augmented Lyapunov-
Krasovskii functionals combined with Newton-Leibniz formula, a guaranteed cost controller is
designed via memoryless state feedback control, and new sufficient conditions for the existence of
the guaranteed cost state feedback for the system are given in terms of linear matrix inequalities
(LMIs). Numerical examples are given to illustrate the effectiveness of the obtained result.

1. Introduction

The last few decades have witnessed the use of artificial neural networks (ANNs) in many
real-world applications and have offered an attractive paradigm for a broad range of adaptive
complex systems. In recent years, ANNs have enjoyed a great deal of success and have proven
useful in wide variety pattern recognition feature-extraction tasks. Examples include optical
character recognition, speech recognition, and adaptive control, to name a few. To keep the
pace with the huge demand in diversified application areas, many different kinds of ANN
architecture and learning types have been proposed to meet varying needs as robustness and
stability. Stability and control of neural networks with time delay have attracted considerable
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attention in recent years [1–8]. In many practical systems, it is desirable to design neural
networks which are not only asymptotically or exponentially stable but can also guarantee
an adequate level of system performance. In the area of control, signal processing, pattern
recognition, and image processing, delayed neural networks have many useful applications.
Some of these applications require that the equilibrium points of the designed network be
stable. In both biological and artificial neural systems, time delays due to integration and
communication are ubiquitous and often become a source of instability. The time delays
in electronic neural networks are usually time varying, and sometimes vary violently with
respect to time due to the finite switching speed of amplifiers and faults in the electrical
circuitry. Guaranteed cost control problem [9–12] has the advantage of providing an upper
bound on a given system performance index and thus the system performance degradation
incurred by the uncertainties or time delays is guaranteed to be less than this bound. The
Lyapunov-Krasovskii functional technique has been among the popular and effective tool
in the design of guaranteed cost controls for neural networks with time delay. Nevertheless,
despite such diversity of results available, most existing work either assumed that the time
delays are constant or differentiable [13–16]. Although, in some cases, delay-dependent
guaranteed cost control for systems with time-varying delays was considered in [12, 13, 15],
the approach used there can not be applied to systems with interval, nondifferentiable time-
varying delays. To the best of our knowledge, the guaranteed cost control and state feedback
stabilization for uncertain neural networks with interval, non-differentiable time-varying
delays have not been fully studied yet (see, e.g., [4–26] and the references therein), which
are important in both theories and applications. This motivates our research.

In this paper, we investigate the guaranteed cost control for uncertain delayed neural
networks problem. The novel features here are that the delayed neural network under
consideration is with various globally Lipschitz continuous activation functions, and the
time-varying delay function is interval, non-differentiable. A nonlinear cost function is
considered as a performance measure for the closed-loop system. The stabilizing controllers
to be designed must satisfy some exponential stability constraints on the closed-loop poles.
Based on constructing a set of augmented Lyapunov-Krasovskii functionals combined with
Newton-Leibniz formula, new delay-dependent criteria for guaranteed cost control via
memoryless feedback control are established in terms of LMIs, which allow simultaneous
computation of two bounds that characterize the exponential stability rate of the solution
and can be easily determined by utilizing Matlabs LMI control toolbox.

The outline of the paper is as follows. Section 2 presents definitions and some well-
known technical propositions needed for the proof of the main result. LMI delay-dependent
criteria for guaraneed cost control and a numerical examples showing the effectiveness of the
result are presented in Section 3. The paper ends with conclusions and cited references.

2. Preliminaries

The following notation will be used in this paper. R
+ denotes the set of all real nonnegative

numbers; R
n denotes the n-dimensional space with the scalar product 〈x, y〉 or xTy of two

vectors x, y, and the vector norm ‖ · ‖; Mn×r denotes the space of all matrices of (n × r)-
dimensions. AT denotes the transpose of matrix A; A is symmetric if A = AT ; I denotes
the identity matrix; λ(A) denotes the set of all eigenvalues of A; λmax(A) = max{Reλ;λ ∈
λ(A)}. xt := {x(t + s) : s ∈ [−h, 0]}, ‖xt‖ = sups∈[−h,0]‖x(t + s)‖; C1([0, t],Rn) denotes the set
of all R

n-valued continuously differentiable functions on [0, t]; L2([0, t],Rm) denotes the set
of all the R

m-valued square integrable functions on [0, t].
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Matrix A is called semipositive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all x ∈ R
n; A is

positive definite (A > 0) if 〈Ax, x〉 > 0 for all x /= 0; A > B means A − B > 0. The notation
diag{· · · } stands for a block-diagonal matrix. The symmetric term in a matrix is denoted by
∗.

Consider the following uncertain neural networks with interval time-varying delay:

ẋ(t) = −(A + ΔA(t))x(t) + (W0 + ΔW0(t))W0f(x(t)) + (W1 + ΔW1(t))g(x(t − h(t)))

+Bu(t), t ≥ 0, x(t) = φ(t), t ∈ [−h1, 0], (2.1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ R

n is the state of the neural; u(·) ∈ L2([0, t],Rm) is the
control; n is the number of neurals, and

f(x(t)) =
[
f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))

]T
,

g(x(t − h(t))) =
[
g1(x1(t − h(t))(t)), g2(x2(t − h(t))(t)), . . . , gn(xn(t − h(t)))

]T
,

(2.2)

are the activation functions; A = diag(a1, a2, . . . , an), ai > 0 represents the self-feedback
term; B ∈ Rn×m is control input matrix;W0, W1 denote the connection weights, the discretely
delayed connection weights and the distributively delayed connection weight, respectively;
the time-varying uncertain matrices ΔA(t), ΔW0(t), and ΔW1(t) are defined by

ΔA(t) = EaFa(t)Ha, ΔW0(t) = Ew0Fw0(t)Hw0 , ΔW1(t) = Ew1Fw1(t)Hw1 , (2.3)

where Ea, Ew0 , Ew1 , Ha,Hw0 , and Hw1 are known constant real matrices with appropriate
dimensions. Fa(t), Fw0(t), and Fw1(t) are unknown uncertain matrices satisfying

FT
a (t)Fa(t) ≤ I, FT

w0
(t)Fw0(t) ≤ I, FT

w1
(t)Fw1(t) ≤ I, t ∈ R+. (2.4)

The time-varying delay function h(t) satisfies the condition

0 ≤ h0 ≤ h(t) ≤ h1. (2.5)

The initial functions φ(t) ∈ C1([−h1, 0], Rn), with the norm

∥∥φ
∥∥ = sup

t∈[−h1,0]

√∥∥φ(t)
∥∥2 +

∥∥φ̇(t)
∥∥2
. (2.6)

In this paper we consider various activation functions and assume that the activation
functions f(·), g(·) are Lipschitzian with the Lipschitz constants fi, ei > 0:

∣∣fi(ξ1) − fi(ξ2)
∣∣ ≤ fi|ξ1 − ξ2|, i = 1, 2, . . . , n, ∀ξ1, ξ2 ∈ R,

∣∣gi(ξ1) − gi(ξ2)
∣∣ ≤ ei|ξ1 − ξ2|, i = 1, 2, . . . , n, ∀ξ1, ξ2 ∈ R.

(2.7)
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The performance index associated with the system (2.1) is the following function:

J =
∫∞

0
f0(t, x(t), x(t − h(t)), u(t))dt, (2.8)

where f0(t, x(t), x(t − h(t)), u(t)) : R+ × Rn × Rn × Rm → R+ is a nonlinear cost function that
satisfies

∃Q1, Q2, R : f0(t, x, y, u
) ≤ 〈Q1x, x〉 +

〈
Q2y, y

〉
+ 〈Ru, u〉, (2.9)

for all (t, x, u) ∈ R+ × Rn × Rm and Q1, Q2 ∈ Rn×n, R ∈ Rm×m are given symmetric positive
definite matrices. The objective of this paper is to design a memoryless state feedback
controller u(t) = Kx(t) for system (2.1) and the cost function (2.8) such that the resulting
closed-loop system

ẋ(t) = − [(A + EaFa(t)Ha) − BK]x(t) + (W0 + Ew0Fw0(t)Hw0)f(x(t))

+ (W1 + Ew1Fw1(t)Hw1)g(x(t − h(t)))
(2.10)

is exponentially stable and the closed-loop value of the cost function (2.10) is minimized.

Definition 2.1. Given α > 0. The zero solution of closed-loop system (2.8) is α-exponentially
stabilizable if there exists a positive number N > 0 such that every solution x(t, φ) satisfies
the following condition:

∥∥x
(
t, φ

)∥∥ ≤ Ne−αt
∥∥φ
∥∥, ∀t ≥ 0. (2.11)

Definition 2.2. Consider the control system (2.1). If there exists a memoryless state feedback
control law u∗(t) = Kx(t) and a positive number J∗ such that the zero solution of the closed-
loop system (2.10) is exponentially stable and the cost function (2.8) satisfies J ≤ J∗, then the
value J∗ is a guaranteed constant and u∗(t) is a guaranteed cost control law of the system and
its corresponding cost function.

We introduce the following technical well-known propositions, which will be used in
the proof of our results.

Proposition 2.3 (Schur complement lemma [27]). Given constant matrices X,Y, and Z with
appropriate dimensions satisfying X = XT, Y = YT > 0, then X + ZTY−1Z < 0 if and only if

(
X ZT

Z −Y
)

< 0. (2.12)
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Proposition 2.4 (integral matrix inequality [28]). For any symmetric positive definite matrixM >
0, scalar γ > 0 and vector function ω : [0, γ] → Rn such that the integrations concerned are well
defined, the following inequality holds

(∫ γ

0
ω(s)ds

)T

M

(∫ γ

0
ω(s)ds

)
≤ γ

(∫ γ

0
ωT (s)Mω(s)ds

)
. (2.13)

3. Design of Guaranteed Cost Controller

In this section, we give a design ofmemoryless guaranteed feedback cost control for uncertain
neural networks (2.1). Let us set

W11 = − PAT −AP − 2αP + 0.25BRBT +
1∑

i=0

Gi + 2ε1ET
aEa + 6ε−11 PHT

aHaP

+ 4ε−12 PFHT
w0
Hw0FP,

W12 = P +AP − 0.5BBT , W13 = e−2αh0H0 + 0.5BBT +AP,

W14 = e−2αh1H1 + 0.5BBT +AP, W15 = P + 0.5BBT +AP,

W22 =
1∑

i=0

WiDiW
T
i +

1∑

i=0

h2
i Hi + (h1 − h0)U − 2P − BBT + ε1E

T
aEa + ε2E

T
w0
Ew0 + ε3E

T
w1
Ew1 ,

W23 = P, W24 = P, W25 = P,

W33 = − e−2αh0G0 − e−2αh0H0 − e−2αh1U +
1∑

i=0

WiDiW
T
i + ε1E

T
aEa + ε2E

T
w0
Ew0 + ε3E

T
w1
Ew1 ,

W34 = 0, W35 = e−2αh1U,

W44 =
1∑

i=0

WiDiW
T
i − e−2αh1U − e−2αh1G1 − e−2αh1H1 + ε1E

T
aEa + ε2E

T
w0
Ew0 + ε3E

T
w1
Ew1 ,

W45 = e−2αh1U,

W55 = − e−2αh1U +W0D0W
T
0 + 4ε−13 PEHT

w1
Hw1EP + ε1E

T
aEa + ε2E

T
w0
Ew0 + ε3E

T
w1
Ew1 ,

E = diag{ei, i = 1, . . . , n}, F = diag
{
fi, i = 1, . . . , n

}
,

λ1 = λmin

(
P−1

)
,

λ2 = λmax

(
P−1

)
+ h0λmax

[

P−1
(

1∑

i=0

Gi

)

P−1
]

+ h2
1λmax

[

P−1
(

1∑

i=0

Hi

)

P−1
]

+ (h1 − h0)λmax

(
P−1UP−1

)
.

(3.1)
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Theorem 3.1. Consider control system (2.1) and the cost function (2.8). If there exist symmetric
positive definite matrices P, U, G0, G1, H0, and H1, and diagonal positive definite matrices Di, i =
0, 1, and εi > 0, i = 1, 2, 3 satisfying the following LMIs

E =

⎡

⎢⎢⎢⎢⎢
⎣

W11 W12 W13 W14 W15

∗ W22 W23 W24 W25

∗ ∗ W33 W34 W35

∗ ∗ ∗ W44 W45

∗ ∗ ∗ ∗ W55

⎤

⎥⎥⎥⎥⎥
⎦

< 0, (3.2)

S1 =

⎡

⎢⎢⎢
⎣

−PA −ATP −
1∑

i=0

e−2αhiHi 2PF PQ1

∗ −D0 0
∗ ∗ −Q−1

1

⎤

⎥⎥⎥
⎦

< 0, (3.3)

S2 =

⎡

⎣
W1D1W

T
1 − e−2αh1U 2PE PQ2

∗ −D1 0
∗ ∗ −Q−1

2

⎤

⎦ < 0, (3.4)

then

u(t) = −1
2
BTP−1x(t), t ≥ 0 (3.5)

is a guaranteed cost control and the guaranteed cost value is given by

J∗ = λ2
∥∥φ
∥∥2

. (3.6)

Moreover, the solution x(t, φ) of the system satisfies

∥∥x
(
t, φ

)∥∥ ≤
√

λ2
λ1

e−αt
∥∥φ
∥∥, ∀t ≥ 0. (3.7)

Proof. Let Y = P−1, y(t) = Yx(t). Using the feedback control (2.8) we consider the following
Lyapunov-Krasovskii functional:

V (t, xt) =
6∑

i=1

Vi(t, xt),

V1 = xT (t)Yx(t),

V2 =
∫ t

t−h0

e2α(s−t)xT (s)YG0Yx(s)ds,

V3 =
∫ t

t−h1

e2α(s−t)xT (s)YG1Yx(s)ds,
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V4 = h0

∫0

−h0

∫ t

t+s
e2α(τ−t)ẋT (τ)YH0Yẋ(τ)dτ ds,

V5 = h1

∫0

−h1

∫ t

t+s
e2α(τ−t)ẋT (τ)YH1Yẋ(τ)dτ ds,

V6 = (h1 − h0)
∫ t−h0

t−h1

∫ t

t+s
e2α(τ−t)ẋT (τ)YUYẋ(τ)dτ ds.

(3.8)

It is easy to check that

λ1‖x(t)‖2 ≤ V (t, xt) ≤ λ2‖xt‖2, ∀t ≥ 0. (3.9)

Taking the derivative of V1 we have

V̇1 = 2xT (t)Yẋ(t)

= yT (t)
[
−P(A + EaFa(t)Ha)T − (A + EaFa(t)Ha)P

]
y(t) − yT (t)BBTy(t)

+ 2yT (t)(W0 + Ew0Fw0(t)Hw0)f(·)y(t) + 2yT (t)(W1 + Ew1Fw1(t)Hw1)g(·)y(t),

V̇2 = yT (t)G0y(t) − e−2αh0yT (t − h0)G0y(t − h0) − 2αV2,

V̇3 = yT (t)G1y(t) − e−2αh1yT (t − h1)G1y(t − h1) − 2αV3,

V̇4 = h2
0ẏ

T (t)H0ẏ(t) − h1e
−2αh0

∫ t

t−h0

ẋT (s)H0ẋ(s) ds − 2αV4,

V̇5 = h2
1ẏ

T (t)H1ẏ(t) − h1e
−2αh1

∫ t

t−h1

ẏT (s)H1ẏ(s)ds − 2αV4,

V̇6 = (h1 − h0)
2ẏT (t)Uẏ(t) − (h1 − h0)e−2αh1

∫ t−h0

t−h1

ẏT (s)Uẏ(s)ds − 2αV6,

(3.10)

Applying Proposition 2.4 and the Leibniz-Newton formula

∫ t

s

ẏ(τ)dτ = y(t) − y(s). (3.11)
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We have for j = 1, 2, i = 0, 1

−hi

∫ t

t−hi

ẏT (s)Hjẏ(s)ds ≤ −
[∫ t

t−hi

ẏ(s)ds

]T
Hj

[∫ t

t−hi

ẏ(s)ds

]

≤ −[y(t) − y(t − h(t))
]T
Hj

[
y(t) − y(t − h(t))

]

= −yT (t)Hiy(t) + 2xT (t)Hjy(t − h(t))

− yT (t − hi)Hjy(t − hi).

(3.12)

Note that

∫ t−h0

t−h1

ẏT (s)Uẏ(s)ds =
∫ t−h(t)

t−h1

ẏT (s)Uẏ(s)ds +
∫ t−h0

t−h(t)
ẏT (s)Uẏ(s)ds. (3.13)

Applying Proposition 2.4 gives

[h1 − h(t)]
∫ t−h(t)

t−h1

ẏT (s)Uẏ(s)ds ≥
[∫ t−h(t)

t−h1

ẏ(s)ds

]T
U

[∫ t−h(t)

t−h1

ẏ(s)ds

]

≥ [y(t − h(t) − y(t − h1)
)]T

U
[
y
(
t − h(t) − y(t − h1)

)]
.

(3.14)

Since h1 − h(t) ≤ h1 − h0, we have

[h1 − h0]
∫ t−h(t)

t−h1

ẏT (s)Uẏ(s)ds ≥ [y(t − h(t) − y(t − h1)
)]T

U
[
y
(
t − h(t) − y(t − h1)

)]
,

(3.15)

then

−[h1 − h0]
∫ t−h(t)

t−h1

ẏT (s)Uẏ(s)ds ≤ −[y(t − h(t) − y(t − h1)
)]T

U
[
y
(
t − h(t) − y(t − h1)

)]
.

(3.16)

Similarly, we have

−(h1 − h0)
∫ t−h0

t−h(t)
ẏT (s)Uẏ(s)ds ≤ −[y(t − h0) − y(t − h(t))

]T
U
[
y(t − h0) − y(t − h(t))

]
.

(3.17)
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Then, we have

V̇ (·) + 2αV (·) ≤ yT (t)
[
−P(A + EaFa(t)Ha)T − (A + EaFa(t)Ha)P

]
y(t) − yT (t)BBTy(t)

+ 2yT (t)(W0 + Ew0Fw0(t)Hw0)f(·) + 2yT (t)(W1 + Ew1Fw1(t)Hw1)g(·)

+ yT (t)

(
1∑

i=0

Gi

)

y(t) + 2α
〈
Py(t), y(t)

〉

+ ẏT (t)

(
1∑

i=0

h2
i Hi

)

ẏ(t) + (h1 − h0)ẏT (t)Uẏ(t)

−
1∑

i=0

e−2αhiyT (t − hi)Giy(t − hi)

− e−2αh0
[
y(t) − y(t − h0)

]T
H0

[
y(t) − y(t − h0)

]

− e−2αh1
[
y(t) − y(t − h1)

]T
H1

[
y(t) − y(t − h1)

]

− e−2αh1
[
y(t − h(t)) − y(t − h1)

]T
U
[
y(t − h(t)) − y(t − h1)

]

− e−2αh1
[
y(t − h0) − y(t − h(t))

]T
U
[
y(t − h0) − y(t − h(t))

]
.

(3.18)

Using (2.8)

Pẏ(t) + (A + EaFa(t)Ha)Py(t) − (W0 + Ew0Fw0(t)Hw0)f(·) − (W1 + Ew1Fw1(t)Hw1)g(·)

+ 0.5BBTy(t) = 0,
(3.19)

and multiplying both sides with [2y(t),−2ẏ(t), 2y(t − h0), 2y(t − h1), 2y(t − h(t))]T , we have

2yT (t)Pẏ(t) + 2yT (t)(A + EaFa(t)Ha)Py(t) − 2yT (t)(W0 + Ew0Fw0(t)Hw0)f(·)

− 2yT (t)(W1 + Ew1Fw1(t)Hw1)g(·) + yT (t)BBTy(t) = 0,

− 2ẏT (t)Pẏ(t) − 2ẏT (t)(A + EaFa(t)Ha)Py(t) + 2ẏT (t)(W0 + Ew0Fw0(t)Hw0)f(·)

+ 2ẏT (t)(W1 + Ew1Fw1(t)Hw1)g(·) − ẏT (t)BBTy(t) = 0,

2yT (t − h0)Pẏ(t) + 2yT (t − h0)(A + EaFa(t)Ha)Py(t) − 2yT (t − h0)(W0 + Ew0Fw0(t)Hw0)

× f(·) − 2yT (t − h0)(W1 + Ew1Fw1(t)Hw1)g(·) + yT (t − h0)BBTy(t) = 0,
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2yT (t − h1)Pẏ(t) + 2yT (t − h1)(A + EaFa(t)Ha)Py(t) − 2yT (t − h1)(W0 + Ew0Fw0(t)Hw0)

× f(·) − 2yT (t − h1)(W1 + Ew1Fw1(t)Hw1)g(·) + yT (t − h1)BBTy(t) = 0,

2yT (t − h(t))Pẏ(t) + 2yT (t − h(t))(A + EaFa(t)Ha)Py(t) − 2yT (t − h(t))

× (W0 + Ew0Fw0(t)Hw0)f(·) − 2yT (t − h(t))(W1 + Ew1Fw1(t)Hw1)g(·)

+ yT (t − h(t))BBTy(t) = 0. (3.20)

Adding all the zero items of (3.20) and f0(t, x(t), x(t−h(t)), u(t))−f0(t, x(t), x(t−h(t)), u(t)) =
0, respectively, into (3.18) and using the condition (2.7) for the following estimations:

f0(t, x(t), x(t − h(t)), u(t)) ≤ 〈Q1x(t), x(t)〉 + 〈Q2x(t − h(t)), x(t − h(t))〉 + 〈Ru(t), u(t)〉

=
〈
PQ1Py(t), y(t)

〉
+
〈
PQ2Py(t − h(t)), y(t − h(t))

〉

+ 0.25
〈
BRBTy(t), y(t)

〉
,

2
〈
W0f(x), y

〉 ≤
〈
W0D0W

T
0 y, y

〉
+
〈
D−1

0 f(x), f(x)
〉
,

2
〈
W1g(z), y

〉 ≤
〈
W1D1W

T
1 y, y

〉
+
〈
D−1

1 g(z), g(z)
〉
,

2
〈
D−1

0 f(x), f(x)
〉
≤
〈
FD−1

0 Fx, x
〉
,

2
〈
D−1

1 g(z), g(z)
〉
≤
〈
ED−1

1 Ez, z
〉
,

2
〈
EaFa(t)HaPy, y

〉 ≤
〈
ε1E

T
aEay, y

〉
+
〈
ε−11 PHT

aHaPy, y
〉
, ε1 > 0,

2
〈
Ew0Fw0(t)Hw0Pf(x), y

〉 ≤
〈
ε2E

T
w0
Ew0y, y

〉
+
〈
ε−12 PD0H

T
w0
Hw0D0Py, y

〉
, ε2 > 0,

2
〈
Ew1Fw1(t)Hw1Pg(z), y

〉 ≤
〈
ε3E

T
w1
Ew1y, y

〉
+
〈
ε−13 PD1H

T
w1
Hw1D1Pz, z

〉
, ε3 > 0,

(3.21)

we obtain

V̇ (·) + 2αV (·) ≤ ζT (t)Eζ(t) + yT (t)S1y(t) + yT (t − h(t))S2y(t − h(t))

− f0(t, x(t), x(t − h(t)), u(t)),
(3.22)
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where ζ(t) = [y(t), ẏ(t), y(t − h0), y(t − h1), y(t − h(t))], and

E =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

W11 W12 W13 W14 W15

∗ W22 W23 W24 W25

∗ ∗ W33 W34 W35

∗ ∗ ∗ W44 W45

∗ ∗ ∗ ∗ W55

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

,

S1 = −PA −ATP −
1∑

i=0

e−2αhiHi + 4PFD−1
0 FP + PQ1P,

S2 = W1D1W
T
1 − e−2αh2U + 4PED−1

1 EP + PQ2P.

(3.23)

Note that by the Schur complement lemma, Proposition 2.3, the conditions S1 < 0 and S2 < 0
are equivalent to the conditions (3.3) and (3.4), respectively. Therefore, by condition (3.2),
(3.3), and (3.4), we obtain from (3.22) that

V̇ (t, xt) ≤ −2αV (t, xt), ∀t ≥ 0. (3.24)

Integrating both sides of (3.24) from 0 to t, we obtain

V (t, xt) ≤ V
(
φ
)
e−2αt, ∀t ≥ 0. (3.25)

Furthermore, taking condition (3.9) into account, we have

λ1
∥∥x(t, φ)

∥∥2 ≤ V (xt) ≤ V
(
φ
)
e−2αt ≤ λ2e

−2αt∥∥φ
∥∥2

, (3.26)

then

∥∥x
(
t, φ

)∥∥ ≤
√

λ2
λ1

e−αt
∥∥φ
∥∥, t ≥ 0, (3.27)

which concludes the exponential stability of the closed-loop system (2.8). To prove the
optimal level of the cost function (2.4), we derive from (3.22) and (3.2)–(3.4) that

V̇ (t, zt) ≤ −f0(t, x(t), x(t − h(t)), u(t)), t ≥ 0. (3.28)

Integrating both sides of (3.28) from 0 to t leads to

∫ t

0
f0(t, x(t), x(t − h(t)), u(t))dt ≤ V (0, z0) − V (t, zt) ≤ V (0, z0), (3.29)
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dute to V (t, zt) ≥ 0. Hence, letting t → +∞, we have

J =
∫∞

0
f0(t, x(t), x(t − h(t)), u(t))dt ≤ V (0, z0) ≤ λ2

∥∥φ
∥∥2 = J∗. (3.30)

This completes the proof of the theorem.

Remark 3.2. Note that h(t) is non-differentiable and interval time-varying delay; therefore, the
stability criteria proposed in [5–8, 12, 15–26] are not applicable to this system.

Example 3.3. Consider the uncertain neural networks with interval time-varying delays (2.1),
where

A =
[
0.1 0
0 0.3

]
, W0 =

[
0.1 0.1
0.2 0.3

]
, W1 =

[
0.2 0.2
0.1 0.4

]
, B =

[
0.1
0.2

]
,

E =
[
0.3 0
0 0.4

]
, F =

[
0.2 0
0 0.3

]
, Q1 =

[
0.2 0.1
0.1 0.4

]
, Q2 =

[
0.3 0.2
0.2 0.5

]
,

R =
[
0.1 0.1
0.1 0.3

]
, Ea =

[
0.1 0.1
0.1 0.3

]
, Ew0 =

[
0.1 0.1
0.1 0.2

]
, Ew1 =

[
0.2 0.1
0.1 0.3

]
,

Ha =
[
0.3 0.2
0.2 0.2

]
, Hw0 =

[
0.2 0.1
0.1 0.2

]
, Hw1 =

[
0.3 0.1
0.1 0.3

]
,

h(t) = 0.1 + 1.3 sin2 t if t ∈ I =
⋃

k≥0
[2kπ, (2k + 1)π]

h(t) = 0 if t ∈ R+ \ I.

(3.31)

Note that h(t) is non-differentiable; therefore, the stability criteria proposed in [4–8, 12, 15–26]
are not applicable to this system. Given α = 0.1, h0 = 0.1, and h1 = 1.4, by using the Matlab
LMI toolbox, we can solve for P, U, G0, G1, H0, H1, D0, and D1 which satisfy the conditions
(3.2)–(3.4) in Theorem 3.1. A set of solutions are ε1 = 0.0017, ε2 = 0.0013, ε3 = 0.0012,

P =
[
1.1578 −0.1128
−0.1128 1.0597

]
, U =

[
2.3269 −0.3820
−0.3820 2.6681

]
,

G0 =
[
1.4596 0.1397
0.1397 1.2369

]
, G1 =

[
2.2694 0.8114
0.8114 1.0125

]
,

H0 =
[
0.6455 0.0452
0.0452 0.5104

]
, H1 =

[
0.3005 0.0233
0.0233 0.2306

]
,

D0 =
[
0.0011 0

0 0.0011

]
, D1 =

[
0.7809 0

0 0.7809

]
.

(3.32)

Then

u(t) = −0.2292x1(t) − 0.1816x2(t), t ≥ 0 (3.33)
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Figure 1: The simulation of the solutions x1(t) and x2(t) with the initial condition φ(t[10 5]T , t ∈ [−0.4, 0].

is a guaranteed cost control law and the cost given by

J∗ = 5.4631
∥∥φ
∥∥2

. (3.34)

Moreover, the solution x(t, φ) of the system satisfies

∥∥x
(
t, φ

)∥∥ ≤ 3.6984e−0.1t
∥∥φ
∥∥, ∀t ≥ 0. (3.35)

The exponential convergence dynamics of the network (2.1) are shown in Figure 1.

Example 3.4. Consider the uncertain neural networks with interval time-varying delays
(2.1),where

A =
[
1 0
0 2

]
, W0 =

[
1 1
2 3

]
, W1 =

[
2 2
1 4

]
, B =

[
1
2

]
,

E =
[
3 0
0 4

]
, F =

[
2 0
0 3

]
, Q1 =

[
2 1
1 4

]
, Q2 =

[
3 2
2 5

]
,

R =
[
1 1
1 3

]
, Ea =

[
1 1
1 3

]
, Ew0 =

[
1 1
1 2

]
, Ew1 =

[
2 1
1 3

]
,

Ha =
[
3 2
2 2

]
, Hw0 =

[
2 1
1 2

]
, Hw1 =

[
3 1
1 3

]
,

h(t) = 0.1 + 0.7sin2t if t ∈ I =
⋃

k≥0
[2kπ, (2k + 1)π]

h(t) = 0 if t ∈ R+ \ I.

(3.36)
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Note that h(t) is non-differentiable; therefore, the stability criteria proposed in [5–8, 12, 15–
26] are not applicable to this system. Given α = 0.3, h0 = 0.1, h1 = 0.8, by using the Matlab
LMI toolbox, we can solve for P, U, G0, G1, H0, H1, D0, and D1 which satisfy the conditions
(3.2)–(3.4) in Theorem 3.1. A set of solutions are ε1 = 0.9, ε2 = 0.8, ε3 = 0.7,

P =
[
0.7832 −0.0213
−0.0213 0.0011

]
, U =

[
0.1297 −0.0019
−0.0019 0.0197

]
,

G0 =
[
0.1795 0.0137
0.0137 0.2211

]
, G1 =

[
1.2197 0.9648
0.9648 0.7391

]
,

H0 =
[
0.8931 0.1183
0.1183 0.7197

]
, H1 =

[
0.6851 0.1297
0.1297 0.5726

]
,

D0 =
[
0.1397 0

0 0.2278

]
, D1 =

[
0.6812 0

0 0.6813

]
.

(3.37)

Then

u(t) = −0.7314x1(t) − 0.0196x2(t), t ≥ 0, (3.38)

is a guaranteed cost control law and the cost given by

J∗ = 24.3219
∥∥φ
∥∥2

. (3.39)

Moreover, the solution x(t, φ) of the system satisfies

∥∥x
(
t, φ

)∥∥ ≤ 12.3690e−0.3t
∥∥φ
∥∥, ∀t ≥ 0. (3.40)

The exponential convergence dynamics of the network (2.1) are shown in Figure 2.

4. Conclusions

In this paper, the problem of guaranteed cost control for uncertain neural networks with
interval nondifferentiable time-varying delay has been studied. A nonlinear quadratic cost
function is considered as a performance measure for the closed-loop system. The stabilizing
controllers to be designed must satisfy some exponential stability constraints on the closed-
loop poles. By constructing a set of time-varying Lyapunov-Krasovskii functionals combined
with Newton-Leibniz formula, a memoryless state feedback guaranteed cost controller
design has been presented, and sufficient conditions for the existence of the guaranteed cost
state-feedback for the system have been derived in terms of LMIs.
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Figure 2: The simulation of the solutions x1(t) and x2(t) with the initial condition φ(t) = [1 − 1]T , t ∈
[−1, 0.8].
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