
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 546302, 33 pages
doi:10.1155/2012/546302

Research Article
Bounded Oscillation of a Forced Nonlinear
Neutral Differential Equation

Zeqing Liu,1 Yuguang Xu,2 Shin Min Kang,3
and Young Chel Kwun4

1 Department of Mathematics, Liaoning Normal University, Dalian, Liaoning 116029, China
2 Department of Mathematics, Kunming University, Kunming, Yunnan 650214, China
3 Department of Mathematics and RINS, Gyeongsang National University, Jinju 660-701, Republic of Korea
4 Department of Mathematics, Dong-A University, Pusan 614-714, Republic of Korea

Correspondence should be addressed to Young Chel Kwun, yckwun@dau.ac.kr

Received 20 December 2011; Accepted 5 March 2012

Academic Editor: Miroslava Růžičková
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This paper is concerned with the nth-order forced nonlinear neutral differential equation [x(t) −
p(t)x(τ(t))](n) +

∑m
i=1 qi(t)fi(x(σi1(t)), x(σi2(t)), . . . , x(σiki(t))) = g(t), t ≥ t0. Some necessary and

sufficient conditions for the oscillation of bounded solutions and several sufficient conditions for
the existence of uncountably many bounded positive and negative solutions of the above equation
are established. The results obtained in this paper improve and extend essentially some known
results in the literature. Five interesting examples that point out the importance of our results are
also included.

1. Introduction

Consider the following nth-order forced nonlinear neutral differential equation:

[
x(t) − p(t)x(τ(t))

](n) +
m∑

i=1

qi(t)fi(x(σi1(t)), x(σi2(t)), . . . , x(σiki(t))) = g(t), t ≥ t0, (1.1)

where t0 ∈ R and n,m, ki ∈ N are constants for 1 ≤ i ≤ m. In what follows, we assume that

(A1) p, g, τ, σij ∈ C([t0,+∞),R) and qi ∈ C([t0,+∞),R+) satisfy that

lim
t→+∞

τ(t) = lim
t→+∞

σij(t) = +∞, 1 ≤ j ≤ ki, 1 ≤ i ≤ m, (1.2)
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and there exists 1 ≤ i0 ≤ m such that qi0 is positive eventually:

(A2) τ is strictly increasing and τ(t) < t in [t0,+∞);

(A3) fi ∈ C(Rki ,R) satisfies that

fi(u1, u2, . . . , uki) > 0, ∀(u1, u2, . . . , uki) ∈ (R+ \ {0})ki ,

fi(u1, u2, . . . , uki) < 0, ∀(u1, u2, . . . , uki) ∈ (R− \ {0})ki
(1.3)

for 1 ≤ i ≤ m.

During the last decades, the oscillation criteria and the existence results of nonoscil-
latory solutions for various linear and nonlinear differential equations have been studied
extensively, for example, see [1–28] and the references cited therein. In particular, Zhang and
Yan [25] obtained some sufficient conditions for the oscillation of the first-order linear neutral
delay differential equation with positive and negative coefficients:

[
x(t) − p(t)x(t − τ)

]′ + q(t)x(t − σ) − r(t)x(t − δ) = 0, t ≥ t0, (1.4)

where p, q, r ∈ C([t0,+∞),R+), τ > 0, and σ ≥ δ ≥ 0. Das and Misra [7] studied the
nonhomogeneous neutral delay differential equation:

[x(t) − cx(t − τ)]′ + q(t)f(x(t − σ)) = g(t), t ≥ t0, (1.5)

where q, g ∈ C([T,+∞),R+ \ {0}), σ > 0, τ > 0, c ∈ [0, 1), f : R → R, tf(t) > 0 for t /= 0,
f is nondecreasing, Lipschitzian, and satisfies

∫k
0 (1/f(t))dt < +∞ for every k > 0, and they

obtained a necessary and sufficient condition for the solutions of (1.5) to be oscillatory or tend
to zero asymptotically. Parhi and Rath [18] extended Das and Misra’s result to the following
forced first-order neutral differential equation with variable coefficients:

[
x(t) − p(t)x(t − τ)

]′ + q(t)f(x(t − σ)) = g(t), t ≥ 0, (1.6)

where p ∈ C(R+,R), and they got necessary and sufficient conditions which ensures every
solution of (1.6) is oscillatory or tends to zero or to ±∞ as t → +∞. By using Banach’s fixed
point theorem, Zhang et al. [24] proved the existence of a nonoscillatory solution for the
first-order linear neutral delay differential equation:

[
x(t) + p(t)x(t − τ)

]′ +
n∑

i=1

fi(t)x(t − σi) = 0, t ≥ t0, (1.7)

where p ∈ C([t0,+∞),R), τ > 0, σi ∈ R
+, and fi ∈ C([t0,+∞),R) for 1 ≤ i ≤ m. Çakmak and

Tiryaki [6] showed several sufficient conditions for the oscillation of the forced second-order
nonlinear differential equations with delayed argument in the form:

x′′(t) + p(t)f(x(α(t))) = g(t), t ≥ t0 ≥ 0, (1.8)
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where p, α, g ∈ C([t0,+∞),R), α(t) ≤ t, limt→+∞α(t) = +∞, and f ∈ C(R,R). Travis [20]
investigated the oscillatory behavior of the second-order differential equation with functional
argument:

x′′(t) + p(t)f(x(t), x(α(t))) = 0, t ≥ t0, (1.9)

where p, α ∈ C([t0,+∞),R) and f ∈ C(R2,R) satisfies that f(s, t) has the same sign of s and
t when they have the same sign. Lin [12] got some sufficient conditions for oscillation and
nonoscillation of the second order nonlinear neutral differential equation:

[
x(t) − p(t)x(t − τ)

]′′ + q(t)f(x(t − σ)) = 0, t ≥ 0, (1.10)

where p, q ∈ C(R+,R), p ∈ [0, 1)with 0 ≤ p(t) ≤ p eventually, f ∈ C(R,R), f is nondecreasing
and tf(t) > 0 for t /= 0. Kulenović and Hadžiomerspahić [9] deduced the existence of a
nonoscillatory solution for the neutral delay differential equation of second order with
positive and negative coefficients:

[x(t) + cx(t − τ)]′′ + q1(t)x(t − σ1) − q2(t)x(t − σ2) = 0, t ≥ t0, (1.11)

where c /= ± 1, τ > 0, σi ∈ R
+, qi ∈ C([t0,+∞),R+), and

∫+∞
t0

qi(t)dt < +∞ for i ∈ {1, 2}.
Utilizing the fixed point theorems due to Banach, Schauder and Krasnoselskii, and Zhou
and Zhang [27], and Zhou et al. [28] established some sufficient conditions for the existence
of a nonoscillatory solution of the following higher-order neutral functional differential
equations:

[x(t) + cx(t − τ)](n) + (−1)n+1[P(t)x(t − σ) −Q(t)x(t − δ)] = 0, t ≥ t0,

[
x(t) + p(t)x(t − τ)

](n) +
m∑

i=1

qi(t)fi(x(t − σi)) = g(t), t ≥ t0,
(1.12)

where c ∈ R \ {±1}, τ, σ, δ, σi ∈ R
+, P,Q ∈ C([t0,+∞),R+), and p, g, fi ∈ C([t0,+∞),R) for

1 ≤ i ≤ m. Li et al. [11] investigated the existence of an unbounded positive solution, bounded
oscillation, and nonoscillation criteria for the following even-order neutral delay differential
equation with unstable type:

[
x(t) − p(t)x(t − τ)

](n) − q(t)|x(t − σ)|α−1x(t − σ) = 0, t ≥ t0, (1.13)

where τ > 0, σ > 0, α ≥ 1, and p, q ∈ C([t0,+∞),R+). Zhang and Yan [22] obtained
some sufficient conditions for oscillation of all solutions of the even-order neutral differential
equation with variable coefficients and delays:

[
x(t) + p(t)x(τ(t))

](n) + q(t)x(σ(t)) = 0, t ≥ t0, (1.14)

where n is even, p, q, τ, σ ∈ C([t0,+∞),R+), p(t) < 1, τ(t) ≤ t and σ(t) ≤ t for t ∈ [t0,+∞), and
limt→+∞τ(t) = limt→+∞σ(t) = +∞. Yilmaz and Zafer [21] discussed sufficient conditions for
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the existence of positive solutions and the oscillation of bounded solutions of the nth-order
neutral type differential equations:

[x(t) + cx(τ(t))](n) + q(t)f(x(σ(t))) = 0, t ≥ t0,

[
x(t) + p(t)x(τ(t))

](n) + q(t)f(x(σ(t))) = g(t), t ≥ t0,
(1.15)

where c ∈ R \ {±1}, τ, σ ∈ C([t0,+∞),R+), p, q, g ∈ C([t0,+∞),R), and f ∈ C(R,R). Bolat
and Akin [4, 5] got sufficient criteria for oscillatory behaviour of solutions for the higher-
order neutral type nonlinear forced differential equations with oscillating coefficients:

[
x(t) + p(t)x(τ(t))

](n) +
m∑

i=1

qi(t)fi(x(σi(t))) = 0, t ≥ t0,

[
x(t) + p(t)x(τ(t))

](n) +
m∑

i=1

qi(t)fi(x(σi(t))) = g(t), t ≥ t0,

(1.16)

where n ∈ N\{1}, m ∈ N, p, fi, g, τ, σi ∈ C([t0,+∞),R), fi is nondecreasing and ufi(u) > 0 for
u/= 0, σi ∈ C1([t0,+∞),R), σ ′

i(t) > 0, σi(t) ≤ t for t ∈ [t0,+∞), limt→+∞τ(t) = limt→+∞σi(t) =
+∞ for 1 ≤ i ≤ m, and p and g are oscillating functions. Zhou and Yu [26] attempted to
extend the result of Bolat andAkin [4] and established a necessary and sufficient condition for
the oscillation of bounded solutions of the higher-order nonlinear neutral forced differential
equation of the form:

[
x(t) − p(t)x(τ(t))

](n) +
m∑

i=1

qi(t)fi(x(σi(t))) = g(t), t ≥ t0, (1.17)

where n ∈ N \ {1}, m ∈ N, and

(C1) p, qi, τ, g ∈ C([t0,+∞),R) for i = 1, 2, . . . , m and limt→+∞τ(t) = +∞;

(C2) p and g are oscillating functions;

(C3) σi ∈ C([t0,+∞),R), σ ′
i(t) > 0, σi(t) ≤ t and limt→+∞σi(t) = +∞ for i =

1, 2, . . . , m;

(C4) fi ∈ C(R,R) is nondecreasing function, ufi(u) > 0 for u/= 0 and i = 1, 2, . . . , m.

That is, they claimed the following result.

Theorem 1.1 (see [26, Theorem 2.1]). Assume that

(C5) there is an oscillating function r ∈ C([t0,+∞),R) such that r(n)(t) = g(t) and
limt→+∞r(t) = 0;

(C6) p is an oscillating function and |p(t)| ≤ p0 < 1/2;

(C7) qi(t) ≥ 0, i = 1, 2, . . . , m.

Then, every bounded solution of (1.17) either oscillates or tends to zero if and only if

∫+∞

t0

sn−1qi(s)ds = +∞, i = 1, 2, . . . , m. (1.18)
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We, unfortunately, point out that the necessary part in Theorem 1.1 is false, see
Remark 4.2 and Example 4.7 below. It is clear that (1.1) includes (1.4)–(1.17) as special cases.
To the best of our knowledge, there is no literature referred to the oscillation and existence
of uncountably many bounded nonoscillatory solutions of (1.1). The aim of this paper is to
establish the bounded oscillation and the existence of uncountably many bounded positive
and negative solutions for (1.1)without themonotonicity of the nonlinear term fi. Our results
extend and improve substantially some known results in [4, 5, 9, 10, 20, 24, 26–28] and correct
Theorem 2.1 in [26].

The paper is organized as follows. In Section 2, a few notation and lemmas are
introduced and proved, respectively. In Section 3, by employing Krasnoselskii’s fixed point
theorem and some techniques, the existence of uncountably many bounded positive and
negative solutions for (1.1) are given, and some necessary and sufficient conditions for all
bounded solutions of (1.1) to be oscillatory or tend to zero as t → +∞ are provided. In
Section 4, a number of examples which clarify advantages of our results are constructed.

2. Preliminaries

It is assumed throughout this paper that R = (−∞,+∞), R
+ = [0,+∞), R− = (−∞, 0] and

β = min
{
t0, inf

{
τ(t), σij(t) : t ∈ [t0,+∞), 1 ≤ j ≤ ik, 1 ≤ i ≤ m

}}
. (2.1)

By a solution of (1.1), wemean a function x ∈ C([β,+∞),R) for some T ≥ t0+β, such that x(t)−
p(t)x(τ(t)) is n times continuously differentiable in [T,+∞) and such that (1.1) is satisfied for
t ≥ T . As is customary, a solution of (1.1) is said to be oscillatory if it has arbitrarily large
zeros. Otherwise, it is nonoscillatory, that is, if it is eventually positive or eventually negative.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

Let BC([β,+∞),R) stand for the Banach space of all bounded continuous functions in
[β,+∞)with the norm ‖x‖ = supt≥β|x(t)| for each x ∈ BC([β,+∞),R) and

A(N,M) =
{
x ∈ BC

([
β,+∞)

,R
)
: N ≤ x(t) ≤ M, t ≥ β

}
for M,N ∈ R with M > N.

(2.2)

It is easy to see that A(N,M) is a bounded closed and convex subset of the Banach space
BC([β,+∞),R).

Lemma 2.1. Let n ∈ N and x ∈ Cn([t0,+∞),R) be bounded. If x(n)(t) ≤ 0 eventually, then

(a) limt→+∞x(t) exists and limt→+∞x(i)(t) = 0 for 1 ≤ i ≤ n − 1; furthermore, there exists
θ = 0 for n odd and θ = 1 for n even such that

(b) (−1)θ+ix(i)(t) ≥ 0 eventually for 1 ≤ i ≤ n;

(c) (−1)θ+ix(i) is nonincreasing eventually for 0 ≤ i ≤ n − 1.

Proof. Now, we consider two possible cases below.

Case 1. Assume that n = 1. Let θ = 0. Note that x′(t) ≤ 0 eventually. It follows that there exists
a constant t1 > t0 satisfying x′(t) ≤ 0, for all t ≥ t1, which yields that x is nonincreasing in
[t1,+∞). Since x is bounded in [t0,+∞), it follows that limt→+∞x(t) exists.
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Case 2. Assume that n ≥ 2. Notice that θ+n is odd. It follows that (−1)θ+nx(n)(t) ≥ 0 eventually,
which implies that there exists a constant t1 > t0 satisfying

(−1)θ+nx(n)(t) ≥ 0, ∀t ≥ t1, (2.3)

which means that

(−1)θ+n−1x(n−1)(t) is nonincreasing in [t1,+∞). (2.4)

Suppose that there exists a constant t2 ≥ t1 satisfying (−1)θ+n−1x(n−1)(t2) < 0, which
together with (2.4) gives that

(−1)θ+n−1x(n−1)(t) ≤ (−1)θ+n−1x(n−1)(t2) < 0, ∀t ≥ t2, (2.5)

which guarantees that (−1)θ+n−2x(n−2)(t) is increasing in [t2,+∞) and

(−1)θ+n−1x(n−2)(t) − (−1)θ+n−1x(n−2)(t2)

=
∫ t

t2

(−1)θ+n−1x(n−1)(s)ds ≤ (−1)θ+n−1x(n−1)(t2)(t − t2) −→ −∞ as t −→ +∞,
(2.6)

that is,

lim
t→+∞

x(n−2)(t) = −∞, (2.7)

which means that

lim
t→+∞

x(n−3)(t) = lim
t→+∞

x(n−4)(t) = · · · = lim
t→+∞

x′(t) = lim
t→+∞

x(t) = −∞, (2.8)

which contradicts the boundedness of x. Consequently, we have

(−1)θ+n−1x(n−1)(t) ≥ 0, ∀t ≥ t1. (2.9)

Combining (2.4) and (2.9), we conclude easily that there exists a constant L ≥ 0 with

lim
t→+∞

(−1)θ+n−1x(n−1)(t) = L. (2.10)

Next, we claim that L = 0. Otherwise, there exists a constant b > t1 satisfying

(−1)θ+n−1x(n−1)(t) ≥ L

2
> 0, ∀t ≥ b, (2.11)
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which yields that

(−1)θ+n−1x(n−2)(t) − (−1)θ+n−1x(n−2)(b)

=
∫ t

b

(−1)θ+n−1x(n−1)(s)ds ≥ L(t − b)
2

−→ +∞ as t −→ +∞,
(2.12)

which gives that

lim
t→+∞

x(n−2)(t) = +∞, (2.13)

which means that

lim
t→+∞

x(n−3)(t) = lim
t→+∞

x(n−4)(t) = · · · = lim
t→+∞

x′(t) = lim
t→+∞

x(t) = +∞, (2.14)

which contradicts the boundedness of x in [t0,+∞). Hence, L = 0, that is,

lim
t→+∞

x(n−1)(t) = 0. (2.15)

Repeating the proof of (2.3)–(2.15), we deduce similarly that

(−1)θ+jx(j) is nonincreasing and nonnegative in [t1,+∞),

lim
t→+∞

x(j)(t) = 0, 1 ≤ j ≤ n − 1,
(2.16)

which together with the boundedness of x implies that (−1)θx is nonincreasing in [t1,+∞)
and limt→+∞x(t) exists.

Thus, (2.3) and (2.16) yield (a)–(c). This completes the proof.

Lemma 2.2. Let x, p, τ, r, y ∈ C([t0,+∞),R) satisfy (A2) and

y(t) = x(t) − p(t)x(τ(t)) − r(t), ∀t ≥ t0; (2.17)

x is bounded and lim
t→+∞

τ(t) = +∞; (2.18)

lim
t→+∞

y(t) = lim
t→+∞

r(t) = 0,
∣
∣p(t)

∣
∣ ≥ p0 > 1 eventually, (2.19)

where p0 is a fixed constant. Then, limt→+∞x(t) = 0.

Proof. Since τ is a strictly increasing continuous function, τ(t) < t in [t0,+∞) and
limt→+∞τ(t) = +∞, it follows that the inverse function τ−1 of τ is also strictly increasing
continuous, τ−1(t) > t in [τ(t0),+∞) and limj→∞τ−j(t) = +∞, where τ−j = τ−(j−1)(τ−1) for all
j ∈ N. Equation (2.18) implies that there exists a constant B > 0 with

|x(t)| ≤ B, ∀t ≥ t0. (2.20)
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Using (2.18) and (2.19), we deduce that, for any ε > 0, there exist sufficiently large numbers
T > 1 + |t0| and K ∈ N satisfying

B

pK0
<

ε

4
, max

{∣
∣y(t)

∣
∣, |r(t)|} <

ε
(
p0 − 1

)

4
,

∣
∣p(t)

∣
∣ ≥ p0, ∀t ≥ T. (2.21)

In view of (2.17), (2.20), and (2.21), we infer that for all t ≥ T

|x(t)| =
∣
∣x
(
τ−1(t)

) − y
(
τ−1(t)

) − r
(
τ−1(t)

)∣
∣

∣
∣p
(
τ−1(t)

)∣
∣

≤
∣
∣x
(
τ−1(t)

)∣
∣ +

∣
∣y
(
τ−1(t)

)∣
∣ +

∣
∣r
(
τ−1(t)

)∣
∣

∣
∣p
(
τ−1(t)

)∣
∣

<
1
p0

∣
∣
∣x
(
τ−1(t)

)∣
∣
∣ +

ε
(
p0 − 1

)

2p0

≤ 1
p0

[
1
p0

∣
∣
∣x
(
τ−2(t)

)∣
∣
∣ +

ε
(
p0 − 1

)

2p0

]

+
ε
(
p0 − 1

)

2p0

=
1
p20

∣
∣
∣x
(
τ−2(t)

)∣
∣
∣ +

ε
(
p0 − 1

)

2p0

(

1 +
1
p0

)

≤ · · ·

≤ 1
pK0

∣
∣
∣x
(
τ−K(t)

)∣
∣
∣ +

ε
(
p0 − 1

)

2p0

(

1 +
1
p0

+ · · · + 1
pK−1
0

)

≤ B

pK0
+
ε
(
p0 − 1

)

2p0
· 1
1 − 1/p0

< ε,

(2.22)

which gives that limt→+∞x(t) = 0. This completes the proof.

Lemma 2.3. Let x, p, τ, r, and y be in C([t0,+∞),R) satisfying (A2), (2.17), (2.18), and

lim
t→+∞

∣
∣y(t)

∣
∣ = d > 0, lim

t→+∞
r(t) = 0; (2.23)

p1 ≥
∣
∣p(t)

∣
∣ ≥ p0 > 1 eventually, p20 > p0 + p1, (2.24)

where d, p0, and p1 are constants. Then, there exists L > 0 such that |x(t)| ≥ L eventually.

Proof. Obviously, (2.20) holds. It follows from (2.18), (2.23), and (2.24) that for ε = d[p0(p0 −
1) − p1]/(p0(p0 − 1) + p1) > 0, there exist K ∈ N and T > 1 + |t0| satisfying

B

pK0
<

ε

4p1
, d − ε

4
<
∣
∣y(t)

∣
∣ < d +

ε

4
, |r(t)| < ε

4p0
, p1 ≥

∣
∣p(t)

∣
∣ ≥ p0, ∀t ≥ T. (2.25)



Abstract and Applied Analysis 9

Put L = d[p0(p0 − 1) − p1]/2p1p0(p0 − 1). In light of (2.17), we conclude that for each t ≥ T

x(t) =
x
(
τ−1(t)

)

p
(
τ−1(t)

) − y
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

)

=
1

p
(
τ−1(t)

)

[
x
(
τ−2(t)

)

p(τ−2(t))
− y

(
τ−2(t)

)

p(τ−2(t))
− r

(
τ−2(t)

)

p(τ−2(t))

]

− y
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

)

=
x
(
τ−2(t)

)

Π2
i=1p(τ

−i(t))
−

2∑

j=1

y
(
τ−j(t)

)

Πj

i=1p(τ
−i(t))

−
2∑

j=1

r
(
τ−j(t)

)

Πj

i=1p(τ
−i(t))

= · · ·

=
x
(
τ−K(t)

)

ΠK
i=1p(τ

−i(t))
−

K∑

j=1

y
(
τ−j(t)

)

Πj

i=1p(τ
−i(t))

−
K∑

j=1

r
(
τ−j(t)

)

Πj

i=1p(τ
−i(t))

,

(2.26)

which together with (2.20) and (2.25) yields that for any t ≥ T

|x(t)| ≥
∣
∣y
(
τ−1(t)

)∣
∣

∣
∣p
(
τ−1(t)

)∣
∣
−

∣
∣x
(
τ−K(t)

)∣
∣

ΠK
i=1

∣
∣p(τ−i(t))

∣
∣
−

K∑

j=2

∣
∣y
(
τ−j(t)

)∣
∣

Πj

i=1

∣
∣p(τ−i(t))

∣
∣
−

K∑

j=1

∣
∣r
(
τ−j(t)

)∣
∣

Πj

i=1

∣
∣p(τ−i(t))

∣
∣

≥ d − ε/4
p1

− B

pK0
−
(
d +

ε

4

) K∑

j=2

1

p
j

0

− ε

4p0

K∑

j=1

1

p
j

0

≥ d − ε/4
p1

− ε

4p1
−
(
d +

ε

4

)
· 1/p20
1 − 1/p0

− ε

4p0
· 1/p0
1 − 1/p0

=
d − ε/2

p1
− d + ε/2
p0
(
p0 − 1

) =
d
[
p0
(
p0 − 1

) − p1
] − (ε/2)

[
p0
(
p0 − 1

)
+ p1

]

p1p0
(
p0 − 1

)

= L.

(2.27)

This completes the proof.

Similar to the proof of Lemma 3.2 in [26], we have the following two lemmas.

Lemma 2.4. Let x, p, τ, r, and y be in C([t0,+∞),R) satisfying (A2), (2.17), (2.18), and

lim
t→+∞

y(t) = lim
t→+∞

r(t) = 0; (2.28)

∣
∣p(t)

∣
∣ ≤ p0 <

1
2
eventually, (2.29)

where p0 is a constant. Then, limt→+∞x(t) = 0.
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Lemma 2.5. Let x, p, τ , r, and y be in C([t0,+∞),R) satisfying (A2), (2.17), (2.18), (2.23), and
(2.29). Then, there exists L > 0 such that |x(t)| ≥ L eventually.

Lemma 2.6 (Krasnoselskii’s fixed point theorem). Let X be a Banach space, let Y be a nonempty
bounded closed convex subset of X, and let f , g be mappings of Y into X such that fx + gy ∈ Y for
every pair x, y ∈ Y . If f is a contraction mapping and g is completely continuous, then the mapping
f + g has a fixed point in Y .

3. Main Results

First, we use the Krasnoselskii’s fixed point theorem to show the existence and multiplicity
of bounded positive and negative solutions of (1.1).

Theorem 3.1. Let (A1), (A2), and (A3) hold. Assume that there exist p0, p1 ∈ R
+\{0}, r0, r1 ∈ R

+,
and r ∈ Cn([t0,+∞),R) satisfying

p1 ≥ p(t) ≥ p0 > 1 eventually, p20 > p0 + p1; (3.1)

r(n)(t) = g(t), −r0 ≤ r(t) ≤ r1 eventually; (3.2)
∫+∞

t0

sn−1
m∑

i=1

qi(s)ds < +∞. (3.3)

Then, the following hold:

(a) for arbitrarily positive constantsM and N with

(
p0 − 1

)
M >

(
p1 − 1

)
N +

p1r1
p0

+ r0, (3.4)

equation (1.1) has uncountably many bounded positive solutions x ∈ A(N,M) with

N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M; (3.5)

(b) for arbitrarily positive constantsM and N with

(
p0 − 1

)
N >

(
p1 − 1

)
M +

p1r0
p0

+ r1, (3.6)

equation (1.1) has uncountably many bounded negative solutions x ∈ A(−N,−M) with

−N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ −M. (3.7)
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Proof. It follows from (3.1) and (3.2) that there exists an enough large constant T0 with
τ−1(T0) > 1 + |t0| + |β| satisfying

p0 ≤ p(t) ≤ p1, r(n)(t) = g(t), −r0 ≤ r(t) ≤ r1, ∀t ≥ T0. (3.8)

(a) Assume that M and N are arbitrary positive constants satisfying (3.4). Let D ∈
((p1 − 1)N + (p1r1/p0) , (p0 − 1)M − r0). First of all, we prove that there exist two mappings
FD,GD : A(N,M) → BC([β,+∞),R) and a constant TD > τ−1(T0) such that FD + GD has
a fixed point x ∈ A(N,M), which is also a bounded positive solution of (1.1) with N ≤
lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤ M. Put

B = max
{∣
∣fi(u1, u2, . . . , uki)

∣
∣ : uj ∈ [N,M], 1 ≤ j ≤ ki, 1 ≤ i ≤ m

}
. (3.9)

In light of (3.3), (3.9), and (A2), we infer that there exists a sufficiently large number TD >

τ−1(T0) satisfying

B

p0(n − 1)!

∫+∞

τ−1(TD)
sn−1

m∑

i=1

qi(s)ds < min
{

M − D +M + r0
p0

,
D +N

p1
− r1
p0

−N

}

. (3.10)

Define two mappings FD,GD : A(N,M) → C([β,+∞),R) by

(FDx)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) , t ≥ TD

(FDx)(TD), β ≤ t < TD,

(3.11)

(GDx)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n
p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1

×
m∑

i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds, t ≥ TD,

(GDx)(TD), β ≤ t < TD,

(3.12)
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for each x ∈ A(N,M). In view of (3.1), (3.8), and (3.10)–(3.12), we conclude that for any
x, u ∈ A(N,M) and t ≥ TD

|(FDx)(t) − (FDu)(t)| =
∣
∣
∣
∣
∣

x
(
τ−1(t)

) − u
(
τ−1(t)

)

p
(
τ−1(t)

)

∣
∣
∣
∣
∣
≤ 1

p0
‖x − u‖,

(FDx)(t) + (GDu)(t)

=
D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑

i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≤ D

p0
+
M

p0
+

r0
p0

+
B

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑

i=1

qi(s)ds

<
D +M + r0

p0
+min

{

M − D +M + r0
p0

,
D +N

p1
− r1
p0

−N

}

≤ M,

(FDx)(t) + (GDu)(t)

=
D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑

i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≥ D

p1
+
N

p1
− r1
p0

− B

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑

i=1

qi(s)ds

>
D +N

p1
− r1
p0

−min
{

M − D +M + r0
p0

,
D +N

p1
− r1
p0

−N

}

≥ N,

|(GDu)(t)|

=

∣
∣
∣
∣
∣

(−1)n
p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑

i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

∣
∣
∣
∣
∣

≤ B

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑

i=1

qi(s)ds

< min
{

M − D +M + r0
p0

,
D +N

p1
− r1
p0

−N

}

< M,

(3.13)



Abstract and Applied Analysis 13

which ensures that

‖FDx − FDu‖ = sup
t≥TD

|(FDx)(t) − (FDu)(t)| ≤ 1
p0

‖x − u‖, ∀x, u ∈ A(N,M), (3.14)

FDx +GDu ∈ A(N,M), ∀x, u ∈ A(N,M), (3.15)

‖GDu‖ ≤ M, ∀u ∈ A(N,M). (3.16)

It follows from (3.11), (3.12), (3.15), and (3.16) that FD and GD map A(N,M) into
BC([β,+∞),R), respectively.

Now, we show that GD is continuous in A(N,M). Let {xl}l∈N
⊂ A(N,M) and x ∈

A(N,M) with liml→∞xl = x, given ε > 0. It follows from the uniform continuity of fi in
[N,M]ki for 1 ≤ i ≤ m and liml→∞xl = x that there exist δ > 0 and K ∈ N satisfying

∣
∣fi(ui1, ui2, . . . , uiki) − fi(vi1, vi2, . . . , viki)

∣
∣

<
ε

1 +
(
1/p0(n − 1)!

) ∫+∞
τ−1(TD)

sn−1
∑m

i=1 qi(s)ds
, ∀uij , vij ∈ [N,M],

∣
∣uij − vij

∣
∣ < δ, 1 ≤ j ≤ ki, 1 ≤ i ≤ m,

‖xl − x‖ < δ, ∀l ≥ K.

(3.17)

In view of (3.8), (3.12), (3.17), we arrive at

‖GDxl −GDx‖

= sup
t≥TD

∣
∣
∣
∣
∣

(−1)n
p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑

i=1

qi(s)
[
fi(xl(σi1(s)), xl(σi2(s)), . . . , xl(σiki(s)))

−fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))
]
ds

∣
∣
∣
∣
∣

≤ sup
t≥TD

1
p0(n − 1)!

×
∫+∞

τ−1(t)
sn−1

m∑

i=1

qi(s)
∣
∣fi(xl(σi1(s)), xl(σi2(s)), . . . , xl(σiki(s)))

−fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))
∣
∣ds

≤ 1
p0(n − 1)!

∫+∞

τ−1(TD)
sn−1

m∑

i=1

qi(s)ds · ε

1 + 1/p0(n − 1)!
∫+∞
τ−1(TD)

sn−1
∑m

i=1 qi(s)ds

< ε, ∀l ≥ K, (3.18)

which means that GD is continuous in A(N,M).
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Next, we show that GD(A(N,M)) is equicontinuous in [β,+∞). Let ε > 0. Taking into
account (3.3) and (A2), we know that there exists T ∗ > TD satisfying

1
p0(n − 1)!

∫+∞

τ−1(T∗)
sn−1

m∑

i=1

qi(s)ds <
ε

4
. (3.19)

Put

B1 = max

{

sn−1
m∑

i=1

qi(s) : τ−1(TD) ≤ s ≤ τ−1(T ∗)

}

. (3.20)

It follows from the uniform continuity of pτ−1 and τ−1 in [TD, T ∗] that there exists δ > 0
satisfying

∣
∣
∣p
(
τ−1(t1)

)
− p

(
τ−1(t2)

)∣
∣
∣ <

εp20(n − 1)!

4
[
1 + B

∫+∞
τ−1(TD)

sn−1
∑m

i=1 qi(s)ds
] ,

∀t1, t2 ∈ [TD, T ∗] with |t1 − t2| < δ;

∣
∣
∣τ−1(t1) − τ−1(t2)

∣
∣
∣ <

εp0(n − 1)!

4B
[
1 + B1 + (n − 1)

∫+∞
τ−1(TD)

un−1 ∑m
i=1 qi(s)ds

] ,

∀t1, t2 ∈ [TD, T ∗] with |t1 − t2| < δ.

(3.21)

Let x ∈ A(N,M) and t1, t2 ∈ [β,+∞)with |t1 − t2| < δ. We consider three possible cases.

Case 1. Let t1, t2 ∈ [T ∗,+∞). In view of (3.8), (3.9), (3.12), and (3.19), we conclude that

|(GDx)(t1) − (GDx)(t2)|

=
1

(n − 1)!

∣
∣
∣
∣
∣

1
p
(
τ−1(t1)

)

×
∫+∞

τ−1(t1)

(
s − τ−1(t1)

)n−1 m∑

i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

− 1
p
(
τ−1(t2)

)

×
∫+∞

τ−1(t2)

(
s − τ−1(t2)

)n−1 m∑

i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

∣
∣
∣
∣
∣
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≤ B

p0(n − 1)!

[∫+∞

τ−1(t1)
sn−1

m∑

i=1

qi(s)ds +
∫+∞

τ−1(t2)
sn−1

m∑

i=1

qi(s)ds

]

<
ε

2
.

(3.22)

Case 2. Let t1, t2 ∈ [TD, T ∗]. In terms of (3.8), (3.9), (3.12), (3.21), we arrive at

|(GDx)(t1) − (GDx)(t2)|

=
1

(n − 1)!

∣
∣
∣
∣
∣

1
p
(
τ−1(t1)

)

×
∫+∞

τ−1(t1)

(
s − τ−1(t1)

)n−1 m∑

i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

− 1
p
(
τ−1(t2)

)

×
∫+∞

τ−1(t2)

(
s − τ−1(t2)

)n−1 m∑

i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

∣
∣
∣
∣
∣

≤ 1
(n − 1)!

{∣
∣
∣
∣
∣

1
p
(
τ−1(t1)

) − 1
p
(
τ−1(t2)

)

∣
∣
∣
∣
∣

×
∫+∞

τ−1(t1)

(
s − τ−1(t1)

)n−1 m∑

i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

+
1

p
(
τ−1(t2)

)

×
[∣
∣
∣
∣
∣

∫ τ−1(t2)

τ−1(t1)

(
s − τ−1(t1)

)n−1 m∑

i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

∣
∣
∣
∣
∣

+
∫+∞

τ−1(t2)

∣
∣
∣
∣

(
s − τ−1(t1)

)n−1 −
(
s − τ−1(t2)

)n−1∣∣
∣
∣

×
m∑

i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

]}

≤ B

(n − 1)!

{∣
∣p
(
τ−1(t1)

) − p
(
τ−1(t2)

)∣
∣

p
(
τ−1(t1)

)
p
(
τ−1(t2)

)

∫+∞

τ−1(TD)
sn−1

m∑

i=1

qi(s)ds +
1
p0

×
[∣
∣
∣
∣
∣

∫ τ−1(t2)

τ−1(t1)
sn−1

m∑

i=1

qi(s)ds

∣
∣
∣
∣
∣

+
∫+∞

τ−1(t2)
(n − 1)smax{n−2,0}

∣
∣
∣τ−1(t1) − τ−1(t2)

∣
∣
∣

m∑

i=1

qi(s)ds

]}
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≤ B

p20(n − 1)!

∣
∣
∣p
(
τ−1(t1)

)
− p

(
τ−1(t2)

)∣
∣
∣

∫+∞

τ−1(TD)
sn−1

m∑

i=1

qi(s)ds

+
B

p0(n − 1)!

[

B1 + (n − 1)
∫+∞

τ−1(TD)
sn−1

m∑

i=1

qi(s)ds

]
∣
∣
∣τ−1(t1) − τ−1(t2)

∣
∣
∣

<
ε

2
.

(3.23)

Case 3. Let t1, t2 ∈ [β, TD]. By (3.12), we have

|(GDx)(t1) − (GDx)(t2)| = |(GDx)(TD) − (GDx)(TD)| = 0 < ε. (3.24)

Thus, GD(A(N,M)) is equicontinuous in [β,+∞). Consequently, GD(A(N,M)) is relatively
compact by (3.16) and the continuity of GD. By means of (3.14), (3.15), and Lemma 2.6, we
infer that FD +GD possesses a fixed point x ∈ A(N,M), that is,

x(t) =
D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑

i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds, ∀t ≥ TD,

(3.25)

which gives that

x(t) − p(t)x(τ(t)) = −D + r(t) +
(−1)n−1
(n − 1)!

×
∫+∞

t

(s − t)n−1
m∑

i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds,

∀t ≥ τ−1(TD),

[
x(t) − p(t)x(τ(t))

](n) = g(t) −
m∑

i=1

qi(t)fi(x(σi1(t)), x(σi2(t)), . . . , x(σiki(t))), ∀t ≥ τ−1(TD),

(3.26)

which mean that x ∈ A(N,M) is a bounded positive solution of (1.1)with

N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M. (3.27)

Let D1 and D2 be two arbitrarily different numbers in ((p1 − 1)N + (p1r1/p0), (p0 −
1)M − r0). Similarly, we conclude that for each l ∈ {1, 2} there exist two mappings FDj , GDj :



Abstract and Applied Analysis 17

A(N,M) → BC([β,+∞),R) and a sufficiently large number TDl > τ−1(T0) satisfying (3.8)–
(3.12), where D, TD, FD, and GD are replaced by Dl, TDl , FDl , and GDl , respectively, and
FDl + GDl has a fixed point xl ∈ A(N,M), which is also a bounded positive solution with
N ≤ lim inft→+∞xl(t) ≤ lim supt→+∞xl(t) ≤ M, that is,

xl(t) =
Dl

p
(
τ−1(t)

) +
xl

(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑

i=1

qi(s)fi(xl(σi1(s)), xl(σi2(s)), . . . , xl(σiki(s)))ds, ∀t ≥ TDl .

(3.28)

It follows from (3.3) that there exists T3 > max{TD1 , TD2} satisfying

B

p0(n − 1)!

∫+∞

τ−1(T3)
sn−1

m∑

i=1

qi(s)ds <
|D1 −D2|

4p1
. (3.29)

Combining (3.8), (3.28), and (3.29), we conclude easily that

|x1(t) − x2(t)|

=

∣
∣
∣
∣
∣

D1 −D2

p
(
τ−1(t)

) +
x1
(
τ−1(t)

) − x2
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1

×
m∑

i=1

qi(s)
[
fi(x1(σi1(s)), x1(σi2(s)), . . . , x1(σiki(s)))

−fi(x2(σi1(s)), x2(σi2(s)), . . . , x2(σiki(s)))
]
ds

∣
∣
∣
∣
∣

≥ |D1 −D2|
p
(
τ−1(t)

) −
∣
∣x1

(
τ−1(t)

) − x2
(
τ−1(t)

)∣
∣

p
(
τ−1(t)

) − 2B
p
(
τ−1(t)

)
(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑

i=1

qi(s)ds

≥ |D1 −D2|
p1

− ‖x1 − x2‖
p0

− 2B
p0(n − 1)!

∫+∞

τ−1(T3)
sn−1

m∑

i=1

qi(s)ds

>
|D1 −D2|

p1
− ‖x1 − x2‖

p0
− |D1 −D2|

2p1

=
|D1 −D2 |

2p1
− ‖x1 − x2‖

p0
, ∀t ≥ T3,

(3.30)
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which guarantees that

‖x1 − x2‖ ≥ p0|D1 −D2|
2p1

(
1 + p0

) > 0, (3.31)

that is, x1 /=x2. Hence, (1.1) has uncountably many bounded positive solutions x ∈ A(N,M)
withN ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤ M.

(b) Assume that M and N are arbitrary positive constants satisfying (3.6) and put

B2 = max
{∣
∣fi(u1, u2, . . . , uki)

∣
∣ : uj ∈ [−N,−M], 1 ≤ j ≤ ki, 1 ≤ i ≤ m

}
. (3.32)

Let D ∈ ((1 − p0)N + r1, (1 − p1)M − (p1r0/p0)). It follows from (3.3), (3.8), (3.32), and (A2)
that there exists TD > τ−1(T0) satisfying

B2

p0(n − 1)!

∫+∞

τ−1(TD)
sn−1

m∑

i=1

qi(s)ds < min
{

−M +
M −D

p1
− r0
p0

,N +
D −N − r1

p0

}

. (3.33)

Let the mappings FD,GD : A(−N,−M) → C([β,+∞),R) be defined by (3.11) and (3.12),
respectively.

Using (3.1), (3.8), (3.11), (3.12), and (3.33), we deduce that for any x, u ∈ A(−N,−M)
and t ≥ TD

(FDx)(t) + (GDu)(t)

=
D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑

i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≤ D

p1
− M

p1
+

r0
p0

+
B2

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑

i=1

qi(s)ds

<
D −M

p1
+

r0
p0

+min
{

−M +
M −D

p1
− r0
p0

, N +
D −N − r1

p0

}

≤ −M,
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(FDx)(t) + (GDu)(t)

=
D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑

i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≥ D

p0
− N

p0
− r1
p0

− B2

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑

i=1

qi(s)ds

>
D −N − r1

p0
−min

{

−M +
M −D

p1
− r0
p0

, N +
D −N − r1

p0

}

≥ −N,

(3.34)

which give that

FDx +GDu ∈ A(−N,−M), ∀x, u ∈ A(−N,−M). (3.35)

The rest of the proof is similar to the proof of (a) and is omitted. This completes the proof.

Theorem 3.2. Let (A1), (A2), and (A3), hold. Assume that there exist p0, p1 ∈ R
+ \ {0}, r0, r1 ∈

R
+, and r ∈ Cn([t0,+∞),R) satisfying (3.2), (3.3), and

p1 ≥ −p(t) ≥ p0 > 1 eventually. (3.36)

Then, the following hold:

(a) for arbitrarily positive constantsM and N with

N < M,
(
p20 − p1

)
M >

(

p1 −
p0
p1

)

p0N + p0r1 + p1r0, (3.37)

equation (1.1) has uncountably many bounded positive solutions x ∈ A(N,M) with

N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M; (3.38)

(b) for arbitrarily positive constantsM and N with

M < N,
(
p20 − p1

)
N >

(

p1 −
p0
p1

)

p0M + p1r1 + p0r0, (3.39)
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equation (1.1) has uncountably many bounded negative solutions x ∈ A(−N,−M) with

−N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ −M. (3.40)

Proof. It follows from (3.2) and (3.36) that there exists a constant T0 with τ(T0) > 1 + |t0| + |β|
satisfying

p0 ≤ −p(t) ≤ p1, r(n)(t) = g(t), −r0 ≤ r(t) ≤ r1, ∀t ≥ T0. (3.41)

(a) Assume that M and N are arbitrary positive constants satisfying (3.37). Let D ∈
(p1((M + r0)/p0 +N), p0(N/p1 +M) − r1) and B be defined by (3.9). In light of (3.3), (3.9),
and (A2), there exists a sufficiently large number TD > τ−1(T0) satisfying

B

p0(n − 1)!

∫+∞

τ−1(TD)
sn−1

m∑

i=1

qi(s)ds < min
{

M − D + r1
p0

+
N

p1
,
D

p1
− M + r0

p0
−N

}

. (3.42)

Define two mappings FD,GD : A(N,M) → C([β,+∞),R) by (3.12) and

(FDx)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

− D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) , t ≥ TD

(FDx)(TD), β ≤ t < TD

(3.43)

for each x ∈ A(N,M). In view of (3.12), (3.36), and (3.41)–(3.43), we conclude that for any
x, u ∈ A(N,M) and t ≥ TD

(FDx)(t) + (GDu)(t)

= − D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑

i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≤ D

p0
− N

p1
+

r1
p0

+
B

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑

i=1

qi(s)ds

<
D

p0
− N

p1
+

r1
p0

+min
{

M − D + r1
p0

+
N

p1
,
D

p1
− M + r0

p0
−N

}

≤ M,
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(FDx)(t) + (GDu)(t)

= − D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑

i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≥ D

p1
− M

p0
− r0
p0

− B

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑

i=1

qi(s)ds

>
D

p1
− M + r0

p0
−min

{

M − D + r1
p0

+
N

p1
,
D

p1
− M + r0

p0
−N

}

≥ N,

(3.44)

which imply (3.15). The rest of the proof is similar to that of Theorem 3.1 and is omitted.
(b) Assume that M and N are arbitrary positive constants satisfying (3.39). Let D ∈

(−p0(N+(M/p1))M+r0, −Mp1−(p1/p0)(N+r1)) and B2 be defined by (3.32). Note that (3.3),
(3.32), and (A2) yield that there exists a sufficiently large number TD > τ−1(T0) satisfying

B2

p0(n − 1)!

∫+∞

τ−1(TD)
sn−1

m∑

i=1

qi(s)ds < min
{

−M − D

p1
− N + r1

p0
,N +

D − r0
p0

+
M

p1

}

. (3.45)

Let the mappings FD,GD : A(−N,−M) → C([β,+∞),R) be defined by (3.12) and (3.43),
respectively.

Using (3.12), (3.36), (3.41), and (3.45), we infer that for any x, u ∈ A(N,M) and t ≥ TD

(FDx)(t) + (GDu)(t)

= − D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑

i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≤ D

p1
+
N

p0
+

r1
p0

+
B2

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑

i=1

qi(s)ds

<
D

p1
+
N

p0
+

r1
p0

+min
{

−M − D

p1
− N + r1

p0
,N +

D − r0
p0

+
M

p1

}

≤ −M,
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(FDx)(t) + (GDu)(t)

= − D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑

i=1

qi(s) fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≥ D

p0
+
M

p1
− r0
p0

− B2

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑

i=1

qi(s)ds

>
D

p0
+
M

p1
− r0
p0

−min
{

−M − D

p1
− N + r1

p0
,N +

D − r0
p0

+
M

p1

}

≥ −N,

(3.46)

which give (3.15). The rest of the proof is similar to the proof of Theorem 3.1 and is omitted.
This completes the proof.

Theorem 3.3. Let (A1) and (A3) hold. Assume that there exist p0, p1 ∈ R
+ \ {0}, r0, r1 ∈ R

+, and
r ∈ Cn([t0,+∞),R) satisfying (3.2), (3.3), and

−p0 ≤ p(t) ≤ p1 eventually, p0 + p1 < 1. (3.47)

Then, the following hold:
(a) for arbitrarily positive constants M and N with

r0 + r1 +N <
(
1 − p0 − p1

)
M, (3.48)

equation (1.1) has uncountably many bounded positive solutions x ∈ A(N,M) with

N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M; (3.49)

for arbitrarily positive constantsM and N with

r0 + r1 +M <
(
1 − p0 − p1

)
N, (3.50)

equation (1.1) has uncountably many bounded negative solutions x ∈ A(−N,−M) with

−N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ −M. (3.51)

Proof. It follows from (3.2) and (3.47) that there exists a constant T0 > 1 + |t0| + |β| satisfying

−p0 ≤ p(t) ≤ p1, r(n)(t) = g(t), −r0 ≤ r(t) ≤ r1, ∀t ≥ T0. (3.52)
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(a) Assume that M and N are arbitrary positive constants satisfying (3.48). Let D ∈
(p0M + r0 +N, (1 − p1)M1 − r1) and B be defined by (3.9). In light of (3.3), (3.9), and (A2),
we infer that there exists a sufficiently large number TD > max{T0, τ(T0)} satisfying

B

p0(n − 1)!

∫+∞

TD

sn−1
m∑

i=1

qi(s)ds < min
{
M −D − p1M − r1, D − p0M − r0 −N

}
. (3.53)

Define two mappings FD,GD : A(N,M) → C([β,+∞),R) by

(FDx)(t) =

⎧
⎨

⎩

D + p(t)x(τ(t)) + r(t), t ≥ TD,

(FDx)(TD), β ≤ t < TD,
(3.54)

(GDx)(t)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n−1
(n − 1)!

×
∫+∞

t

(s − t)n−1
m∑

i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds, t ≥ TD

(GDx)(TD), β ≤ t < TD,

(3.55)

for each x ∈ A(N,M). In view of (3.47) and (3.52)–(3.55), we conclude that for any x, u ∈
A(N,M) and t ≥ TD

|(FDx)(t) − (FDu)(t)| ≤
∣
∣p(t)(x(τ(t)) − u(τ(t)))

∣
∣ ≤ (

p0 + p1
)‖x − u‖,

(FDx)(t) + (GDu)(t) = D + p(t)x(τ(t)) + r(t) +
(−1)n−1
(n − 1)!

×
∫+∞

t

(s − t)n−1
m∑

i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≤ D + p1M + r1 +
B

(n − 1) !

∫+∞

t

sn−1
m∑

i=1

qi(s)ds

< D + p1M + r1 +min
{
M −D − p1M − r1, D − p0M − r0 −N

} ≤ M,

(FDx)(t) + (GDu)(t) = D + p(t)x(τ(t)) + r(t) +
(−1)n−1
(n − 1)!

×
∫+∞

t

(s − t)n−1
m∑

i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds
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≥ D − p0M − r0 − B

(n − 1)!

∫+∞

t

sn−1
m∑

i=1

qi(s)ds

> D − p0M − r0 −min
{
M −D − p1M − r1, D − p0M − r0 −N

}

≥ N,

(3.56)

which yield (3.15). The rest of the proof is similar to that of Theorem 3.1 and is omitted.
(b) Assume that M and N are arbitrary positive constants satisfying (3.50). Let D ∈

(r0 − (1−p1)N −M−N, p0 − r1) and B2 be defined by (3.32). In light of (3.3), (3.32), and (A2),
we infer that there exists a sufficiently large number TD > max{T0, τ(T0)} satisfying

B2

p0(n − 1)!

∫+∞

TD

sn−1
m∑

i=1

qi(s)ds < min
{−M −D − p0N − r1, D +N

(
1 − p1

) − r0
}
. (3.57)

Define two mappings FD,GD : A(−N,−M) → C([β,+∞),R) by (3.54) and (3.55). In view of
(3.47), (3.52), (3.54), (3.55), and (3.57), we conclude that (3.56) holds and

(FDx)(t) + (GDu)(t) = D + p(t)x(τ(t)) + r(t) +
(−1)n−1
(n − 1)!

×
∫+∞

t

(s − t)n−1
m∑

i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≤ D + p0N + r1 +
B

(n − 1) !

∫+∞

t

sn−1
m∑

i=1

qi(s)ds

< D + p0N + r1 +min
{−M −D − p0N − r1, D +N

(
1 − p1

) − r0
}

≤ −M, ∀x, u ∈ A(N,M), t ≥ TD,

(FDx)(t) + (GDu)(t) = D + p(t)x(τ(t)) + r(t) +
(−1)n−1
(n − 1)!

×
∫+∞

t

(s − t)n−1
m∑

i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≥ D − p1N − r0 − B

(n − 1)!

∫+∞

t

sn−1
m∑

i=1

qi(s)ds

> D − p1N − r0 −min
{−M −D − p0N − r1, D +N

(
1 − p1

) − r0
}

≥ −N, ∀x, u ∈ A(N,M), t ≥ TD.

(3.58)
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Thus, (3.15) follows from (3.58). The rest of the proof is similar to that of Theorem 3.1 and is
omitted. This completes the proof.

Second, we provide necessary and sufficient conditions for the oscillation of bounded
solutions of (1.1).

Theorem 3.4. Let (A1), (A2), and (A3) hold. Assume that there exist p0, p1 ∈ R
+ \ {0} and r ∈

Cn([t0,+∞),R) satisfying (2.24) and

lim
t→+∞

r(t) = 0, r(n)(t) = g(t) eventually. (3.59)

Then, each bounded solution of (1.1) either oscillates or tends to 0 as t → +∞ if and only if

∫+∞

t0

sn−1
m∑

i=1

qi(s)ds = +∞. (3.60)

Proof.

Sufficiency. Suppose, without loss of generality, that (1.1) possesses a bounded eventually
positive solution x with lim supt→+∞x(t) > 0, which together with (A1), (A3), (2.17), (2.24),
and (3.60), yields that there exist constants M > 0 and T > 1 + |t0| + |β| satisfying

0 < x(t) ≤ M, ∀t ≥ T ; (3.61)

y(n)(t) = −
m∑

i=1

qi(t)fi(x(σi1(t)), x(σi2(t)), . . . , x(σiki(t))) < 0, ∀t ≥ T. (3.62)

Obviously (2.17), (2.24), (3.59), and the boundedness of x imply that y is bounded. It follows
from (2.17), (3.62), Lemmas 2.1 and 2.2 that there exists a constant L satisfying

lim
t→+∞

y(t) = L/= 0, lim
t→+∞

y(i)(t) = 0, 1 ≤ i ≤ n − 1. (3.63)

Thus, (A1), (3.61), (3.63), and Lemma 2.3 imply that there exist constants N and T1 ≥ T0 ≥ T
satisfying

inf
{
σij(t) : t ≥ T1, 1 ≤ j ≤ ki, 1 ≤ i ≤ m

} ≥ T0,

[7pt]0 < N ≤ x(t),
∣
∣y(t) − L

∣
∣ < 1, ∀t ≥ T1.

(3.64)

Put

B3 = min
{
fi(u1, u2, . . . , uki) : uj ∈ [N,M], 1 ≤ j ≤ ki, 1 ≤ i ≤ m

}
. (3.65)
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Clearly, (A3) guarantees that B3 > 0. Integrating (3.62) from t to +∞, by (3.63) and (3.64), we
have

y(n−1)(t) = (−1)2
∫+∞

t

m∑

i=1

qi(u1)fi(x(σi1(u1)), x(σi2(u1)), . . . , x(σiki(u1)))du1, ∀t ≥ T1,

(3.66)

repeating this procedure, we obtain that

y(n−2)(t) = (−1)3
∫+∞

t

du2

∫+∞

u2

m∑

i=1

qi(u1)fi(x(σi1(u1)), x(σi2(u1)), . . . , x(σiki(u1)))du1, ∀t ≥ T1,

· · ·

y′(t) =(−1)n
∫+∞

t

dun−1

∫+∞

un−1
dun−2 · · ·

×
∫+∞

u2

m∑

i=1

qi(u1)fi(x(σi1(u1)), x(σi2(u1)), . . . , x(σiki(u1)))du1, ∀t ≥ T1,

L − y(t) = lim
u→+∞

y(u) − y(t)

= (−1)n
∫+∞

t

dun

∫+∞

un

dun−1 · · ·

×
∫+∞

u2

m∑

i=1

qi(u1)fi(x(σi1(u1)), x(σi2(u1)), . . . , x(σiki(u1)))du1

=
(−1)n
(n − 1)!

∫+∞

t

(s − t)n−1
m∑

i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds, ∀t ≥ T1,

(3.67)

which together with (3.64) and (A3)means that

1 >
∣
∣L − y(t)

∣
∣ =

∣
∣
∣
∣
∣

(−1)n
(n − 1)!

∫+∞

t

(s − t)n−1
m∑

i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

∣
∣
∣
∣
∣

≥ B3

(n − 1)!

∫+∞

t

(s − t)n−1
m∑

i=1

qi(s)ds, ∀t ≥ T1,

(3.68)

which gives that

∫+∞

T1

sn−1
m∑

i=1

qi(s)ds < +∞, (3.69)

which contradicts (3.60).
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Necessity. Suppose that (3.60) does not hold. Observe that limt→+∞r(t) = 0 implies that there
exist two positive constants r0 and r1 satisfying

−r0 ≤ r(t) ≤ r1 eventually. (3.70)

It follows from Theorem 3.1 or Theorem 3.2 that, for any positive constants M and N
satisfying (3.4) or (3.37), (1.1) possesses uncountably many bounded positive solutions
x ∈ A(N,M) with M ≥ lim supt→+∞x(t) ≥ lim inft→+∞x(t) ≥ N. This is a contradiction.
This completes the proof.

As in the proof of Theorem 3.4, by means of Lemmas 2.1, 2.4, and 2.5, we have

Theorem 3.5. Let (A1) and (A3) hold. Assume that there exist p0 ∈ R
+ \ {0} and r ∈

Cn([t0,+∞),R) satisfying (2.29) and (3.59). Then, each bounded solution of (1.1) either oscillates or
tends to 0 as t → +∞ if and only if (3.60) holds.

4. Remarks and Examples

Now, we compare the results in Section 3 with some known results in the literature. In
order to illustrate the advantage and applications of our results, five nontrivial examples
are constructed.

Remark 4.1. Theorems 3.1–3.3 extend and improve the Theorem in [9], Theorem 8.4.2 in [10],
Theorem 1 in [21], Theorems 1–3 in [24], Theorem 2.2 in [26], and Theorems 1–4 in [27, 28].

Remark 4.2. The sufficient part of Theorem 3.5 is a generalization of Theorem 3.1 in [4, 5].
Theorem 3.5 corrects and perfects Theorem 2.1 in [26].

The examples below show that our results extend indeed the corresponding results
in [4, 5, 9, 10, 21, 24, 26–28]. Notice that none of the known results can be applied to these
examples.

Example 4.3. Consider the nth-order forced nonlinear neutral differential equation:

[

x(t) − 3 + 4tn

1 + tn
x
(√

t
)](n)

+

(
1 +

√
3 + 2t

)[
x5(3t + sin t) + x3(t − 1/t)

]

(1 + tn+3)
[
1 +

∣
∣
∣x8(3t2) − 2x21

(
t − √

t − 1
)∣
∣
∣
]

+
tx(3t − ln t)x4(t2 − t

)
x6(t − 2) + 5tx

(
t(1 + 1/t)t

)

(
1 + 3t3n+1

)[
1 + |x3(4t − cos3t) − 4x4(t − 1)|] =

1
2
sin

(
t +

nπ

2

)
, t ≥ 2,

(4.1)

where t0 = 2, m = 2, and n ∈ N. Put k1 = 4, k2 = 6, β = 0, r0 = r1 = 1/2, p0 = 3, p1 = 4,

p(t) =
3 + 4tn

1 + tn
, q1(t) =

1 +
√
3 + 2t

1 + tn+3
, q2(t) =

t

1 + 3t3n+1
,

g(t) =
1
2
sin

(
t +

nπ

2

)
, r(t) =

1
2
sin t, τ(t) =

√
t, σ11(t) = 3t + sin t,
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σ12(t) = t − 1
t
, σ13(t) = 3t2, σ14(t) = t −

√
t − 1, σ21(t) = 3t − ln t,

σ22(t) = t2 − t, σ23(t) = t − 2, σ24(t) = t

(

1 +
1
t

)t

, σ25(t) = 4t − cos3t,

σ26(t) = t − 1, f1(u, v,w, z) =
u5 + v3

1 + |w8 − 2z21| ,

f2
(
u, v,w, z, y, s

)
=

uv4w6 + 5z
1 +

∣
∣y3 − 4s4

∣
∣
, ∀(t, u, v,w, z, y, s

) ∈ [t0,+∞) × R
6.

(4.2)

Clearly (A1), (A2), (A3), and (3.1)–(3.3) hold.
Let M and N be arbitrarily positive constants satisfying M > (3/2)N + 7/12. It is

easy to verify that (3.4) holds. It follows from Theorem 3.1 that (4.1) has uncountably many
bounded positive solutions x ∈ A(N,M)with N ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤ M.

LetM andN be arbitrarily positive constants satisfyingN > 3M/2+7/12. It is easy to
verify that (3.6) holds. It follows from Theorem 3.1 that (4.1) has uncountably many bounded
negative solutions x ∈ A(−N,−M)with −N ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤ −M.

Example 4.4. Consider the nth-order forced nonlinear neutral differential equation:

[

x(t) +
8 + 10t5

2 + t5
x
(√

t2 + 1 − 1
)
](n)

+

(
t2 + 3t3

)
x7(3t2

)
x(t − 1)x3(t ln t)

(
2 + sin3(t2) + tn+5

)[
1 + x2(t − 1)x4(t ln t)

]

+

(
3 + t2

)[
x5(t2 + 1

)
+ 7x3(t4 − 2

)
+ x9

(
t +

√
t
)
x8(t − 4)

]

(√
t + 1 + tn+3

)[

1 +
(
x5
(
t +

√
t
)
− 4x4(t − 4) − 3

)6
] =

(−1)nn!
tn+1

+
n!

(1 − t)n+1
, t ≥ 3,

(4.3)

where t0 = 3, m = 2, and n ∈ N. Put k1 = 3, k2 = 4, β = −1, r0 = 1/2, r1 = 0, p0 = 4, p1 = 10,

p(t) = −8 + 10t5

2 + t5
, q1(t) =

t2 + 3t3

2 + sin3(t2) + tn+5
, q2(t) =

3 + t2√
t + 1 + tn+3

,

g(t) =
(−1)nn!
tn+1

+
n!

(1 − t)n+1
, r(t) =

1
t(1 − t)

, τ(t) =
√
t2 + 1 − 1,

σ11(t) = 3t2, σ12(t) = t − 1, σ13(t) = t ln t, σ21(t) = t2 + 1,

σ22(t) = t4 − 2, σ23(t) = t +
√
t, σ24(t) = t − 4, f1(u, v,w) =

u7vw3

1 + v2w4
,

f2(u, v,w, z) =
u5 + 7v3 +w9z8

1 +
(
w5 − 4z4 − 3

)6 , ∀(t, u, v,w, z) ∈ [t0,+∞) × R
4.

(4.4)

Clearly (A1), (A2), (A3), (3.2), (3.3), and (3.36) hold.
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Let M and N be arbitrarily positive constants satisfying M > (32/5)N + 5/6. It is
easy to verify that (3.37) holds. It follows from Theorem 3.2 that (4.3) has uncountably many
bounded positive solutions x ∈ A(N,M)with N ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤ M.

Let M and N be arbitrarily positive constants satisfying N > (32/5)M + 1/3. It is
easy to verify that (3.39) holds. It follows from Theorem 3.2 that (4.3) has uncountably many
bounded negative solutions x ∈ A(−N,−M)with −N ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤
−M.

Example 4.5. Consider the nth-order forced nonlinear neutral differential equation:

⎡

⎢
⎣x(t) −

2 sin
(
t2 − √

t
)

5 + sin
(
t2 − √

t
)x

(
(t − 5)2

)
⎤

⎥
⎦

(n)

+

(
3
√
t − 1 + t5

)
x3(t − 4)

(√
t2 + 1 + tn+6

)[
2 + cos5x

(√
t + 1 − 3

)]

+

(
1 −

√
t + 1ln2t + t4

)
x9(2t + sin

(
t2 + 1

))

(
1 − 2t3 + 3t4 + tn+5

)
ln
[
2 + x2

(
t2
√
1 + 2t

)] = (−1)n cos
(
t +

nπ

2

)
, t ≥ 1,

(4.5)

where t0 = 1, m = 2, and n ∈ N. Put k1 = k2 = 2, β = −4, r0 = r1 = 1, p0 = 1/2, p1 = 1/3,

p(t) =
2 sin

(
t2 − √

t
)

5 + sin
(
t2 − √

t
) , q1(t) =

3
√
t − 1 + t5√

t2 + 1 + tn+6
, q2(t) =

1 −
√
t + 1ln2t + t4

1 − 2t3 + 3t4 + tn+5
,

g(t) = (−1)n cos
(
t +

nπ

2

)
, r(t) = (−1)n cos t, τ(t) = (t − 4)2 σ11(t) = t − 5,

σ12(t) =
√
t + 1 − 3, σ21(t) = 2t + sin

(
t2 + 1

)
, σ22(t) = t2

√
1 + 2t,

f1(u, v) =
u3

2 + cos5v
, f2(u, v) =

u9

ln(2 + v2)
, ∀(t, u, v) ∈ [t0,+∞) × R

2.

(4.6)

Clearly (A1), (A3), (3.2), (3.3), and (3.47) hold.
Let M and N be arbitrarily positive constants satisfying M > 6N + 12. It is easy

to verify that (3.48) holds. It follows from Theorem 3.3 that (4.5) has uncountably many
bounded positive solutions x ∈ A(N,M)with N ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤ M.

Let M and N be arbitrarily positive constants satisfying N > 6M + 12. It is easy
to verify that (3.50) holds. It follows from Theorem 3.3 that (4.5) has uncountably many
bounded negative solutions x ∈ A(−N,−M)with −N ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤
−M.

Example 4.6. Consider the nth-order forced nonlinear neutral differential equation:

⎡

⎢
⎣x(t) −

(−1)n
(
5 + 9ln2t

)

1 + ln2t
x
(√

t − 1
)
⎤

⎥
⎦

(n)

+
(
t8 + 9t5 + 3

)[
2x3

(
tln2t

)
+ 5x7(t − 16)

]
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+ t2
(
2 + sin

(
t3 − 5t

))
x9
(

t − sin t
t

)[

x4(t − cos t) + 4x6

(
1 + t + t2 + t3

1 + t + t2

)]2

+

[
(t + 1)2 − √

t
]
x5
(
t arctan

(
t3 + 1

)
/
(
1 +

√
t + 1

))
ln
(
1 + x6(t + 1)/

(
1 + x2(t − 2)

))

[
2tn+3 +

√
t sin(3t5 − 1)

][
1 + x2(t2 − t)x4(t2 + t)

]

=
(−1)nn!(ln t −∑n

i=1(1/i)
)

tn+1
, t ≥ 4,

(4.7)

where t0 = 4, m = 3, and n ∈ N. Put k1 = 2, k2 = 3, k3 = 5, β = −12, p0 = 5, p1 = 9,

p(t) =
(−1)n

(
5 + 9ln2t

)

1 + ln2t
, q1(t) = t8 + 9t5 + 3, q2(t) = t2

(
2 + sin

(
t3 − 5t

))
,

q3 =
(t + 1)2 − √

t

2tn+3 +
√
t sin(3t5 − 1)

, g(t) =
(−1)nn!(ln t −∑n

i=1 1/i
)

tn+1
, r(t) =

ln t
t
,

τ(t) =
√
t − 1, σ11(t) = tln2t, σ12(t) = t − 16, σ21(t) = t − sin t

t
,

σ22(t) = t − cos t, σ23(t) =
1 + t + t2 + t3

1 + t + t2
, σ31(t) =

t arctan
(
t3 + 1

)

1 +
√
t + 1

,

σ32(t) = t + 1, σ33(t) = t − 2, σ34(t) = t2 − t, σ35(t) = t2 + t,

f1(u, v) = 2u3 + 5v7, f2(u, v,w) = u9
(
v4 + 4w6

)2
,

f3
(
u, v,w, y, z

)
=

u5 ln
(
1 + v6/

(
1 +w2))

1 + y2z4
, ∀(t, u, v,w, y, z

) ∈ [t0,+∞) × R
5.

(4.8)

Clearly (A1), (A2), (A3), (2.24), (3.59), and (3.60) hold. It follows from Theorem 3.4 that each
bounded solution of (4.7) either oscillates or tends to 0 as t → +∞.

Example 4.7. Consider the nth-order forced nonlinear neutral differential equation:

[

x(t) − (−1)ncos3(3t − 1)
4 + cos3(3t − 1)

x(t − sin t)

](n)

+

(
t3 + 2t2 − √

t + 1
)
x5
(√

t − 2 − 1
)

1 + x2
(√

t − 2 − 1
)

+

√
t2 − 1

[
x3(t − 1/t) + 5x7(t − 1/t)

]
ln
(
2 + x6(t − 1/t)

)

t2n+1 + 2tnln3(1 + t2) + 1
=

2n sin
(√

2t + nπ/4
)

e
√
2t

, t ≥ 6,

(4.9)
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where t0 = 6, m = 2, and n ∈ N. Put k1 = k2 = 1, β = 1, p0 = 1/3,

p(t) =
(−1)ncos3(3t − 1)
4 + cos3(3t − 1)

, q1(t) = t3 + 2t2 −
√
t + 1,

q2(t) =

√
t2 − 1

t2n+1 + 2tnln3(1 + t2) + 1
, g(t) =

2n sin
(√

2t + nπ/4
)

e
√
2t

, r(t) =
sin

(√
2t
)

e
√
2t

,

τ(t) = t − sin t, σ1(t) =
√
t − 2 − 1 σ2(t) = t − 1

t
, f1(u) =

u5

1 + u2
,

f2(u) = u3 + 5u7 ln
(
2 + u6

)
, ∀(t, u) ∈ [t0,+∞) × R.

(4.10)

Clearly (A1), (A3), (2.29), (3.59), and (3.60) hold. It follows from Theorem 3.5 that each
bounded solution of (4.9) either oscillates or tends to 0 as t → +∞.

Next, we prove that the necessary part of Theorem 2.1 in [26] does not hold by means
of (4.9). It is easy to verify that the conditions of Theorem 2.1 in [26] are fulfilled. Suppose
that the necessary part of Theorem 2.1 in [26] is true. Because each bounded solution of (4.9)
either oscillates or tends to 0 as t → +∞, it follows that the necessary part of Theorem 2.1 in
[26] gives that

∫+∞

t0

sn−1qi(s)ds = +∞, i ∈ {1, 2}, (4.11)

which yields that

+∞ =
∫+∞

t0

sn−1q2(s)ds =
∫+∞

t0

sn−1
√
s2 − 1

s2n+1 + 2snln3(1 + s2) + 1
ds ≤

∫+∞

t0

1
sn+1

ds < +∞, (4.12)

which is a contradiction.
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[9] M. R. S. Kulenović and S. Hadžiomerspahić, “Existence of nonoscillatory solution of second order
linear neutral delay equation,” Journal of Mathematical Analysis and Applications, vol. 228, no. 2, pp.
436–448, 1998.

[10] V. Lakshmikantham, L. Z. Wen, and B. G. Zhang, Theory of Differential Equations with Unbounded Delay,
vol. 298 ofMathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, TheNetherlands,
1994.

[11] X. Li, Y. Liu, and T. Zhou, “The existence of positive solution and bounded oscillation for even-order
neutral differential equations with unstable type,” Applied Mathematics and Computation, vol. 176, no.
2, pp. 632–641, 2006.

[12] X. Lin, “Oscillation of second-order nonlinear neutral differential equations,” Journal of Mathematical
Analysis and Applications, vol. 309, no. 2, pp. 442–452, 2005.

[13] Z. Liu, H. Gao, S. M. Kang, and S. H. Shim, “Existence and Mann iterative approximations of
nonoscillatory solutions of nth-order neutral delay differential equations,” Journal of Mathematical
Analysis and Applications, vol. 329, no. 1, pp. 515–529, 2007.

[14] Z. Liu, A. Jiang, S. M. Kang, and J. S. Ume, “Global existence and Mann iterative algorithms of
positive solutions for first order nonlinear neutral delay differential equations,” Applied Mathematics
and Computation, vol. 217, no. 22, pp. 9424–9437, 2011.

[15] Z. Liu and S. M. Kang, “Infinitely many nonoscillatory solutions for second order nonlinear neutral
delay differential equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 12, pp.
4274–4293, 2009.

[16] Z. Liu, S. M. Kang, and J. S. Ume, “Existence of bounded nonoscillatory solutions of first-order
nonlinear neutral delay differential equations,” Computers & Mathematics with Applications, vol. 59,
no. 11, pp. 3535–3547, 2010.

[17] Z. Liu, L. Wang, S. M. Kang, and J. S. Ume, “Solvability and iterative algorithms for a higher order
nonlinear neutral delay differential equation,” Applied Mathematics and Computation, vol. 215, no. 7,
pp. 2534–2543, 2009.

[18] N. Parhi and R. N. Rath, “Oscillation criteria for forced first order neutral differential equations with
variable coefficients,” Journal of Mathematical Analysis and Applications, vol. 256, no. 2, pp. 525–541,
2001.
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