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We introduce a new system of extended general nonlinear variational inclusions with different
nonlinear operators and establish the equivalence between the aforesaid system and the fixed point
problem. By using this equivalent formulation, we prove the existence and uniqueness theorem
for solution of the system of extended general nonlinear variational inclusions. We suggest and
analyze a new resolvent iterative algorithm to approximate the unique solution of the system of
extended general nonlinear variational inclusions which is a fixed point of a nearly uniformly
Lipschitzian mapping. Subsequently, the convergence analysis of the proposed iterative algorithm
under some suitable conditions is considered. Furthermore, some related works to our main
problem are pointed out and discussed.

1. Introduction

Variational inequalities theory, as a very effective and powerful tool of the current
mathematical technology, has been widely applied to mechanics, physics, optimization
and control, economics and transportation equilibrium, engineering sciences, and so forth.
Up until now variational inequalities have been very effective and powerful tools of
the current mathematical technology; see for example [1–4] and references therein. In
1968, Brézis [5] initiated the study of the existence theory of a class of variational
inequalities, later known as variational inclusions, using proximal-point mappings due to
Moreau [6]. It is well known that variational inclusions include variational inequalities,
quasivariational inequalities, and variational-like inequalities as special cases. For application
of variational inclusions, see, for example, [7–21]. A number of problems leading to the
system of variational inclusions/inequalities arise in applications to variational problems and
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engineering see, for example, [22–30]. Variational inclusions can be viewed as innovative and
novel extension of the variational principles. It is well known that the system of variational
inclusions/inequalities can provide new insight regarding problems being studied and can
stimulate new and innovative ideas for problem solving.

One of the most important and interesting problems in the theory of variational
inclusions is the development of numerical methods which provide an efficient and
implementable algorithm for solving variational inclusion and its generalizations. The
method based on proximal-point mapping is a generalization of projection method and has
been widely used to study the existence of solutions and to develop iterative algorithms
for variational inclusions see, for example, [31–39]. In recent past, the methods based on
different classes of proximal-point mappings have been developed to study the existence of
solutions and to discuss convergence and stability analysis of proposed iterative algorithms;
for various classes of variational/variational-like inclusions, see for example [34, 36, 37, 39–
43].

Recently, Noor [29] introduced and studied a new system of general mixed variational
inequalities involving three different operators (SGMVID). By using the resolvent operator
technique, he established the equivalence between the SGMVID and the fixed point problem.
He used this equivalent formulation to suggest and analyze some new iterative methods
for solving the SGMVID. He also studied the convergence analysis of the proposed iterative
methods under some certain conditions.

Very recently, M. A. Noor and K. I. Noor [44] introduced and considered the system of
general variational inclusions involving seven different operators (SGVID). They suggested
and analyzed two resolvent iterative algorithms for solving the SGVID and studied the
convergence analysis of the proposed iterative schemes under some certain conditions.

On the other hand, related to the variational inequalities/inclusions, we have the
problem of finding the fixed points of the nonexpansive mappings, which is the subject of
current interest in functional analysis. It is natural to consider a unified approach to these
two different problems. Motivated and inspired by the research going in this direction, Noor
and Huang [45] considered the problem of finding the common element of the set of the
solutions of variational inequalities and the set of the fixed points of the nonexpansive
mappings. It is well known that every nonexpansive mapping is a Lipschitzian mapping.
Lipschitzian mappings have been generalized by various authors. Sahu [46] introduced
and investigated nearly uniformly Lipschitzian mappings as generalization of Lipschitzian
mappings.

In this paper, we introduce and consider a new system of extended general nonlinear
variational inclusions involving eight different nonlinear operators (SEGNVID). We first
establish the equivalence between the SEGNVID and the fixed point problem, and then,
by this equivalent formulation, we discuss the existence and uniqueness of solution of
the SEGNVID. By using two nearly uniformly Lipschitzian mappings S1 and S2 and the
aforementioned equivalent formulation, we suggest and analyze a new resolvent iterative
algorithm for finding an element of the set of the fixed points of the nearly uniformly
Lipschitzian mapping Q = (S1, S2)which is the unique solution of the SEGNVID. Finally, we
consider the convergence analysis of the suggested iterative algorithms under some suitable
conditions. Further, some related works, as appeared in [29, 44], are also discussed and
improved.
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2. Formulations and Basic Facts

Throughout this paper, we will let H be a real Hilbert space which is equipped with an
inner product 〈·, ·〉 and corresponding norm ‖ · ‖. To begin with, let us recall that a set-valued
operator A : H � H is said to be monotone if and only if, for any x, y ∈ H

〈
u − v, x − y〉 ≥ 0, ∀u ∈ A(x), v ∈ A(

y
)
. (2.1)

A monotone set-valued operator A is called maximal if and only if its graph, Gph(A) :=
{(x, y) ∈ H × H : y ∈ A(x)}, is not properly contained in the graph of any other
monotone operator. It is well known that A is a maximal monotone operator if and only
if (I + λA)(H) = H, for all λ > 0, where I denotes the identity operator on H.

Definition 2.1 (see [47]). For any maximal monotone operator A, the resolvent operator
associated with A of parameter λ is defined as

JλA(u) = (I + λA)−1(u), ∀u ∈ H. (2.2)

It is single valued and nonexpansive, that is,

∥∥∥JλA(u) − JλA(v)
∥∥∥ ≤ ‖u − v‖, ∀u, v ∈ H. (2.3)

Let Ti : H × H → H and gi, hi : H → H(i = 1, 2) be six nonlinear single-valued
operators and Ai : H × H � H(i = 1, 2) be two set-valued operators such that, for all
z, t ∈ H, A1(·, z) : H � H and A2(·, t) : H � H are two maximal monotone operators with
g2(u) ∈ dom(A1(·, z)) and h2(v) ∈ dom(A2(·, t)) for all u, v ∈ H. For any given constants
ρ, η > 0, we consider the problem of finding (x∗, y∗) ∈ H ×H such that

0 ∈ g2(x∗) − g1
(
y∗) + ρ

(
T1
(
y∗, x∗) +A1

(
g2(x∗), x∗)),

0 ∈ h2
(
y∗) − h1(x∗) + η

(
T2
(
x∗, y∗) +A2

(
h2
(
y∗), y∗)).

(2.4)

The problem (2.4) is called a system of extended general nonlinear variational inclusions
involving eight different nonlinear operators (SEGNVID).

Some special cases of the SEGNVID (2.4) are as below.
If Ti : H → H and Ai = A : H � H(i = 1, 2) are univariate nonlinear operators, then

taking g1 = g, g2 = g1, h1 = h, and h2 = h, the system (2.4) reduces to the system of finding
(x∗, y∗) ∈ H ×H such that

0 ∈ g1(x∗) − g(y∗) + ρ
(
T1
(
y∗) +A

(
g1(x∗)

))
,

0 ∈ h1
(
y∗) − h(x∗) + η

(
T2(x∗) +A

(
h1
(
y∗))),

(2.5)

which is called the system of general nonlinear variational inclusions involving seven different
nonlinear operators.
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Remark 2.2. M. A. Noor and K. I. Noor [44] considered the system (2.5) where A : H →
H is a single-valued operator. In view of the presented definitions and results in [44],
we infer that the operator A in the system (2.5) (the system (1) in [44]) should be set
valued not single valued and also be satisfied in the conditions Range g1

⋂
domA/= ∅ and

Range h1
⋂
domA/= ∅. Therefore, if the mentioned corrections applied on the system (1) in

[44], then the system (1) in [44] reduces to the system (2.5) which is a special case of the
system (2.4).

Taking g1 = g and h1 = h in the system (2.5), the mentioned system collapses to the
system of finding (x∗, y∗) ∈ H ×H such that

0 ∈ T1
(
y∗) +A

(
g(x∗)

)
,

0 ∈ T2(x∗) +A
(
h
(
y∗)).

(2.6)

The problem (2.6) is called the nonlinear variational inclusions system involving five different
nonlinear operators.

If, for each i = 1, 2, Ti = T , g1 = h1 = h = g, ρ = η, and x∗ = y∗ = x, then the system (2.5)
reduces to the variational inclusion problem or finding the zero of the sum of two (more)
monotone operators considered in [48–51].

If, for each i = 1, 2, Ai : H � H is an univariate set-valued operator, A1(x) = ∂ϕ(x)
and A2(x) = ∂φ(x) for all x ∈ H, where ϕ, φ : H → R ∪ {+∞} are two proper, convex, and
lower semi-continuous functionals, ∂ϕ and ∂φ denote subdifferential operators of ϕ and φ,
respectively, then the system (2.4) reduces to the following system.

Find (x∗, y∗) ∈ H ×H such that

〈
ρT1

(
y∗, x∗) + g2(x∗) − g1

(
y∗), g1(x) − g2(x∗)

〉 ≥ ρϕ(g2(x∗)
) − ρϕ(g1(x)

)
, ∀x ∈ H,

〈
ηT2

(
x∗, y∗) + h2

(
y∗) − h1(x∗), h1(x) − h2

(
y∗)〉 ≥ ηφ(h2

(
y∗)) − ηφ(h1(x)), ∀x ∈ H,

(2.7)

which appears to be a new system of extended general mixed nonlinear variational
inequalities involving eight different operators.

If g1 = h1 = g, g2 = h2 ≡ I (the identity operator), and ϕ = φ, then the system (2.7) is
equivalent to that of finding (x∗, y∗) ∈ H ×H such that

〈
ρT1

(
y∗, x∗) + x∗ − g(y∗), g(x) − x∗〉 ≥ ρϕ(x∗) − ρϕ(g(x)), ∀x ∈ H,

〈
ηT2

(
x∗, y∗) + y∗ − g(x∗), g(x) − y∗〉 ≥ ηϕ(y∗) − ηϕ(g(x)), ∀x ∈ H,

(2.8)

which was considered and studied by Noor [29]. Also, if T1 = T2 = T , then the system (2.8) is
considered and studied in [29].

If Ti : H → H(i = 1, 2) are univariate nonlinear operaotrs and ϕ = φ, then the system
(2.7) changes into that of finding (x∗, y∗) ∈ H ×H such that

〈
ρT1

(
y∗) + g2(x∗) − g1

(
y∗), g1(x) − g2(x∗)

〉 ≥ ρϕ(g2(x∗)
) − ρϕ(g1(x)

)
, ∀x ∈ H,

〈
ηT2(x∗) + h2

(
y∗) − h1(x∗), h1(x) − h2

(
y∗)〉 ≥ ηϕ(h2

(
y∗)) − ηϕ(h1(x)), ∀x ∈ H,

(2.9)
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which was considered and investigated by M. A. Noor and K. I. Noor [44]. Also, if T1 = T2 =
T , then the system (2.9) is considered and studied in [44]. When g1 = h1 = g and g2 = h2 ≡ I,
the system (2.9) is introduced and studied in [29].

If, in the system (2.7), ϕ = φ = δK is the indicator function of a nonempty closed convex
set K inH defined by

δK
(
y
)
=

{
0 y ∈ K,
∞ y /∈ K,

(2.10)

then the system (2.7) reduces to the system of finding (x∗, y∗) ∈ K ×K such that

〈ρT1
(
y∗, x∗) + g2(x∗) − g1

(
y∗), g1(x) − g2(x∗)〉 ≥ 0, ∀x ∈ H : g1(x) ∈ K,

〈
ηT2

(
x∗, y∗) + h2

(
y∗) − h1(x∗), h1(x) − h2

(
y∗)〉 ≥ 0, ∀x ∈ H : h1(x) ∈ K,

(2.11)

which has been introduced and considered by M. A. Noor and K. I. Noor [30].

Remark 2.3. When g1 = h1 = g and g2 = h2 ≡ I, the system (2.11) is considered and studied by
Noor [52]. Also, if, for each i = 1, 2, Ti : H → H is an univariate nonlinear operator and gi =
hi = g, then the system (2.11) is considered and studied by Yang et al. [53]. If, for each i = 1, 2,
gi = hi ≡ I, then the system (2.11) is considered and studied by Huang and Noor [28]. If for
each i = 1, 2, Ti = T and gi = hi ≡ I, then the system (2.11) introduced and studied by Chang
et al. [26] and Verma [54]. If for each i = 1, 2, Ti = T , g1 = h1 = g, and g2 = h2 ≡ I, then the
system (2.11) is considered and studied byNoor [52]. If for each i = 1, 2, Ti = T : H → H is an
univariate nonlinear operator and gi = hi ≡ I, then the system (2.11) introduced and studied
by Verma [55, 56]. If for each i = 1, 2, Ti = T : H → H is an univariate nonlinear operator,
gi = hi ≡ I and x∗ = y∗, then the system (2.11) reduces to the classical variational inequality
introduced and studied by Stampacchia [57] in 1964. Other special cases of the above systems
can be found in [29, 44] and the references therein. In brief, for suitable and appropriate choice
of the operators Ti, Ai, gi, hi(i = 1, 2), and the constants ρ and η, one can obtain the various
classes of variational inclusions and variational inequalities. This shows that the system of
extended general nonlinear variational inclusions involving eight different operators (2.4) is
more general and includes several classes of variational inclusions/inequalities and related
optimization problems as special cases. For the recent applications, numerical methods and
formulations of variational inequalities and variational inclusions, see [1–45, 47–62], and the
references therein.

3. Existence of Solution and Uniqueness

In this section, we prove the existence and uniqueness theorem for a solution of the system of
extended general nonlinear variational inclusions (2.4). For this end, we need the following
lemma in which, by using resolvent operator technique, the equivalence between the system
of extended general nonlinear variational inclusions (2.4) and a fixed point problem is
proved.



6 Abstract and Applied Analysis

Lemma 3.1. Let Ti, Ai, gi, hi(i = 1, 2), ρ, and η be the same as in the system (2.4). Then (x∗, y∗) ∈
H ×H is a solution of the system (2.4) if and only if

g2(x∗) = JρA1(·,x∗)
(
g1
(
y∗) − ρT1

(
y∗, x∗)),

h2
(
y∗) = Jη

A2(·,y∗)
(
h1(x∗) − ηT2

(
x∗, y∗)),

(3.1)

where for all z, t ∈ H, Jρ
A1(.,z)

is the resolvent operator associated with A1(., z) of parameter ρ and

J
η

A2(.,t)
is the resolvent operator associated with A2(., t) of parameter η.

Proof. Let (x∗, y∗) ∈ H ×H be a solution of the system (2.4). Then

g1
(
y∗) − ρT1

(
y∗, x∗) ∈ (

I + ρA1(·, x∗)
)(
g2(x∗)

)
,

h1(x∗) − ηT2
(
x∗, y∗) ∈ (

I + ηA2
(·, y∗))(h2

(
y∗)),

⇐⇒

g2(x∗) = JρA1(·,x∗)
(
g1
(
y∗) − ρT1

(
y∗, x∗)),

h2
(
y∗) = Jη

A2(·,y∗)
(
h1(x∗) − ηT2

(
x∗, y∗)),

(3.2)

where I is identity operator.

Definition 3.2. A nonlinear single-valued operator g : H → H is said to be

(a) monotone if

〈
g(x) − g(y), x − y〉 ≥ 0, ∀x, y ∈ H; (3.3)

(b) κ-strongly monotone if there exists a constant κ > 0 such that

〈
g(x) − g(y), x − y〉 ≥ κ∥∥x − y∥∥2

, ∀x, y ∈ H; (3.4)

(c) (
, ν)-relaxed cocoercive if there exist constants 
, ν > 0 such that

〈
g(x) − g(y), x − y〉 ≥ −
∥∥g(x) − g(y)∥∥2 + ν

∥∥x − y∥∥2
, ∀x, y ∈ H; (3.5)

(d) γ-Lipschitz continuous if there exists a constant γ > 0 such that

∥∥g(x) − g(y)∥∥ ≤ γ∥∥x − y∥∥, ∀x, y ∈ H. (3.6)
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Definition 3.3. A nonlinear single-valued operator T : H×H → H is called

(a) monotone in the first variable if for all x, y ∈ H

〈
T(x, u) − T(y, v), x − y〉 ≥ 0, ∀u, v ∈ H; (3.7)

(b) r-strongly monotone in the first variable if there exists a constant r > 0 such that for all
x, y ∈ H

〈
T(x, u) − T(y, v), x − y〉 ≥ r∥∥x − y∥∥2

, ∀u, v ∈ H; (3.8)

(c) (ξ, ς)-relaxed cocoercive in the first variable if there exist constants ξ, ς > 0 such that for
all x, y ∈ H

〈
T(x, u) − T(y, v), x − y〉 ≥ −ξ∥∥T(x, u) − T(y, v)∥∥2 + ς

∥∥x − y∥∥2
, ∀u, v ∈ H; (3.9)

(d) μ-Lipschitz continuous in the first variable if there exists a constant μ > 0 such that for
all x, y ∈ H

∥∥T(x, u) − T(y, v)∥∥ ≤ μ∥∥x − y∥∥, ∀u, v ∈ H. (3.10)

Now, we present the sufficient conditions for the existence solutions of our main
considered problem (2.4).

Theorem 3.4. Let Ti, Ai, gi, hi(i = 1, 2), ρ, and η be the same as in the system (2.4) and suppose
further that, for i = 1, 2,

(a) Ti is ξi-strongly monotone and μi-Lipschitz continuous in the first variable;

(b) gi is ςi-strongly monotone and σi-Lipschitz continuous;

(c) hi is 
i-strongly monotone and δi-Lipschitz continuous;

(d) there exists constants τi such that

∥∥∥J
ρ

A1(·,u)(z) − J
ρ

A1(·,v)(z)
∥∥∥ ≤ τ1‖u − v‖,

∥∥∥J
η

A2(·,u)(z) − J
η

A2(·,v)(z)
∥∥∥ ≤ τ2‖u − v‖, ∀u, v, z ∈ H.

(3.11)
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If two constants ρ and η satisfy the following conditions

∣
∣
∣
∣
∣
ρ − ξ1

μ2
1

∣
∣
∣
∣
∣
<

√
ξ21 − μ2

1μ
(
2 − μ)

μ2
1

,

∣
∣
∣
∣
∣
η − ξ2

μ2
2

∣
∣
∣
∣
∣
<

√
ξ22 − μ2

2ν(2 − ν)
μ2
2

,

ξ1 > μ1

√
μ
(
2 − μ), ξ2 > μ2

√
ν(2 − ν),

κi =
√
1 − 2ςi + σ2

i < 1, 2ςi < 1 + σ2
i ,

ωi =
√
1 − 2
i + δ2i < 1, 2
i < 1 + δ2i ,

μ = τ2 +ω2 + κ1 < 1, ν = τ1 +ω1 + κ2 < 1,

i = 1, 2,

(3.12)

then the system (2.4) admits a unique solution.

Proof . Firstly, let us define ψ, φ : H×H → H by

ψ
(
x, y

)
= x − g2(x) + JρA1(·,x)

(
g1
(
y
) − ρT1

(
y, x

))
,

φ
(
x, y

)
= y − h2

(
y
)
+ Jη

A2(·,y)
(
h1(x) − ηT2

(
x, y

))
,

(3.13)

for all (x, y) ∈ H ×H.
Also, define F : H×H → H×H as follows:

F
(
x, y

)
=
(
ψ
(
x, y

)
, φ

(
x, y

))
, ∀(x, y) ∈ H ×H. (3.14)

Consider a function ‖ · ‖∗ on H×H which is defined by

∥∥(x, y)
∥∥
∗ = ‖x‖ + ∥∥y

∥∥, ∀(x, y) ∈ H ×H. (3.15)
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It is obvious that (H ×H, ‖ · ‖∗) is a Hilbert space. Now, we establish that F is a contraction
mapping on (H×H, ‖·‖∗). Let (x, y), (x̂, ŷ) ∈ H×H be given. Since for all z ∈ H, the resolvent
operator Jρ

A1(·,z) is nonexpansive, we have

∥
∥ψ

(
x, y

) − ψ(x̂, ŷ)∥∥

≤ ∥
∥x − x̂ − (

g2(x) − g2(x̂)
)∥∥ +

∥
∥
∥J

ρ

A1(·,x)
(
g1
(
y
) − ρT1

(
y, x

)) − Jρ
A1(·,x̂)

(
g1
(
ŷ
) − ρT1

(
ŷ, x̂

))∥∥
∥

≤ ∥
∥x − x̂ − (

g2(x) − g2(x̂)
)∥∥ +

∥
∥
∥J

ρ

A1(·,x)
(
g1
(
y
) − ρT1

(
y, x

)) − Jρ
A1(·,x̂)

(
g1
(
y
) − ρT1

(
y, x

))∥∥
∥

+
∥
∥
∥J

ρ

A1(·,x̂)
(
g1
(
y
) − ρT1

(
y, x

)) − Jρ
A1(·,x̂)

(
g1
(
ŷ
) − ρT1

(
ŷ, x̂

))∥∥
∥

≤ ∥
∥x − x̂ − (

g2(x) − g2(x̂)
)∥∥ + τ1‖x − x̂‖ + ∥

∥g1
(
y
) − g1

(
ŷ
) − ρ(T1

(
y, x

) − T1
(
ŷ, x̂

))∥∥

≤ ∥
∥x − x̂ − (

g2(x) − g2(x̂)
)∥∥ + τ1‖x − x̂‖ + ∥

∥y − ŷ − (
g1
(
y
) − g1

(
ŷ
))∥∥

+
∥∥y − ŷ − ρ(T1

(
y, x

) − T1
(
ŷ, x̂

))∥∥.
(3.16)

From ς2-strongly monotonicity and σ2-Lipschitz continuity of g2, it follows that

∥∥x − x̂ − (
g2(x) − g2(x̂)

)∥∥2

= ‖x − x̂‖2 − 2
〈
g2(x) − g2(x̂), x − x̂〉 + ∥∥g2(x) − g2(x̂)

∥∥2

≤
(
1 − 2ς2 + σ2

2

)
‖x − x̂‖2,

(3.17)

which leads to

∥∥x − x̂ − (
g2(x) − g2(x̂)

)∥∥ ≤
√
1 − 2ς2 + σ2

2‖x − x̂‖. (3.18)

In similar way, by using ς1-strongly monotonicity and σ1-Lipschitz continuity of g1, we
deduce that

∥∥y − ŷ − (
g1
(
y
) − g1

(
ŷ
))∥∥ ≤

√
1 − 2ς1 + σ2

1

∥∥y − ŷ∥∥. (3.19)

Since T1 is ξ1-strongly monotone and μ1-Lipschitz continuous in the first variable, we
conclude that

∥∥y − ŷ − ρ(T1
(
y, x

) − T1
(
ŷ, x̂

))∥∥2

=
∥∥y − ŷ∥∥2 − 2ρ

〈
T1
(
y, x

) − T1
(
ŷ, x̂

)
, y − ŷ〉 + ρ2∥∥T1

(
y, x

) − T1
(
ŷ, x̂

)∥∥2

≤
(
1 − 2ρξ1 + ρ2μ2

1

)∥∥y − ŷ∥∥2
.

(3.20)
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Substituting (3.18)–(3.20) in (3.16), we obtain

∥
∥ψ

(
x, y

) − ψ(x̂, ŷ)∥∥ ≤ (τ1 + κ2)‖x − x̂‖ + (κ1 + θ1)
∥
∥y − ŷ∥∥, (3.21)

where

κi =
√
1 − 2ςi + σ2

i , (i = 1, 2), θ1 =
√
1 − 2ρξ1 + ρ2μ2

1. (3.22)

On the other hand, since for i = 1, 2, hi is 
i-strongly monotone and δi-Lipschitz
continuous in the first variable, T2 is ξ2-strongly monotone and μ2-Lipschitz continuous in
the first variable, in similar way to the proofs of (3.16)–(3.21), we can prove that

∥
∥φ

(
x, y

) − φ(x̂, ŷ)∥∥ ≤ (ω1 + θ2)‖x − x̂‖ + (τ2 +ω2)
∥
∥y − ŷ∥∥, (3.23)

where

ωi =
√
1 − 2
i + δ2i , (i = 1, 2), θ2 =

√
1 − 2ηξ2 + η2μ2

2. (3.24)

It follows from (3.14), (3.21), and (3.23) that

∥∥F
(
x, y

) − F(x̂, ŷ)∥∥∗ =
∥∥ψ

(
x, y

) − ψ(x̂, ŷ)∥∥ +
∥∥φ

(
x, y

) − φ(x̂, ŷ)∥∥

≤ (τ1 +ω1 + κ2 + θ2)‖x − x̂‖ + (τ2 +ω2 + κ1 + θ1)
∥∥y − ŷ∥∥

≤ ϑ∥∥(x, y) − (
x̂, ŷ

)∥∥
∗,

(3.25)

where ϑ = max{τ1 + ω1 + κ2 + θ2, τ2 + ω2 + κ1 + θ1}. By condition (3.12), we note that 0 ≤
ϑ < 1, and so (3.25) guarantees that F is a contraction mapping. According to Banach fixed
point theorem, there exists a unique point (x∗, y∗) ∈ H × H such that F(x∗, y∗) = (x∗, y∗).
From (3.13) and (3.14), we conclude that g2(x∗) = J

ρ

A1(·,x∗)(g1(y
∗) − ρT1(y∗, x∗)) and h2(y∗) =

J
η

A2(·,y∗)(h1(x
∗) − ηT2(x∗, y∗)). Now, Lemma 3.1 guarantees that (x∗, y∗) ∈ H×H is the unique

solution of the system (2.4). This completes the proof.

4. Some New Resolvent Iterative Algorithms

In recent years, the nonexpansive mappings have been generalized and investigated by
various authors. One of these generalizations is class of the nearly uniformly Lipschitzian
mappings. In this section, we first recall some generalizations of the nonexpansive mappings
which have been introduced in recent years, then we use two nearly uniformly Lipschitzian
mappings S1 and S2 and by using the equivalent alternative formulation (3.1), we suggest
and analyze a new resolvent iterative algorithm for finding an element of the set of the fixed
points of Q = (S1, S2)which is the unique solution of the SEGNVID (2.4).

In two next definitions, several generalizations of the nonexpansive mappings are
stated.
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Definition 4.1. A nonlinear mapping T : H → H is called as follows:

(a) nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ H;

(b) L-Lipschitzian if there exists a constant L > 0 such that

∥
∥Tx − Ty∥∥ ≤ L∥∥x − y∥∥, ∀x, y ∈ H; (4.1)

(c) generalized Lipschitzian if there exists a constant L > 0 such that

∥
∥Tx − Ty∥∥ ≤ L(∥∥x − y∥∥ + 1

)
, ∀x, y ∈ H; (4.2)

(d) generalized (L,M)-Lipschitzian [46] if there exist two constants L,M > 0 such that

∥∥Tx − Ty∥∥ ≤ L(∥∥x − y∥∥ +M
)
, ∀x, y ∈ H; (4.3)

(e) asymptotically nonexpansive [63] if there exists a sequence {kn} ⊆ [1,∞) with
limn→∞kn = 1 such that for each n ∈ N,

∥∥Tnx − Tny∥∥ ≤ kn
∥∥x − y∥∥, ∀x, y ∈ H; (4.4)

(f) pointwise asymptotically nonexpansive [64] if, for each integer n ≥ 1,

∥∥Tnx − Tny∥∥ ≤ αn(x)
∥∥x − y∥∥, x, y ∈ H, (4.5)

where αn → 1 pointwise on X;

(g) uniformly L-Lipschitzian if there exists a constant L > 0 such that for each n ∈ N,

∥∥Tnx − Tny∥∥ ≤ L∥∥x − y∥∥, ∀x, y ∈ H. (4.6)

Definition 4.2 (see [46]). A nonlinear mapping T : H → H is said to be

(a) nearly Lipschitzianwith respect to the sequence {an} if, for each n ∈ N, there exists a
constant kn > 0 such that

∥∥Tnx − Tny∥∥ ≤ kn
(∥∥x − y∥∥ + an

)
, ∀x, y ∈ H, (4.7)

where {an} is a fix sequence in [0,∞)with an → 0, as n → ∞.

For an arbitrary, but fixed n ∈ N, the infimum of constants kn in (4.7) is called nearly
Lipschitz constant and is denoted by η(Tn). Notice that

η(Tn) = sup

{∥∥Tnx − Tny∥∥
∥∥x − y∥∥ + an

: x, y ∈ H, x /=y

}

. (4.8)
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A nearly Lipschitzian mapping T with the sequence {(an, η(Tn))} is said to be

(b) nearly nonexpansive if η(Tn) = 1 for all n ∈ N, that is,

∥
∥Tnx − Tny∥∥ ≤ ∥

∥x − y∥∥ + an, ∀x, y ∈ H; (4.9)

(c) nearly asymptotically nonexpansive if η(Tn) ≥ 1 for all n ∈ N and limn→∞η(Tn) = 1, in
other words, kn ≥ 1 for all n ∈ N with limn→∞kn = 1;

(d) nearly uniformly L-Lipschitzian if η(Tn) ≤ L for all n ∈ N, in other words, kn = L for
all n ∈ N.

For some interesting examples to investigate relations between these mappings,
introduced in Definitions 4.1 and 4.2, ones may consult [58].

Let S1 : H → H be a nearly uniformly L1-Lipschitzian mapping with the sequence
{an}∞n=1 and S2 : H → H be a nearly uniformly L2-Lipschitzian mapping with the sequence
{bn}∞n=1. We define the self-mapping Q ofH×H as follows:

Q(
x, y

)
=
(
S1x, S2y

)
, ∀x, y ∈ H. (4.10)

ThenQ = (S1, S2) : H×H → H×H is a nearly uniformly max{L1, L2}-Lipschitzian mapping
with the sequence {an + bn}∞n=1 with respect to the norm ‖ · ‖∗ inH×H, where ‖ · ‖∗ is defined
as (3.15). Because, for any (x, y), (x′, y′) ∈ H ×H and n ∈ N, we have

∥∥Qn(x, y
) − Qn(x′, y′)∥∥

∗

=
∥∥(Sn1x, S

n
2y

) − (
Sn1x

′, Sn2y
′)∥∥

∗ =
∥∥(Sn1x − Sn1x′, Sn2y − Sn2y′)∥∥

∗

=
∥∥Sn1x − Sn1x′∥∥ +

∥∥Sn2y − Sn2y′∥∥ ≤ L1
(∥∥x − x′∥∥ + an

)
+ L2

(∥∥y − y′∥∥ + bn
)

≤ max{L1, L2}
(∥∥x − x′∥∥ +

∥∥y − y′∥∥ + an + bn
)

= max{L1, L2}
(∥∥(x, y

) − (
x′, y′)∥∥

∗ + an + bn
)
.

(4.11)

We denote the sets of all the fixed points of Si(i = 1, 2) and Q by Fix(Si) and Fix(Q), respec-
tively, and the set of all the solutions of the system (2.4) by SEGNVID(H, Ti, Ai, gi, hi, i = 1, 2).
In view of (4.10), for any (x, y) ∈ H×H, we see that (x, y) ∈ Fix(Q) if and only if x ∈ Fix(S1)
and y ∈ Fix(S2). That is, Fix(Q) = Fix(S1, S2) = Fix(S1) × Fix(S2). We now characterize the
following problem: if (x∗, y∗) ∈ Fix(Q) ∩ SEGNVID(H, Ti, Ai, gi, hi, i = 1, 2), then by using
Lemma 3.1, it is easy to see that for each n ∈ N,

x∗ = Sn1x
∗ = x∗ − g2(x∗) + JρA1(·,x∗)

(
g1
(
y∗) − ρT1

(
y∗, x∗))

= Sn1
[
x∗ − g2(x∗) + JρA1(·,x∗)

(
g1
(
y∗) − ρT1

(
y∗, x∗))

]
,

y∗ = Sn2y
∗ = y∗ − h2

(
y∗) + Jη

A2(·,y∗)
(
h1(x∗) − ηT2

(
x∗, y∗))

= Sn2

[
y∗ − h2

(
y∗) + Jη

A2(·,y∗)
(
h1(x∗) − ηT2

(
x∗, y∗))

]
.

(4.12)
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The fixed point formulation (4.12) enables us to suggest the following iterative
algorithm with mixed errors for finding an element of the set of the fixed points of the nearly
uniformly Lipschitzian mapping Q = (S1, S2) which is the unique solution of the system of
extended general nonlinear variational inclusions (2.4).

Algorithm 4.3. Let Ti, Ai, gi, hi(i = 1, 2), ρ, and η be the same as in the system (2.4). For an
arbitrary chosen initial point (x1, y1) ∈ H × H, compute the iterative sequence {(xn, yn)}∞n=1
in the following way:

xn+1 =
(
1 − αn − βn

)
xn+αnSn1

[
xn − g2(xn) + JρA1(·,xn)

(
g1
(
yn

) − ρT1
(
yn, xn

))]
+ αnen+βnjn+rn,

yn+1 =
(
1 − αn − βn

)
yn+αnSn2

[
yn − h2

(
yn

)
+ Jη

A2(·,yn)
(
h1(xn) − ηT2

(
xn, yn

))
]
+ αnpn+βnsn+ln,

(4.13)

where S1, S2 : H → H are two nearly uniformly Lipschitzian mappings, {αn}∞n=1, {βn}∞n=1 are
two sequences in interval [0, 1] such that

∑∞
n=1 αn = ∞, αn + βn ≤ 1,

∑∞
n=1 βn < ∞ and {en}∞n=1,

{pn}∞n=1, {jn}∞n=1, {sn}∞n=1, {rn}∞n=1, {ln}∞n=1 are six sequences inH to take into account a possible
inexact computation of the resolvent operator point satisfying the following conditions:
{jn}∞n=1, {sn}∞n=1 are two bounded sequences in H, and {en}∞n=1, {pn}∞n=1, {rn}∞n=1, {ln}∞n=1 are
four sequences in H such that

en = e′n + e
′′
n, pn = p′n + p

′′
n, n ∈ N,

lim
n→∞

∥∥(e′n, p
′
n

)∥∥
∗ = 0,

∞∑

n=1

∥∥(e′′n, p
′′
n

)∥∥
∗ <∞,

∞∑

n=1

‖rn, ln‖∗ <∞.

(4.14)

Remark 4.4. If, for each i = 1, 2, Si ≡ I, then Algorithm 4.3 reduces to the following iterative
algorithm for solving the system (2.4).

Algorithm 4.5. Suppose that Ti, Ai, gi, hi(i = 1, 2), ρ, and η are the same as in the system
(2.4). For an arbitrary chosen initial point (x1, y1) ∈ H × H, compute the iterative sequence
{(xn, yn)}∞n=1 in the following way:

xn+1 =
(
1 − αn − βn

)
xn + αn

[
xn − g2(xn) + JρA1(·,xn)

(
g1
(
yn

) − ρT1
(
yn, xn

))]
+ αnen + βnjn + rn,

yn+1 =
(
1 − αn − βn

)
yn + αn

[
yn − h2

(
yn

)
+ Jη

A2(·,yn)
(
h1(xn) − ηT2

(
xn, yn

))
]
+ αnpn + βnsn + ln,

(4.15)

where the sequences {αn}∞n=1, {βn}∞n=1, {en}∞n=1, {pn}∞n=1, {jn}∞n=1, {sn}∞n=1, {rn}∞n=1, and {ln}∞n=1
are the same as in Algorithm 4.3.
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5. Convergence Analysis

In this section, under some suitable conditions, we establish the strong convergence of the
sequence generated by iterative Algorithm 4.3. We need the following lemma to prove our
main result.

Lemma 5.1. Let {an}, {bn}, and {cn} be three nonnegative real sequences satisfying the following
condition. There exists a natural number n0 such that

an+1 ≤ (1 − tn)an + bntn + cn, ∀n ≥ n0, (5.1)

where tn ∈ [0, 1],
∑∞

n=0 tn = ∞, limn→∞bn = 0,
∑∞

n=0 cn <∞. Then limn→∞an = 0.

Proof. The proof directly follows from Lemma 2 in Liu [59].

Theorem 5.2. Let Ti, Ai, gi, hi(i = 1, 2), ρ and η be the same as in Theorem 3.4 and let all the
conditions Theorem 3.4 hold. Assume that S1 : H → H is a nearly uniformly L1-Lipschitzian
mapping with the sequence {bn}∞n=1, S2 : H → H is a nearly uniformly L2-Lipschitzian mapping
with the sequence {cn}∞n=1, and the self-mapping Q of H×H is defined by (4.10) such that Fix(Q) ∩
SEGNVID(H, Ti, Ai, gi, hi, i = 1, 2)/= ∅. Furthermore, let, for each i = 1, 2, Liϑ < 1, where ϑ is the
same as in (3.25). Then the iterative sequence {(xn, yn)}∞n=1, generated by Algorithm 4.3, converges
strongly to the only element of Fix(Q) ∩ SEGNVID(H, Ti, Ai, gi, hi, i = 1, 2).

Proof. According to Theorem 3.4, the system (2.4) has a unique solution (x∗, y∗) in H × H,
and so Lemma 3.1 implies that (x∗, y∗) satisfies (3.1). Since SEGNVID(H, Ti, Ai, gi, hi, i = 1, 2)
is a singleton set and Fix(Q)

⋂
SEGNVID(H, Ti, Ai, gi, hi, i = 1, 2)/= ∅, we conclude that x∗ ∈

Fix(S1) and y∗ ∈ Fix(S2). Therefore, for each n ∈ N, we can write

x∗ =
(
1 − αn − βn

)
x∗ + αnSn1

[
x∗ − g2(x∗) + JρA1(·,x∗)

(
g1
(
y∗) − ρT1

(
y∗, x∗))

]
+ βnx∗,

y∗ =
(
1 − αn − βn

)
y∗ + αnSn2

[
y∗ − h2

(
y∗) + Jη

A2(·,y∗)
(
h1(x∗) − ηT2

(
x∗, y∗))

]
+ βny∗,

(5.2)

where the sequences {αn}∞n=1 and {βn}∞n=1 are the same as in Algorithm 4.3. Let K =
supn≥1{‖jn − x∗‖, ‖sn − y∗‖}. Then, by using (4.13), (5.2), and the assumptions, we have

‖xn+1 − x∗‖
≤ (

1 − αn − βn
)‖xn − x∗‖

+ αn
∥∥∥Sn1

[
xn − g2(xn) + JρA1(·,xn)

(
g1
(
yn

) − ρT1
(
yn, xn

))]

−Sn1
[
x∗ − g2(x∗) + JρA1(.,x∗)

(
g1
(
y∗) − ρT1

(
y∗, x∗))

]∥∥∥ + αn‖en‖ + βn
∥∥jn − x∗∥∥ + ‖rn‖

≤ (
1 − αn − βn

)‖xn − x∗‖
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+ αnL1

(∥
∥xn − x∗ − (

g2(xn) − g2(x∗)
)∥∥

+
∥
∥
∥J

ρ

A1(·,xn)
(
g1
(
yn

) − ρT1
(
yn, xn

)) − JρA1(·,x∗)
(
g1
(
y∗) − ρT1

(
y∗, x∗))

∥
∥
∥ + bn

)

+ αn
(∥∥e′n

∥
∥ +

∥
∥e′′n

∥
∥) + ‖rn‖ + βnK

≤ (
1 − αn − βn

)‖xn − x∗‖

+ αnL1

(∥
∥xn − x∗ − (

g2(xn) − g2(x∗)
)∥∥

+
∥
∥
∥J

ρ

A1(·,xn)
(
g1
(
yn

) − ρT1
(
yn, xn

)) − JρA1(·,x∗)
(
g1
(
yn

) − ρT1
(
yn, xn

))∥∥
∥

+
∥
∥
∥J

ρ

A1(·,x∗)
(
g1
(
yn

) − ρT1
(
yn, xn

)) − JρA1(·,x∗)
(
g1
(
y∗) − ρT1

(
y∗, x∗))

∥
∥
∥ + bn

)

+ αn
∥
∥e′n

∥
∥ +

∥
∥e′′n

∥
∥ + ‖rn‖ + βnK

≤ (
1 − αn − βn

)‖xn − x∗‖
+ αnL1

(∥∥xn − x∗ − (
g2(xn) − g2(x∗)

)∥∥ + τ1‖xn − x∗‖
+
∥∥g1

(
yn

) − g1
(
y∗) − ρ(T1

(
yn, xn

) − T1
(
y∗, x∗))∥∥ + bn

)

+ αn
∥∥e′n

∥∥ +
∥∥e′′n

∥∥ + ‖rn‖ + βnK
≤ (

1 − αn − βn
)‖xn − x∗‖ + αnL1

(
(τ1 + κ2)‖xn − x∗‖ + (κ1 + θ1)

∥∥yn − y∗∥∥ + bn
)

+ αn
∥∥e′n

∥∥ +
∥∥e′′n

∥∥ + ‖rn‖ + βnK,
(5.3)

where κi(i = 1, 2) and θ1 are the same as in (3.21).
In similar way to the proof of (5.3), one can establish that

∥∥yn+1 − y∗∥∥

≤ (
1 − αn − βn

)∥∥yn − y∗∥∥ + αnL2
(
(ω1 + θ2)‖xn − x∗‖ + (τ2 +ω2)

∥∥yn − y∗∥∥ + cn
)

+ αn
∥∥p′n

∥∥ +
∥∥p′′n

∥∥ + ‖ln‖ + βnK,
(5.4)

whereωi(i = 1, 2) and θ2 are the same as in (3.23). Letting L = max{L1, L2} and applying (5.3)
and (5.4), we obtain that

∥∥(xn+1, yn+1
) − (

x∗, y∗)∥∥
∗

≤ (
1 − αn − βn

)∥∥(xn, yn
) − (

x∗, y∗)∥∥
∗ + αnLϑ

∥∥(xn, yn
) − (

x∗, y∗)∥∥
∗

+ αnL(bn + cn) + αn
∥∥(e′n, p

′
n

)∥∥
∗ +

∥∥(e′′n, p
′′
n

)∥∥
∗ + ‖(rn, ln)‖∗ + 2βnK

≤ (1 − (1 − Lϑ)αn)
∥∥(xn, yn

) − (
x∗, y∗)∥∥

∗ + αnϑ

∥∥(e′n, p
′
n

)∥∥
∗ + L(bn + cn)
ϑ

+
∥∥(e′′n, p

′′
n

)∥∥
∗ + ‖(rn, ln)‖∗ + 2βnK,

(5.5)
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where ϑ is the same as in (3.25). Since limn→∞bn = limn→∞cn = 0 and
∑∞

n=1 βn < ∞, in view
of (4.14), it is obvious that the conditions of Lemma 5.1 are satisfied. Now, Lemma 5.1 and
(5.5) guarantee that (xn, yn) → (x∗, y∗), as n → ∞. Therefore, the sequence {(xn, yn)}∞n=1,
generated by Algorithm 4.3, converges strongly to the only element (x∗, y∗) of Fix(Q) ∩
SEGNVID(H, Ti, Ai, gi, hi, i = 1, 2). This completes the proof.

Like in the proof of Theorem 5.2, one can prove the strong convergence of the iterative
sequence generated by Algorithm 4.5, and we omit its proof.

Theorem 5.3. Suppose that Ti, Ai, gi, hi(i = 1, 2), ρ, and η are the same as in Theorem 3.4
and let all the conditions Theorem 3.4 hold. Then the iterative sequence {(xn, yn)}∞n=1, generated by
Algorithm 4.5, converges strongly to the unique solution (x∗, y∗) of the system (2.4).

6. Some Comments on Related Works

This section is devoting to investigate and analyze the results in [29, 44]. We state some
remarks on main results in [29] and also the explicit iterative forms, which are related to
Algorithms 3.1 and 3.2 from [44], are constructed. The incorrectness of Theorem 4.1 from
[44] is discussed. Furthermore, the correct versions of the aforesaid algorithms and theorem
are presented.

Noor [29] proposed the following two-step iterative algorithm for solving the system
of general mixed variational inequalities (2.8) and studied convergence analysis of the
proposed iterative algorithm under some certain conditions.

Algorithm 6.1 (see [29, Algorithm 3.1]). For arbitrary chosen initial points x0, y0 ∈ H,
compute the sequences {xn} and {yn} by

xn+1 = (1 − an)xn + anJϕ
[
g
(
yn

) − ρT1
(
yn, xn

)]
,

yn+1 = Jϕ
[
g(xn+1) − ηT2

(
xn+1, yn

)]
,

(6.1)

where an ∈ [0, 1] for all n ≥ 0.

Theorem 6.2 (see [29, Theorem 3.1]). Let x∗, y∗ be the solution of SGMVID (2.8). Suppose that
T1 : H × H → H is relaxed (γ1, r1)-cocoercive and μ1-Lipschitzian in the first variable, and T2 :
H×H → H is relaxed (γ2, r2)-cocoercive and μ2-Lipschitzian in the first variable. Let g be relaxed
(γ3, r3)-cocoercive and μ3-Lipschitzian. If

∣∣∣∣∣
ρ − r1 − γ1μ2

1

μ2
1

∣∣∣∣∣
<

√(
r1 − γ1μ2

1

)2 − μ2
1k(2 − k)

μ2
1

,

r1 > γ1μ
2
1 + μ1

√
k(2 − k), k < 1,

∣∣∣∣∣
η − r2 − γ2μ2

2

μ2
2

∣∣∣∣∣
<

√(
r2 − γ2μ2

2

)2 − μ2
2k(2 − k)

μ2
2

,

r2 > γ2μ
2
2 + μ2

√
k(2 − k), k < 1,

(6.2)



Abstract and Applied Analysis 17

where

k =
√
1 − 2

(
r3 − γ3μ2

3

)
+ μ2

3, (6.3)

and an ∈ [0, 1],
∑∞

n=0 an = ∞, then for arbitrarily chosen initial points x0, y0 ∈ H, xn and yn
obtained from Algorithm 6.1 converge strongly to x∗ and y∗, respectively.

By using Definition 2.1, we note that the condition relaxed cocoercivity of the operator
T is weaker than the condition of strongmonotonicity of T . In other words, the class of relaxed
cocoercive operators is more general than the class of strongly monotone operators. Now, we
show that, unlike claim of Noor [29], he studied the convergence analysis of the proposed
iterative algorithm under the condition of strongmonotonicity, not themild condition relaxed
cocoercivity.

Remark 6.3. In view of the conditions (6.2) (the conditions (4.1) and (4.2) in [29]), we have
k ∈ (0, 1). The condition (6.3) (the condition (4.3) in [29]) and k > 0 imply that 2(r3 − γ3μ2

3) <
1 + μ2

3. Therefore, the condition 2(r3 − γ3μ2
3) < 1 + μ2

3 should be added to the conditions (6.2)-
(6.3). On the other hand, since k < 1 from the condition (6.3), it follows that r3 > γ3μ

2
3.

The conditions ri > γiμ
2
i + μi

√
k(2 − k) (i = 1, 2), and k < 1 imply that ri > γiμ

2
i for each

i = 1, 2. Since, for each i = 1, 2, the operator Ti is (γi, ri)-relaxed cocoercive and μi-Lipschitz
continuous, the conditions ri > γiμ

2
i (i = 1, 2) guarantee that, for each i = 1, 2, the operator

Ti is (ri − γiμ
2
i ) strongly monotone. Similarly, since g is (γ3, r3) relaxed cocoercive and μ3-

Lipschitz continuous, the condition r3 > γ3μ2
3 implies that the operator g is (r3−γ3μ2

3)-strongly
monotone.

In view of the above remark, one can rewrite Theorem 6.2 as follows.

Theorem 6.4. Let x∗ and y∗ be the solution of the SGMVID (2.8) and suppose that T1 : H×H → H
is ξ1-strongly monotone and μ1-Lipschitz continuous in the first variable, and T2 : H ×H → H is
relaxed ξ2-strongly monotone and μ2-Lipschitz continuous in the first variable. Moreover, let g be
ξ3-strongly monotone and μ3-Lipschitz continuous. If two constants ρ and η satisfy the following
conditions:

∣∣∣∣∣
ρ − ξ1

μ2
1

∣∣∣∣∣
<

√
ξ21 − μ2

1k(2 − k)
μ2
1

,

∣∣∣∣∣
η − ξ2

μ2
2

∣∣∣∣∣
<

√
ξ22 − μ2

2k(2 − k)
μ2
2

,

ξi > μi

√
k(2 − k), (i = 1, 2),

k =
√
1 − 2ξ3 + μ2

3 < 1, 2ξ3 < 1 + μ2
3,

(6.4)

and
∑∞

n=0 an = ∞, then the iterative sequences {xn} and {yn} generated by Algorithm 6.1 converge
strongly to x∗ and y∗, respectively.
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M. A. Noor and K. I. Noor in [44] proposed the following iterative scheme for solving
the system of general variational inclusions (1) from [44].

Algorithm 6.5 (see [44, Algorithm 3.1]). For arbitrary chosen initial points x0, y0 ∈ K compute
the sequences {xn} and {yn} by

xn+1 = (1 − an)xn + an
(
xn+1 − g1(xn+1)

)
+ anJA

[
g
(
yn

) − ρT1
(
yn

)]
,

yn+1 = yn+1 − h1
(
yn+1

)
+ JA

[
h(xn+1) − ηT2(xn+1)

]
,

(6.5)

where an ∈ [0, 1] for all n ≥ 0 satisfies some suitable conditions.

Taking g1 = g and h1 = h, Algorithm 6.5 reduces to the following iterative algorithm.

Algorithm 6.6 (see [44, Algorithm 3.2]). For arbitrary chosen initial points x0, y0 ∈ K compute
the sequences {xn} and {yn} by

xn+1 = (1 − an)xn + an
(
xn+1 − g(xn+1)

)
+ anJA

[
g
(
yn

) − ρT1
(
yn

)]
,

yn+1 = yn+1 − h
(
yn+1

)
+ JA

[
h(xn+1) − ηT2(xn+1)

]
,

(6.6)

where an ∈ [0, 1] for all n ≥ 0 satisfies some suitable conditions.

Remark 6.7. By analyzing two Algorithms 6.5 and 6.6, we note that the mentioned algorithms
are in implicit forms. Further, in view of Remark 2.2, we should apply the system (2.5) instead
of the system (1) from [44].

Next, we derive two explicit algorithms to solve the systems (2.5) and (2.6),
respectively, as follows.

Algorithm 6.8. Let T1, T2, A, g, h, g1, and h1 be the same as in the system (2.5), and let h be an
onto operator. For arbitrary chosen initial points x0, y0 ∈ K compute the sequences {xn} and
{yn} in the following way:

xn+1 = (1 − an)xn + an
(
xn − g1(xn) + JA

(
g
(
yn+1

) − ρT1
(
yn+1

)))
,

h1
(
yn+1

)
= JA

(
h(xn) − ηT2(xn)

) (6.7)

where an ∈ [0, 1] for all n ≥ 0 satisfies some suitable conditions.

Algorithm 6.9. Let T1, T2, A, g, h, g1, and h1 be the same as in the system (2.5). For arbitrary
chosen initial points x0, y0 ∈ K compute the sequences {xn} and {yn} in the following way:

xn+1 = (1 − an)xn + an
(
xn − g1(xn) + JA

(
g
(
yn

) − ρT1
(
yn

)))
,

yn+1 = (1 − an)yn + an
(
yn − h1

(
yn

)
+ JA

(
h(xn) − ηT2(xn)

))
,

(6.8)

where an ∈ [0, 1] for all n ≥ 0 satisfies some suitable conditions.
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Taking g1 = g and h1 = h in two Algorithms 6.8 and 6.9, we can obtain the following
two algorithms.

Algorithm 6.10. For arbitrary chosen initial points x0, y0 ∈ K compute the sequences {xn} and
{yn} in the following way:

xn+1 = (1 − an)xn + an
(
xn − g(xn) + JA

(
g
(
yn+1

) − ρT1
(
yn+1

)))
,

h
(
yn+1

)
= JA

(
h(xn) − ηT2(xn)

)
,

(6.9)

where an ∈ [0, 1] for all n ≥ 0 satisfies some suitable conditions.

Algorithm 6.11. For arbitrary chosen initial points x0, y0 ∈ K compute the sequences {xn} and
{yn} in the following way:

xn+1 = (1 − an)xn + an
(
xn − g(xn) + JA

(
g
(
yn

) − ρT1
(
yn

)))
,

yn+1 = (1 − an)yn + an
(
yn − h

(
yn

)
+ JA

(
h(xn) − ηT2(xn)

))
,

(6.10)

where an ∈ [0, 1] for all n ≥ 0 satisfies some suitable conditions.

We now recall some facts, which has presented in [44].

Lemma 6.12 (see [44, Lemma 3.1]). If the operatorA is maximal monotone, then (x∗, y∗) ∈ H×H
is a solution of (2.5) (the correct version of the system (1) in [44]) if and only if (x∗, y∗) ∈ H × H
satisfies

g1(x∗) = JρA
[
g
(
y∗) − ρT1

(
y∗)],

h1
(
y∗) = JηA

[
h(x∗) − ηT2(x∗)

]
.

(6.11)

Remark 6.13. In view of Lemma 6.12, (x∗, y∗) ∈ H ×H is a solution of the system (2.6) if and
only if

g(x∗) = JρA
[
g
(
y∗) − ρT1

(
y∗)],

h
(
y∗) = JηA

[
h(x∗) − ηT2(x∗)

]
,

(6.12)

where ρ, η > 0 are two constants.

Theorem 6.14. Let Ti(i = 1, 2), g, and h be the same as in Algorithm 6.10, and let x∗, y∗ be the
solution of the system (2.6). Assume that for i = 1, 2, the operator Ti : H → H is ξi-strongly
monotone and μi-Lipschitz continuous. Furthermore, let g be ξ3-strongly monotone and μ3-Lipschitz
continuous and h be ξ4-strongly monotone and μ4-Lipschitz continuous. If there exist two constants
ρ and η such that

(k + θ1)(k1 + θ2) < (1 − k)(1 − k1), (6.13)
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where

k =
√
1 − 2ξ3 + μ2

3 < 1, 2ξ3 < 1 + μ2
3,

k1 =
√
1 − 2ξ4 + μ2

4 < 1, 2ξ4 < 1 + μ2
4,

θ1 =
√
1 − 2ρξ1 + ρ2μ2

1 < 1, 2ρξ1 < 1 + ρ2μ2
1,

θ2 =
√
1 − 2ηξ2 + η2μ2

2 < 1, 2ηξ2 < 1 + η2μ2
2

(6.14)

and
∑∞

n=0 an = ∞, and then the sequences {xn} and {yn} generated by Algorithm 6.10 converge
strongly to x∗ and y∗, respectively.

Proof. Since (x∗, y∗) ∈ H × H is a solution of the system (2.6), in view of Remark 6.13, we
have

g(x∗) = JρA
(
g
(
y∗) − ρT1

(
y∗)), h

(
y∗) = JηA

(
h(x∗) − ηT2(x∗)

)
, (6.15)

where ρ and η are two constants. For each n ≥ 0, one can rewrite the above equations as
below:

x∗ = (1 − an)x∗ + an
(
x∗ − g(x∗) + JρA

(
g
(
y∗) − ρT1

(
y∗))

)
,

h
(
y∗) = JηA

(
h(x∗) − ηT2(x∗)

)
,

(6.16)

where the sequence {an} is the same as in Algorithm 6.10. It follows from (6.9), (6.16), and
the nonexpansivity property of the resolvent operator JρA, that

‖xn+1 − x∗‖
≤ (1 − an)‖xn − x∗‖

+ an
(∥∥xn − x∗ − (

g(xn) − g(x∗)
)∥∥ +

∥∥∥J
ρ

A

(
g
(
yn+1

) − ρT1
(
yn+1

)) − JρA
(
g
(
y∗) − ρT1

(
y∗))

∥∥∥
)

≤ (1 − an)‖xn − x∗‖
+ an

(∥∥xn − x∗ − (
g(xn) − g(x∗)

)∥∥ +
∥∥g

(
yn+1

) − g(y∗) − ρ(T1
(
yn+1

) − T1
(
y∗))∥∥)

≤ (1 − an)‖xn − x∗‖
+ an

(∥∥xn − x∗ − (
g(xn) − g(x∗)

)∥∥ +
∥∥yn+1 − y∗ − (

g
(
yn+1

) − g(y∗))∥∥

+
∥∥yn+1 − y∗ − ρ(T1

(
yn+1

) − T1
(
y∗))∥∥).

(6.17)
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Since T1 is ξ1-strongly monotone and μ1-Lipschitz continuous, we have

∥
∥yn+1 − y∗ − ρ(T1

(
yn+1

) − T1
(
y∗))∥∥2

=
∥
∥yn+1 − y∗∥∥2 − 2ρ

〈
T1
(
yn+1

) − T1
(
y∗), yn+1 − y∗〉

+ ρ2
∥
∥T1

(
yn+1

) − T1
(
y∗)∥∥2

≤
(
1 − 2ρξ1 + ρ2μ2

1

)∥
∥yn+1 − y∗∥∥2

(6.18)

which leads to

∥∥yn+1 − y∗ − ρ(T1
(
yn+1

) − T1
(
y∗))∥∥ ≤

√
1 − 2ρξ1 + ρ2μ2

1

∥∥yn+1 − y∗∥∥. (6.19)

Since g is ξ3-strongly monotone and μ3-Lipschitz continuous, we get

∥∥xn − x∗ − (
g(xn) − g(x∗)

)∥∥ ≤
√
1 − 2ξ3 + μ2

3‖xn − x∗‖, (6.20)

∥∥yn+1 − y∗ − (
g
(
yn+1

) − g(y∗))∥∥ ≤
√
1 − 2ξ3 + μ2

3

∥∥yn+1 − y∗∥∥. (6.21)

Combining (6.17)–(6.21), we get the following:

‖xn+1 − x∗‖ ≤ (1 − an)‖xn − x∗‖ + ank‖xn − x∗‖ + an(k + θ1)
∥∥yn+1 − y∗∥∥, (6.22)

where k and θ1 are the same as in (6.14). Now, we find an estimation for ‖yn+1 − y∗‖. Using
(6.9), (6.16), and the nonexpansivity property of the resolvent operator JηA, we obtain that

∥∥yn+1 − y∗∥∥ ≤ ∥∥yn+1 − y∗ − (
h
(
yn+1

) − h(y∗))∥∥ +
∥∥h

(
yn+1

) − h(y∗)∥∥

≤ ∥∥yn+1 − y∗ − (
h
(
yn+1

) − h(y∗))∥∥

+
∥∥∥J

η

A

(
h(xn) − ηT2(xn)

) − JηA
(
h(x∗) − ηT2(x∗)

)∥∥∥

≤ ∥∥yn+1 − y∗ − (
h
(
yn+1

) − h(y∗))∥∥

+
∥∥h(xn) − h(x∗) − η(T2(xn) − T2(x∗))

∥∥

≤ ∥∥yn+1 − y∗ − (
h
(
yn+1

) − h(y∗))∥∥

+ ‖xn − x∗ − (h(xn) − h(x∗))‖
+
∥∥xn − x∗ − η(T2(xn) − T2(x∗))

∥∥.

(6.23)
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Since T2 is ξ2-strongly monotone and μ2-Lipschitz continuous, and h is ξ4-strongly monotone
and μ4-Lipschitz continuous, in similar way to the proofs of (6.19)–(6.21), we can establish
that

∥
∥xn − x∗ − η(T2(xn) − T2(x∗))

∥
∥ ≤

√
1 − 2ηξ2 + η2μ2

2‖xn − x∗‖,

‖xn − x∗ − (h(xn) − h(x∗))‖ ≤
√
1 − 2ξ4 + μ2

4‖xn − x∗‖,
∥
∥yn+1 − y∗ − (

h
(
yn+1

) − h(y∗))∥∥ ≤
√
1 − 2ξ4 + μ2

4

∥
∥yn+1 − y∗∥∥.

(6.24)

Substituting (6.24) in (6.23), we obtain that

∥
∥yn+1 − y∗∥∥ ≤ k1

∥
∥yn+1 − y∗∥∥ + (k1 + θ2)‖xn − x∗‖, (6.25)

where k1 and θ2 are the same as in (6.14). From (6.25), we conclude that

∥∥yn+1 − y∗∥∥ ≤ k1 + θ2
1 − k1 ‖xn − x∗‖. (6.26)

It follows from (6.22) and (6.26) that

‖xn+1 − x∗‖ ≤
(
1 − an

(
1 − k − (k + θ1)(k1 + θ2)

1 − k1

))
‖xn − x∗‖. (6.27)

Letting ι = 1 − k − ((k + θ1)(k1 + θ2))/(1 − k1), the condition (6.13) implies that ι ∈ (0, 1). Since∑∞
n=0 an = ∞, setting bn = cn = 0, for all n ≥ 0, we note that all the conditions of Lemma 5.1

are satisfied. Now, Lemma 5.1 and (6.27) guarantee that ‖xn − x∗‖∗ → 0, as n → ∞. The
inequality (6.26) implies that ‖yn −y∗‖∗ → 0, as n → ∞, and so the sequences {xn} and {yn}
generated by Algorithm 6.10 converge strongly to x∗ and y∗, respectively. This completes the
proof.

Theorem 6.15. Let Ti(i = 1, 2), g and h be the same as in Algorithm 6.11, and let x∗and y∗ be the
solution of the system (2.6). Suppose that, for i = 1, 2, the operator Ti : H → H is ξi-strongly
monotone and μi-Lipschitz continuous. Moreover, let g be ξ3-strongly monotone and μ3-Lipschitz
continuous and h be ξ4-strongly monotone and μ4-Lipschitz continuous. If there exist two constant ρ
and η such that

θ1 + θ2 < 1 − 2(k + k1), (6.28)

where k, k1, θ1, and θ2 are the same as in (6.14) and
∑∞

n=0 an = ∞, and then the iterative sequences
{xn} and {yn} generated by Algorithm 6.11 converge strongly to x∗ and y∗, respectively.

Proof. Since (x∗, y∗) ∈ H × H is a solution of the system (2.6), in view of Remark 6.13, we
have

g(x∗) = JρA
(
g
(
y∗) − ρT1

(
y∗)), h

(
y∗) = JηA

(
h(x∗) − ηT2(x∗)

)
, (6.29)
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where ρ, η > 0 are two constants. For each n ≥ 0, one can rewrite the above equations as
follows:

x∗ = (1 − an)x∗ + an
(
x∗ − g(x∗) + JρA

(
g
(
y∗) − ρT1

(
y∗))

)
,

y∗ = (1 − an)y∗ + an
(
y∗ − h(y∗) + JηA

(
h(x∗) − ηT2(x∗)

))
,

(6.30)

where the sequence {an} is the same as in Algorithm 6.11. From (6.10), (6.30), and the
nonexpansivity property of the resolvent operator JρA, it follows that

‖xn+1 − x∗‖
≤ (1 − an)‖xn − x∗‖

+ an
(∥∥xn − x∗ − (

g(xn) − g(x∗)
)∥∥ +

∥∥∥J
ρ

A

(
g
(
yn

) − ρT1
(
yn

)) − JρA
(
g
(
y∗) − ρT1

(
y∗))

∥∥∥
)

≤ (1 − an)‖xn − x∗‖
+ an

(∥∥xn − x∗ − (
g(xn) − g(x∗)

)∥∥ +
∥∥g

(
yn

) − g(y∗) − ρ(T1
(
yn

) − T1
(
y∗))∥∥)

≤ (1 − an)‖xn − x∗‖
+ an

(∥∥xn − x∗ − (
g(xn) − g(x∗)

)∥∥ +
∥∥yn − y∗ − (

g
(
yn

) − g(y∗))∥∥

+
∥∥yn − y∗ − ρ(T1

(
yn

) − T1
(
y∗))∥∥).

(6.31)

Since T1 is ξ1-strongly monotone and μ1-Lipschitz continuous, and g is ξ3-strongly monotone
and μ3-Lipschitz continuous, one can prove that

∥∥yn − y∗ − ρ(T1
(
yn

) − T1
(
y∗))∥∥ ≤

√
1 − 2ρξ1 + ρ2μ2

1

∥∥yn − y∗∥∥,

∥∥xn − x∗ − (
g(xn) − g(x∗)

)∥∥ ≤
√
1 − 2ξ3 + μ2

3‖xn − x∗‖,
∥∥yn − y∗ − (

g
(
yn

) − g(y∗))∥∥ ≤
√
1 − 2ξ3 + μ2

3

∥∥yn − y∗∥∥.

(6.32)

Combining (6.31) and (6.32), we obtain that

‖xn+1 − x∗‖ ≤ (1 − an)‖xn − x∗‖ + ank‖xn − x∗‖ + an(k + θ1)
∥∥yn − y∗∥∥, (6.33)

where k and θ1 are the same as in (6.14). Because T2 is ξ2-strongly monotone and μ2-Lipschitz
continuous, and h is ξ4-strongly monotone and μ4-Lipschitz continuous, in similar way to the
proofs of (6.31)–(6.33), we can verify that

∥∥yn+1 − y∗∥∥ ≤ (1 − an)
∥∥yn − y∗∥∥ + ank1

∥∥yn − y∗∥∥ + an(k1 + θ2)‖xn − x∗‖, (6.34)
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where k1 and θ2 are the same as in (6.14). From (6.33) and (6.34), it follows that

∥
∥(xn+1, yn+1

) − (
x∗, y∗)∥∥

∗

≤ (1 − an)
∥
∥(xn, yn

) − (
x∗, y∗)∥∥

∗ + an(k + k1)
∥
∥(xn, yn

) − (
x∗, y∗)∥∥

∗

+ an(k + k1 + θ1 + θ2)
∥
∥(xn, yn

) − (
x∗, y∗)∥∥

∗

= (1 − an(1 − (2(k + k1) + θ1 + θ2)))
∥
∥(xn, yn

) − (
x∗, y∗)∥∥

∗.

(6.35)

Letting� = 2(k+k1)+θ1 +θ2, the condition (6.28) guarantees that� ∈ (0, 1). Since
∑∞

n=0 an =
∞, setting bn = cn = 0, for all n ≥ 0, we infer that all the conditions of Lemma 5.1 are satisfied.
Now, Lemma 5.1 and (6.35) guarantee that ‖(xn, yn) − (x∗, y∗)‖∗ → 0, as n → ∞, and so
the sequences {xn} and {yn} generated by Algorithm 6.11 converge strongly to x∗ and y∗,
respectively. This completes the proof.

Remark 6.16. M. A. Noor and K. I. Noor [44] established the strong convergence of the
sequences generated by iterative Algorithm 6.6. We would like to notice that, as we have
made an observation in Remark 6.3, some assumptions should be added to ([44], Theorem
4.1).

7. Conclusions

In this paper, we have introduced and considered a new system of extended general nonlinear
variational inclusions involving eight different nonlinear operators (SEGNVID). We have
verified the equivalence between the SEGNVID and the fixed point problem and then by this
equivalent formulation, and we have discussed the existence and uniqueness theorem for a
solution of the SEGNVID. This equivalence and two nearly uniformly Lipschitzian mappings
Si(i = 1, 2) are used to suggest and analyze a new resolvent iterative algorithm with mixed
errors for finding an element of the set of the fixed points of the nearly uniformly Lipschitzian
mapping Q = (S1, S2) which is the unique solution of the SEGNVID. In the final section,
comments on some related works are presented. It is expected that the results proved in this
paper may simulate further research regarding the numerical methods and their applications
in various fields of pure and applied sciences.
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