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This paper is focused on delay-independent stability analysis for a class of switched linear systems
with time-varying delays that can be unbounded. When the switched system is not necessarily
positive, we first establish a delay-independent stability criterion under arbitrary switching signal
by using a new method that is different from the methods to positive systems in the literature. We
also apply this method to a class of time-varying switched linear systems with mixed delays.

1. Introduction

The theory of switched systems has historically assumed a position of great importance in
systems theory and has been studied extensively in recent years [1–6]. A switched system is
a type of hybrid dynamic system that consists of a family of continuous-time (discrete-time)
subsystems and a switching signal, which determines the switching between subsystems.
The stability of switched linear systems under arbitrary switching signal is a very important
problem, which is usually studied by a common Lyapunov functional approach, especially a
common quadratic Lyapunov functional approach [7–10].

Very recently, the stability of positive switched linear system has attracted a lot of
attention [11–16]. As usual, a system is said to be positive if its state and outputs are
nonnegative whenever the initial condition and inputs are nonnegative. For stability of
positive switched linear system under arbitrary switching signal, a common linear copositive
Lyapunov function is usually applied [17–20]. A switched linear copositive Lyapunov
function has been used in discrete-time positive switched systems in [21]. When the positive
switched linear system involves multiple time-varying delays that can be unbounded, it
has been proved in [22] that the stability of such systems under any switching signal does
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not depend on delays if the switched system shares a common linear copositive Lyapunov
function, which generalizes the early results in [23, 24].

For the general switched linear systems with unbounded time-varying delays, it
is necessary to consider whether the similar delay-independent stability criterion under
arbitrary switching signal can also be derived. Note that the system is not necessarily positive;
the methods to positive systems in [22] usually do not hold. Consequently, to answer this
problem, we need a new approach that is different from those methods to positive systems in
the literature.

The main purpose of this paper is to establish a delay-independent stability criterion
under arbitrary switching signal for the general switched linear systems with time-varying
delays that can be unbounded. Since the switched systems are not necessarily positive, a new
method based on some smart techniques of real analysis is proposed. By using this method,
we not only present a delay-independent stability criterion for the system, but also extend
the main result to a class of time-varying switched system with mixed delays, where one
kind of delays is time-varying state delay that can be unbounded and the others are bounded
time-varying distributed delay. Another advantage of the newmethod used in this paper lies
in that it imposes less constraint on unbounded state delays than that given in [22] (see the
corresponding discussion in Section 2).

Notations. Say A � 0(≺ 0) if all elements of matrix A are nonnegative (negative). We write
A � B if and only ifA−B � 0. Denote by M the the set of Metzler matrices whose off-diagonal
entries are nonnegative. R

n is an n-dimensional real vector space, R
n
+ is the set of positive

vectors, and R
n×n is the set of real n × n-dimensional matrices. For x ∈ R

n, denote ‖x‖ =
max1≤i≤n{|xi|}. For positive integers p, q, n, and m, denote p = {1, 2, . . . , p}, q = {1, 2, . . . , q},
n = {1, 2 . . . , n}, and m = {1, 2, . . . , m}.

2. Problem Statements and Preliminaries

Consider the following switched linear system with time-varying delays:

ẋ(t) = A0�x(t) +
p∑

l=1

Al�x
(
t − τl�(t)

)
, t ≥ 0,

x(t) = φ(t), t ∈ [−α, 0],
(2.1)

where x ∈ R
n is the state; the piecewise continuous function � : [0,∞) → m is the switching

signal; Als ∈ R
n×n are constant matrices for l ∈ p ∪ {0} and s ∈ m; time-varying delays

τls(t) ≥ 0, l ∈ p, s ∈ m, are continuous on [0,∞); φ(t) is the continuous vector-valued initial
function on [−α, 0] with α = maxl∈p,s∈msupt≥0{τls(t) − t}.

Unlike the assumptions on the system matrices [22], we here do not require A0s ∈ M

and Als � 0 for l ∈ p and s ∈ m. What is more, we make a less restrictive assumption on
time-varying delays τls(t) as follows:

(H1) limt→+∞t − τls(t) = +∞, l ∈ p, s ∈ m.

We recall to introduce another assumption on τls(t) in [22] as follows:

(H1′) there exist T > 0 and a scaler 0 ≤ θ < 1 such that θ = supt>T,l∈p,s∈mτls(t)/t.
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We show that (H1) is less constrained than (H1′). In fact, it is not difficult to see that
(H1′) implies (H1). However, (H1) does not yield (H1′). For example, let τls(t) = t − √

t ≥ 0
for t ≥ 0.
Since

lim
t→+∞

t − τls(t) = lim
t→+∞

√
t = +∞,

lim
t→+∞

τls(t)
t

= lim
t→+∞

t − √
t

t
= 1,

(2.2)

we see that (H1) holds while (H1′) does not hold.
In the sequel, we say system (2.1) is asymptotically stable under arbitrary switching

signal, if for any ε > 0, there exists δ > 0 such that any solution x(t, φ, �) of system (2.1) under
arbitrary switching signal satisfies ‖x(t, φ, �)‖ < ε when ‖φ‖ < δ, and limt→+∞‖x(t, φ, �)‖ = 0.

Generally speaking, due to the less constraint on delays τls(t) and system matrices
Als � 0 for l ∈ p and s ∈ m, the methods for positive systems in the literature usually become
invalid. Consequently, a newmethod should be introduced to analyze the delay-independent
stability for system (2.1) under arbitrary switching signal.

3. Main Result

In the sequel, we denote Ãls = [ã(ls)
ij ] and Als = [a(ls)

ij ] for l ∈ p ∪ {0} and s ∈ m, where

ã
(0s)
ij = a

(0s)
ij , i = j,

ã
(0s)
ij =

∣∣∣a(0s)
ij

∣∣∣, i /= j,

ã
(ls)
ij =

∣∣∣a(ls)
ij

∣∣∣, l ∈ p.

(3.1)

It is easy to see that Ã0s ∈ M and Ãls � 0 for s ∈ m.
We now present the main result of this paper.

Theorem 3.1. Assume that (H1) holds. If there exists a vector ξ ∈ R
n
+ such that

Asξ ≺ 0, s ∈ m, (3.2)

whereAs =
∑p

l=0 Ãls, then system (2.1) is asymptotically stable under arbitrary switching signal.

Proof. Denote ξ = [ξ1, ξ2, . . . , ξn]
T and

Asξ = −[η1s, η2s, . . . , ηns
]T
, s ∈ m, (3.3)

where ηis > 0 for i ∈ n by (3.2). The remaining proof is divided into two parts.
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(i) For any constant ε > 0, there exists a constant δ > 0 such that ‖x(t, φ, �)‖ < ε when
‖φ‖ < δ. In the sequel, we denote the ith element of the solution x(t, φ, �) of system (2.1) by
xi(t) for i ∈ n.

In fact, for any given ε > 0, let δ = (d1/d2)ε, where

d1 = min
i∈n

{ξ1, ξ2, . . . , ξn},

d2 = max
i∈n

{ξ1, ξ2, . . . , ξn}.
(3.4)

When ‖φ‖ < δ, we prove that

|xi(t)| < ξi
d1

δ, t ≥ 0, i ∈ n. (3.5)

Note that ξi/d1 ≥ 1 for i ∈ n; then

|xi(0)| ≤
∥∥φ

∥∥ < δ ≤ ξi
d1

δ, i ∈ n. (3.6)

By the continuity of the solution of system (2.1), we have that there exists t′ > 0 such that

|xi(t)| < ξi
d1

δ, t ∈ [
0, t′

]
, i ∈ n. (3.7)

We further show that (3.5) holds if ‖φ‖ < δ. Otherwise, there exists t∗ > 0 and at least
one index k ∈ n such that

|xk(t∗)| = ξk
d1

δ, |xi(t)| < ξi
d1

δ, 0 ≤ t < t∗, i ∈ n, (3.8)

which implies D−|xk(t∗)| ≥ 0, where D− means the left derivative. Set the left limitation
�(t∗−) = s1 ∈ m. By (2.1), (3.1), (3.3), and (3.8), we get

D−|xk(t∗)| = D−xk(t∗) sign xk(t∗)

≤ a
(0s1)
kk

∣∣xj(t∗)
∣∣ +

n∑

j=1,j /= k

∣∣∣a(0s1)
kj

∣∣∣
∣∣xj(t∗)

∣∣ +
p∑

l=1

n∑

j=1

∣∣∣a(ls1)
kj

∣∣∣
∣∣xj(t∗ − τls1(t

∗))
∣∣

≤ δ

d1

p∑

l=0

n∑

j=1

ã
(ls1)
kj

ξj = − δ

d1
ηks1 < 0.

(3.9)
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From (3.9), we get a contradiction with the fact D−|xk(t∗)| ≥ 0. Therefore, for any ε > 0, by
choosing δ = (d1/d2)ε and using (3.5), we have that

∥∥x
(
t, φ, �

)∥∥ < max
i∈n

{
ξi
d1

δ

}
≤ d2

d1
δ = ε, t ≥ 0, (3.10)

if ‖φ‖ < δ. This completes the proof of part (i).
(ii) For any solution x(t, φ, �) of system (2.1), limt→+∞‖x(t, φ, �)‖ = 0.
Let xi(t) = ξiyi(t) for i ∈ n. Denote the upper limitation of |yi(t)| by limt→+∞|yi(t)| = βi

and the lower limitation of |yi(t)| by limt→+∞|yi(t)| = βi for i ∈ n. Set βk = maxi∈n{βi} for
some k ∈ n and

cks =
∣∣∣ã(0s)

kk

∣∣∣ξk +
n∑

j=1,j /= k

ã
(0s)
kj

ξj +
p∑

l=1

n∑

j=1

ã
(ls)
kj

ξj . (3.11)

We first show that βk = βk. Assume to the contrary that βk > βk. Choose a sufficiently
small ε satisfying

0 < ε < min

{
βk,

mins∈m
{
ηks

}
βk

maxs∈m{cks}

}
. (3.12)

By the definition of βk, we have that |yi(t)| ≤ βk + ε, i ∈ n, hold for sufficiently large t. Since
limt→+∞t − τls(t) = +∞ for l ∈ p and s ∈ m, we have that there exists sufficiently large t1 > 0
such that

∣∣yi(t)
∣∣ ≤ βk + ε, t ≥ t1,

∣∣yi(t − τls(t))
∣∣ ≤ βk + ε, t ≥ t1,

(3.13)

where i ∈ n, l ∈ p and s ∈ m.

On the other hand, by the assumption that βk > βk and the choice of ε, there exists a
sufficiently large t2 > t1 > 0 such that

∣∣yk(t2)
∣∣ ≥ βk − ε > 0,

D+
∣∣yk(t2)

∣∣ ≥ 0,
(3.14)

where D+ means the right derivative. Otherwise, we have |yk(t)| < βk − ε or D+|yk(t)| < 0
eventually, which contradicts with the assumption limt→+∞yk(t) = βk > βk = limt→+∞yk(t).
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By (3.3), it is easy to see that ã0s
kk < 0. Denote the right limitation �(t2+) = s2 ∈ m. By (3.3),

(3.13), and (3.14), we get

D+
∣∣yk(t2)

∣∣ = ξ−1k D+xk(t2) signxk(t2)

≤ ξ−1k

⎡

⎣
n∑

j=1

ã
(0s2)
kj

ξj
∣∣yj(t2)

∣∣ +
p∑

l=1

n∑

j=1

ã
(ls2)
kj

ξj
∣∣yj(t2 − τls2(t2))

∣∣
⎤

⎦

≤ ξ−1k

⎡

⎣βk
p∑

l=0

n∑

j=1

ã
(ls2)
kj ξj + εcks2

⎤

⎦

= ξ−1k
[
−βkηks2 + εcks2

]

≤ −ωk

ξk
< 0,

(3.15)

where ωk = βkmins∈m{ηks} − εmaxs∈m{cks} > 0 by (3.12). This is a contradiction with the fact
that D+|yk(t2)| ≥ 0. Therefore, βk = βk.

Next, we show that βk = βk = 0. Otherwise, βk = βk > 0. Then, for sufficiently small ε
satisfying (3.12), there exists t3 > t1 such that (3.13) holds, and

∣∣yk(t)
∣∣ ≥ βk − ε > 0, t ≥ t3. (3.16)

Here, (3.16) is concluded from the property of the lower limitation limt→+∞|yk(t)| = βk = βk.
Similar to the above analysis, we have

D+
∣∣yk(t)

∣∣ ≤ −ωk

ξk
, t ≥ t3. (3.17)

Integrating (3.17) from t3 to t on both sides, we get the following contradiction:

∣∣yk(t)
∣∣ ≤ ∣∣yk(t3)

∣∣ − ωk

ξk
(t − t3) −→ −∞ (t −→ +∞). (3.18)

Thus, limt→+∞|yk(t)| = 0. By the choice of k and the definition of yi(t), we have that
limt→+∞|xi(t)| = 0 for i ∈ n, which implies that limt→+∞‖x(t, φ, �)‖ = 0.

By (i) and (ii), system (2.1) is asymptotically stable under arbitrary switching signal.
This completes the proof of Theorem 3.1.

Remark 3.2. For the particular case when m = 1, condition (3.2) holds if and only if A1 is a
Hurwitz matrix [25]. When m > 1, it requires that all As, s ∈ r, share a common ξ ∈ R

n
+

such that −Asξ ∈ R
n
+. This problem has been studied in [20], where necessary and sufficient

conditions for the existence of such a vector ξ were established.
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4. Extension to Time-Varying Switched Systems with Mixed Delays

We now extend Theorem 3.1 to a class of time-varying switched system with mixed delays:

ẋ(t) = A0�(t)x(t) +
p∑

l=1

Al�(t)x
(
t − τl�(t)

)
+

q∑

r=1

Br�(t)
∫ t

t−σr�(t)
x(u)du, t ≥ 0,

x(t) = φ(t), t ∈ [−γ, 0],
(4.1)

where Als(t) = [a(ls)
ij (t)], Brs(t) = [b(rs)ij (t)] are continuous matrix function on [0,∞), delays

σrs(t) are continuous on [0,∞), and γ = maxl∈p,r∈q,s∈m{supt≥0{τls(t) − t}, supt≥0{σrs(t) − t}}.
Assume that

(H2) there exist constants θrs > 0 such that 0 ≤ σrs(t) ≤ θrs for r ∈ q and s ∈ m;

(H3) there exist constantmatrices Â0s = [â(0s)
ij ] ∈ M and Âls = [â(ls)

ij ] � 0, B̂rs = [b̂(rs)ij ] � 0
such that, for t ≥ 0 and i, j ∈ n,

a
(0s)
ij (t) ≤ â

(0s)
ij , i = j,

∣∣∣a(0s)
ij (t)

∣∣∣ ≤ â
(0s)
ij , i /= j,

∣∣∣a(ls)
ij (t)

∣∣∣ ≤ â
(ls)
ij , l ∈ p,

∣∣∣b(rs)ij (t)
∣∣∣ ≤ b̂

(rs)
ij , r ∈ q.

(4.2)

When xi(t)/= 0, a straightforward computation based on (4.2) yields that

D±|xi(t)| = signxi(t)

⎡

⎣
n∑

j=1

a
(0�±)
ij (t)xj(t) +

p∑

l=1

n∑

j=1

a
(l�±)
ij (t)xj

(
t − τl�±(t)

)

+
q∑

r=1

n∑

j=1

b
(r�±)
ij (t)

∫ t

t−σr�± (t)
xj(u)du

⎤

⎦

≤
n∑

j=1

â
(0�±)
ij

∣∣xj(t)
∣∣ +

p∑

l=1

n∑

j=1

â
(l�±)
ij

∣∣xj

(
t − τl�±(t)

)∣∣

+
q∑

r=1

θr�±

n∑

j=1

b̂
(r�±)
ij max

t−θr�±≤u≤t
{∣∣xj(u)

∣∣},

(4.3)

where �± = �(t±). Then, similar to the analysis in Theorem 3.1, it is not difficult to get the
following stability criterion for system (4.1).
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Theorem 4.1. Assume that (H1)–(H3) hold. If there exists a vector ξ ∈ R
n
+ such that

Bsξ ≺ 0, s ∈ m, (4.4)

where Bs =
∑p

l=0 Âls +
∑q

r=1 θrsB̂rs, then system (4.1) is asymptotically stable under arbitrary
switching signal.

Consider the following uncertain switched system:

ẋ(t) =
[
A0� + ΔA0�(t)

]
x(t) +

p∑

l=1

[
Al� + ΔAl�(t)

]
x
(
t − τl�(t)

)

+
q∑

r=1

[
Br� + ΔBr�(t)

] ∫ t

t−σr�(t)
x(u)du, t ≥ 0

x(t) = φ(t), t ∈ [−γ, 0],

(4.5)

where ΔAls(t) = [Δa
(ls)
ij (t)] and ΔBrs(t) = [Δb

(ls)
ij (t)] are uncertain matrices satisfying

Δ
∣∣∣a(ls)

ij (t)
∣∣∣ ≤ Δa

(ls)
ij ,

∣∣∣Δb
(ls)
ij (t)

∣∣∣ ≤ Δb
(ls)
ij , t ≥ 0. (4.6)

Set

â
(0s)
ij = a

(0s)
ij + Δa

(0s)
ij , i = j,

â
(0s)
ij =

∣∣∣a(0s)
ij

∣∣∣ + Δa
(0s)
ij , i /= j,

â
(ls)
ij =

∣∣∣a(ls)
ij

∣∣∣ + Δa
(ls)
ij , l ∈ p,

b̂
(rs)
ij =

∣∣∣b(rs)ij

∣∣∣ + Δb
(rs)
ij , r ∈ q.

(4.7)

Then, based on the same analysis as above, we have the following result for the uncertain
system (4.5).

Theorem 4.2. Assume that (H1) and (H2) hold. If there exists a vector ξ ∈ R
n
+ such that (4.4) holds,

then system (4.5) is asymptotically stable under arbitrary switching signal.
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Figure 1: The state of the system under stochastic initial condition and switching.

5. A Numerical Example

To illustrate Theorem 3.1, we present a simple numerical example of system (2.1)with

A01 =

[−3 −0.5
0.5 −1.5

]
, A11 =

[ −1 0.5

−0.5 0.5

]
,

A02 =

[ −1.5 0.25

−0.25 −1.5

]
, A12 =

[
0.5 −0.25
0.25 −0.5

]
,

(5.1)

and τ11(t) = τ12(t) = 0.4t + 1 for t ≥ 0. By (3.1), we have that

A1 =

[−2 1

1 −1

]
, A2 =

[−1 0.5

0.5 −1

]
. (5.2)

It is not difficult to verify that (H1) holds and there exists a vector ξ = [1, 1.5]T such that
Asξ ≺ 0 for s = 1, 2. Therefore, by Theorem 3.1, we know that system (2.1) is asymptotically
stable under arbitrary switching signal. Since system (2.1) is not positive, Theorem 2 in [22]
is invalid for this case. The state of the system is given in Figure 1.

It is not difficult to work out an example of Theorem 4.1. We omit it here due to the
similarity with the above example.

6. Conclusion

In this paper, we investigate the delay-independent stability of the nonpositive switched
linear systems with time-varying delays. By using a new method that is different from those
methods to positive systems, we show that the stability of the system is also independent
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of delays if the switched system shares a common linear copositive Lyapunov function. We
also apply this method to a class of time-varying switched linear systems with mixed delays,
which generalizes some existing results in the literature.
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[3] Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design, Springer, New York, NY, USA, 2005.
[4] Z. Sun and S. S. Ge, Stability Theory of Switched Dynamical Systems, Springer, London, UK, 2011.
[5] Y. G. Sun, L. Wang, G. Xie, and M. Yu, “Improved overshoot estimation in pole placements and

its application in observer-based stabilization for switched systems,” IEEE Transactions on Automatic
Control, vol. 51, no. 12, pp. 1962–1966, 2006.

[6] Y. Sun, “Stabilization of switched systems with nonlinear impulse effects and disturbances,” IEEE
Transactions on Automatic Control, vol. 56, no. 11, pp. 2739–2743, 2011.

[7] D. Liberzon, J. P. Hespanha, and A. S. Morse, “Stability of switched systems: a Lie-algebraic
condition,” Systems & Control Letters, vol. 37, no. 3, pp. 117–122, 1999.

[8] A. A. Agrachev and D. Liberzon, “Lie-algebraic stability criteria for switched systems,” SIAM Journal
on Control and Optimization, vol. 40, no. 1, pp. 253–269, 2001.

[9] D. Cheng, L. Guo, and J. Huang, “On quadratic Lyapunov functions,” IEEE Transactions on Automatic
Control, vol. 48, no. 5, pp. 885–890, 2003.

[10] R. Shorten, K. S. Narendra, and O. Mason, “A result on common quadratic Lyapunov functions,”
IEEE Transactions on Automatic Control, vol. 48, no. 1, pp. 110–113, 2003.

[11] L. Fainshil, M. Margaliot, and P. Chigansky, “On the stability of positive linear switched systems
under arbitrary switching laws,” IEEE Transactions on Automatic Control, vol. 54, no. 4, pp. 897–899,
2009.

[12] O. Mason and R. Shorten, “On linear copositive Lyapunov functions and the stability of switched
positive linear systems,” IEEE Transactions on Automatic Control, vol. 52, no. 7, pp. 1346–1349, 2007.

[13] M. Margaliot, “A counterexample to a conjecture of Gurvits on switched systems,” IEEE Transactions
on Automatic Control, vol. 52, no. 6, pp. 1123–1126, 2007.

[14] L. Gurvits, R. Shorten, and O. Mason, “On the stability of switched positive linear systems,” IEEE
Transactions on Automatic Control, vol. 52, no. 6, pp. 1099–1103, 2007.

[15] H. Alonso and P. Rocha, “A general stability test for switched positive systems based on a
multidimensional system analysis,” IEEE Transactions on Automatic Control, vol. 55, no. 11, pp. 2660–
2664, 2010.

[16] X. Xue and Z. Li, “Asymptotic stability analysis of a kind of switched positive linear discrete systems,”
IEEE Transactions on Automatic Control, vol. 55, no. 9, pp. 2198–2203, 2010.

[17] F. Knorn, O. Mason, and R. Shorten, “On linear co-positive Lyapunov functions for sets of linear
positive systems,” Automatica, vol. 45, no. 8, pp. 1943–1947, 2009.

[18] O. Mason and R. Shorten, “The geometry of convex cones associated with the Lyapunov inequality
and the common Lyapunov function problem,” Electronic Journal of Linear Algebra, vol. 12, pp. 42–63,
2005.

[19] S. Bundfuss and M. Dür, “Copositive Lyapunov functions for switched systems over cones,” Systems
& Control Letters, vol. 58, no. 5, pp. 342–345, 2009.

[20] E. Fornasini and M. E. Valcher, “Linear copositive Lyapunov functions for continuous-time positive
switched systems,” IEEE Transactions on Automatic Control, vol. 55, no. 8, pp. 1933–1937, 2010.



Abstract and Applied Analysis 11

[21] X. Liu, “Stability analysis of switched positive systems: a switched linear copositive Lyapunov
function method,” IEEE Transactions on Circuits and Systems II, vol. 56, no. 5, pp. 414–418, 2009.

[22] X. Liu and C. Dang, “Stability analysis of positive switched linear systems with delays,” IEEE
Transactions on Automatic Control, vol. 56, no. 7, pp. 1684–1690, 2011.

[23] X. Liu,W. Yu, and L.Wang, “Stability analysis for continuous-time positive systemswith time-varying
delays,” IEEE Transactions on Automatic Control, vol. 55, no. 4, pp. 1024–1028, 2010.

[24] X. Liu, W. Yu, and L. Wang, “Stability analysis of positive systems with bounded time-varying
delays,” IEEE Transactions on Circuits and Systems II, vol. 56, no. 7, pp. 600–604, 2009.

[25] L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications, Wiley-Interscience, New York,
NY, USA, 2000.


