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We prove that a transversely holomorphic foliation, which is transverse to the fibers of a fibration,
is a Seifert fibration if the set of compact leaves is not a zero measure subset. Similarly, we
prove that a finitely generated subgroup of holomorphic diffeomorphisms of a connected complex
manifold is finite provided that the set of periodic orbits is not a zero measure subset.

1. Introduction

Foliations transverse to fibrations are among the very first and simplest constructible exam-
ples of foliations, accompanied by a well-known transverse structure. These foliations are
suspensions of groups of diffeomorphisms and their behavior is closely related to the action
of the group in the fiber. For these reasons, many results holding for foliations in a more
general context are first established for suspensions, that is, foliations transverse to a fibration.
In this paper, we pursue this idea, but not restricted to it. We investigate versions of the
classical stability theorems of Reeb [1, 2], regarding the behavior of the foliation in a neighbor-
hood of a compact leaf, replacing the finiteness of the holonomy group of the leaf by the
existence of a sufficient number of compact leaves. This is done for transversely holomorphic
(or transversely analytic) foliations.

Let η = (E,π, B, F) be a (locally trivial) fibration with total space E, fiber F, base B, and
projection π : E → B. A foliation F on E is transverse to η if: (1) for each p ∈ E, the leaf Lp of
F with p ∈ Lp is transverse to the fiber π−1(q), q = π(p); (2) dim(F) + dim(F) = dim(E); (3)
for each leaf L of F, the restriction π |L : L → B is a covering map. A theorem of Ehresmann
([1] Chpter V) [2]) assures that if the fiber F is compact, then conditions (1) and (2) together
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already imply (3). Such foliations are conjugate to suspensions and are characterized by their
global holonomy ([1], Theorem 3, page 103 and [2], Theorem 6.1, page 59).

The codimension one case is studied in [3]. In [4], we study the case where the ambient
manifold is a hyperbolic complex manifold. In [5], the authors prove a natural version of the
stability theorem of Reeb for (transversely holomorphic) foliations transverse to fibrations.
A foliation F on M is called a Seifert fibration if all leaves are compact with finite holonomy
groups.

The following stability theorem is proved in [5].

Theorem 1.1. Let F be a holomorphic foliation transverse to a fibration π : E F−→ B with fiber F. If F
has a compact leaf with finite holonomy group then F is a Seifert fibration.

It is also observed in [5] that the existence of a trivial holonomy compact leaf is
assured if F is of codimension k has a compact leaf, and the base B satisfies H1(B,R) =
0,H1(B,GL(k,C)) = 0.

Since a foliation transverse to a fibration is conjugate to a suspension of a group of
diffeomorphisms of the fiber, we can rely on the global holonomy of the foliation. As a general
fact that holds also for smooth foliations, if the global holonomy group is finite then the
foliation is a Seifert fibration. The proof of Theorem 1.1 relies on the local stability theorem of
Reeb [1, 2] and the following remark derived from classical theorems of Burnside and Schur
on finite exponent groups and periodic linear groups [5]: Let G be a finitely generated subgroup
of holomorphic diffeomorphisms of a connected complex manifold F. If each element of G has finite
order, then the subgroups with a common fixed point are finite.

We recall that a subset X ⊂ M of a differentiable m-manifold has zero measure on
M if M admits an open cover by coordinate charts ϕ : U ⊂ M → ϕ(U) ⊂ R

m such that
ϕ(U ∩ X) has zero measure with respect to the standard Lebesgue measure in R

m. For sake
of simplicity, if X ⊂ R

n is not a zero measure subset, then we will say that X has positive
measure and write μ(X) > 0. This may cause no confusion since, Indeed, we notice that if
X ⊂ M writes as a countable union X =

⋃
n∈N

Xn of subsets Xn ⊂ M then X has zero measure
inM if and only if Xn has zero measure inM for all n ∈ N. In terms of our notation, we have
therefore μ(X) > 0 if and only if μ(Xn) > 0 for some n ∈ N.

In this paper, we improve Theorem 1.1 above by proving the following theorems.

Theorem 1.2. Let F be a transversely holomorphic foliation transverse to a fibration π : E F−→ B
with fiber F a connected complex manifold. Denote by Ω(F) ⊂ E the union of all compact leaves of F.
Suppose that one have μ(Ω(F)) > 0. Then F is a Seifert fibration with finite global holonomy.

Parallel to this result we have the following version for groups.

Theorem 1.3. Let G be a finitely generated subgroup of holomorphic diffeomorphisms of a complex
connected manifold F. Denote byΩ(G) the subset of points x ∈ F such that theG-orbit of x is periodic.
Assume that μ(Ω(G)) > 0. Then G is a finite group.

As an immediate corollary of the above result, we get that, for a finitely generated
subgroup G ⊂ Diff(F) of a complex connected manifold F, if the volume of the orbits gives
an integrable function for some regular volume measure on F then all orbits are periodic and
the group is finite. This is related to results in [6].
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2. Holonomy and Global Holonomy

LetF be a codimension k transversely holomorphic foliation transverse to a fibration π : E F−→
B with fiber F, base B, and total space E. We always assume that B, F, and E are connected
manifolds. The manifold F is a complex manifold.

2.1. Holonomy

For a given point p ∈ E, put b = π(p) ∈ B and denote by Fb = π1(b) ⊂ E the fiber of π over
b, which is a complex biholomorphic to F. Given a point p ∈ E, we denote by Hol(F, Lp) the
holonomy group of the leaf Lp through p obtained by lifting to the leaves of F, locally, closed
paths in Lp based on p, transversely to F (see [1] for the construction of holonomy). Let us
denote by Diff(Fb, p) the group of germs at p of holomorphic diffeomorphisms of Fb fixing p ∈
Fb. The group Diff(Fb, p) is then identified with the group Diff(Ck, 0) of germs at the origin
0 ∈ C

k of complex diffeomorphisms, where k = dimF.
This holonomy group Hol(F, Lp) is formally defined as a conjugacy class of equiva-

lence under diffeomorphism germs conjugation. Let us denote by Hol(Lp, Fb, p) ⊂ Diff(Fb, p),
its representative given by the local representation of this holonomy calculated with respect
to the local transverse section induced by Fb at the point p ∈ Fb. The group Hol(Lp, Fb, p) is
therefore a subgroup of Diff(Fb, p) identified with a subgroup of Diff(Ck, 0).

2.2. Global Holonomy

As it is well known, the fundamental group π1(B) acts on the group of holomorphic diffeo-
morphisms of the manifold F Diff(F), by what we call the global holonomy representation. This
consists of a group homomorphism ϕ : π1(B, b) → Diff(F), obtained by lifting closed paths
in B to the leaves of F via the covering maps π |L : L → B, where L is a leaf of F. The image
of this representation is the global holonomyHol(F) of F, and its construction shows that F is
conjugated to the suspension of its global holonomy ([1], Theorem 3, page 103). Given a base
point b ∈ B, we will denote by Hol(F, Fb) ⊂ Diff(Fb) the representation of the global holo-
nomy of F based at b.

From the classical theory [1], chapter V and [5] we have the following.

Proposition 2.1. Let F be a foliation on E transverse to the fibration π : E → B with fiber F. Fix a
point p ∈ E, b = π(p) and denote by L the leaf that contains p.

(1) The holonomy group Hol(L, Fb, p) of L is the subgroup of the global holonomy
Hol(F, Fb) ⊂ Diff (Fb) of those elements that have p as a fixed point.

(2) Given another intersection point q ∈ L∩Fb, there is a global holonomy map h ∈ Hol(F, Fb)
such that h(p) = q.

(3) Suppose that the global holonomy Hol (F) is finite. If F has a compact leaf then it is a
Seifert fibration, that is, all leaves are compact with finite holonomy group.

(4) If F has a compact leaf L0 ∈ F then each point p ∈ Fb ∩ L0 has periodic orbit in the global
holonomy Hol(F). In particular, there are � ∈ N and p ∈ F such that h�(p) = p for every
h ∈ Hol(F).
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3. Periodic Groups and Groups of Finite Exponent

First we recall some facts from the theory of Linear groups. LetG be a groupwith identity eG ∈
G. The group is periodic if each element of G has finite order. A periodic group G is periodic
of bounded exponent if there is an uniform upper bound for the orders of its elements. This is
equivalent to the existence ofm ∈ N with gm = 1 for all g ∈ G (cf. [5]). Because of this, a group
which is periodic of bounded exponent is also called a group of finite exponent. Given R a ring
with identity, we say that a group G is R-linear if it is isomorphic to a subgroup of the matrix
group GL(n,R) (of n × n invertible matrices with coefficients belonging to R) for some n ∈ N.
We will consider complex linear groups. The following classical results are due to Burnside
and Schur.

Theorem 3.1. With respect to complex linear groups one has the following.

(1) Burnside, [7] A (not necessarily finitely generated) complex linear group G ⊂ GL(k,C) of
finite exponent � has finite order; actually we have |G| ≤ �k

2
.

(2) Schur, [8] Every finitely generated periodic subgroup of GL(n,C) is finite.

Using these results, we obtain in [5].

Lemma 3.2 (see Lemmas 2.3, 3.2, and 3.3 [5]). About periodic groups of germs of complex diffeo-
morphisms one has the following.

(1) A finitely generated periodic subgroup G ⊂ Diff (Ck, 0) is necessarily finite.

(2) A (not necessarily finitely generated) subgroup G ⊂ Diff(Ck, 0) of finite exponent is
necessarily finite.

(3) Let G ⊂ Diff(Ck, 0) be a finitely generated subgroup. Assume that there is an invariant
connected neighborhood W of the origin in C

k such that each point x is periodic for each
element g ∈ G. Then G is a finite group.

(4) Let G ⊂ Diff(Ck, 0) be a (not necessarily finitely generated) subgroup such that for each
point x close enough to the origin, the pseudoorbit of x is finite of (uniformly bounded) order
≤� for some � ∈ N, then G is finite.

Given a subgroup G ⊂ Diff(F) and a point p ∈ F the stabilizer of p inG is the subgroup
G(p) ⊂ G of the elements f ∈ G such that f(p) = p. From the above one has the following.

Proposition 3.3. Let G ⊂ Diff(F) be a (not necessarily finitely generated) subgroup of holomorphic
diffeomorphisms of a connected complex manifold F.

(1) If G is periodic and finitely generated or G is periodic of finite exponent, then each stabilizer
subgroup of G is finite.

(2) Assume that there is a point p ∈ F which is fixed by G and a fundamental system of
neighborhoods {Uν}ν of p in F such that each Uν is invariant by G, the orbits of G in Uν

are periodic (not necessarily with uniformly bounded orders). Then G is a finite group.

(3) Assume that G has a periodic orbit {x1, . . . , xr} ⊂ F such that for each j ∈ {1, . . . , r}, there
is a fundamental system of neighborhoods Uj

ν of xj with the property thatUν =
⋃r

j=1 U
j
ν is

invariant under the action of G,Uj
ν ∩U�

ν = ∅ if j /= �, and each orbit inUν is periodic. Then
G is periodic.
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Proof. In order to prove (1), we consider the case whereG has a fixed point p ∈ F. We identify
the group Gp ⊂ Diff(F, p), of germs at p ∈ F of maps in G ⊂ Diff(F), with a subgroup of
Diff(Cn, 0) where n = dimF. If G is finitely generated and periodic, the group Gp is finitely
generated and periodic. By Lemma 3.2 (1), the group Gp is finite and by the Identity principle
the group G is also finite of same order. If G is periodic of finite exponent then the group Gp

is periodic of finite exponent. By Lemma 3.2 (2), the group Gp is finite and by the Identity
principle the group G is also finite of same order. This proves (1).

As for (2), since Uν is G-invariant, each element g ∈ G induces by restriction to Uν

an element of a group Gν ⊂ Diff(Uν). It is observed in [5] (proof of Lemma 3.5) that the
finiteness of the orbits in Uν implies that Gν is periodic. By the Identity principle, the group
G is also periodic of the same order. Since G = G(p), (2) follows from (1). (3) is proved like
the first part of (2).

The following simple remark gives the finiteness of finite exponent groups of holo-
morphic diffeomorphisms having a periodic orbit.

Proposition 3.4 (Finiteness lemma). LetG be a subgroup of holomorphic diffeomorphisms of a con-
nected complex manifold F. Assume that

(1) G is periodic of finite exponent or G is finitely generated and periodic,

(2) G has a finite orbit in F.

Then G is finite.

Proof. Fix a point x ∈ F with finite orbit, we can write OG(x) = {x1, . . . , xk}with xi /=xj if i /= j.
Given any diffeomorphism f ∈ G, we have OG(f(x)) = OG(x) so that there exists an unique
element σ ∈ Sk of the symmetric group such that f(xj) = xσf (j), for all j = 1, . . . , k. We can
therefore define a map

η : G → Sk, η
(
f
)
= σf (3.1)

Now, if f, g ∈ G are such that η(f) = η(g), then f(xj) = g(xj), for all j and therefore h =
fg−1 ∈ G fixes the points x1, . . . , xk. In particular, h belongs to the stabilizerGx. By Proposition
3.3(1) and (2) (according to G is finitely generated or not), the group Gx is finite. Thus, the
map η : G → Sk is a finite map. Since Sk is a finite group, this implies that G is finite as
well.

4. Measure and Finiteness

The following lemma paves the way to Theorems 1.2 and 1.3.

Lemma 4.1. Let G be a subgroup of complex diffeomorphisms of a connected complex manifold F.
Denote by Ω(G) the set of points x ∈ F such that the orbit OG(x) is periodic. If μ(Ω(G)) > 0 then G
is a periodic group of finite exponent.

Proof. We have Ω(G) = {x ∈ F : #OG(x) < ∞} =
⋃∞

k=1{x ∈ F : #OG(x) ≤ k}, therefore there is
some k ∈ N such that

μ({x ∈ F : #OG(x) ≤ k}) > 0. (4.1)
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In particular, given any diffeomorphism f ∈ G we have

μ
({

x ∈ F : #Of(x) ≤ k
})

> 0. (4.2)

In particular, there is kf ≤ k such that the set X = {x ∈ F : fkf (x) = x} has positive measure.
Since X ⊂ F is an analytic subset, this implies that X = F (a proper analytic subset of a
connected complex manifold has zero measure). Therefore, we have fkf = Id in F. This shows
that G is periodic of finite exponent.

Proof of Theorem 1.2. Fix a base point b ∈ B. By Proposition 2.1, the compact leaves correspond
to periodic orbits of the global holonomy Hol(F, Fb). Therefore, by the hypothesis the global
holonomy G = Hol(F, Fb) satisfies the hypothesis of Lemma 4.1. By this lemma, the global
holonomy is periodic of finite exponent. Since this group has some periodic orbit, by the
Finiteness lemma (Proposition 3.4) the global holonomy group is finite. By Proposition 2.1(3),
the foliation is a Seifert fibration.

The construction of the suspension of a group action gives Theorem 1.3 from Theorem
1.2.

Proof of Theorem 1.3. Since G is finitely generated, there are a compact connected manifold B
and a representation ϕ : π1(B) → Diff(F) such that the image ϕ(π1(B)) = G. The manifold
B is not necessarily a complex manifold, but this makes no difference in our argumentation
based only on the fact that the foliation is transversely holomorphic. Denote by F the suspen-
sion foliation of the fibre bundle π : E → B with fiber F which has global holonomy conju-
gate to G. The periodic orbits of G in F correspond in a natural way to the leaves of F which
have finite order with respect to the fibration π : E → B, that is, the leaves which intersect
the fibers of π : E → B only at a finite number of points. Thus, because the basis is compact,
each such leaf (corresponding to a finite orbit of G) is compact. By the hypothesis, we have
μ(Ω(F)) > 0. By Theorem 1.2 the global holonomy Hol(F) is finite. Thus, the group G is
finite.
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