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The purpose of this paper is to construct an implicit algorithm for finding the common solution
of maximal monotone operators and strictly pseudocontractive mappings in Hilbert spaces. Some
applications are also included.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be a
nonempty closed convex subset of H.

Recall that S is said to be a strictly pseudo contractive mapping if there exists a constant
0 ≤ ρ < 1 such that

∥
∥Sx − Sy

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + ρ

∥
∥(I − S)x − (I − S)y

∥
∥
2
, ∀x, y ∈ C. (1.1)

For such case, we also say that S is a ρ-strictly pseudo-contractive mapping. When ρ = 0, T is
said to be nonexpansive. It is clear that (1.1) is equivalent to

〈

Sx − Sy, x − y
〉 ≤ ∥

∥x − y
∥
∥
2 − 1 − ρ

2
∥
∥(I − S)x − (I − S)y

∥
∥
2
, ∀x, y ∈ C. (1.2)

We denote by F(S) the set of fixed points of S.
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A mapping A : C → H is said to be α-inverse strongly monotone if

〈

Ax −Ay, x − y
〉 ≥ α

∥
∥Ax −Ay

∥
∥
2
, (1.3)

for some α > 0 and for all x, y ∈ C. It is known that if A is an α-inverse strongly monotone,
then ‖Ax −Ay‖ ≤ 1/α‖x − y‖ for all x, y ∈ C.

Let B be a mapping ofH into 2H . The effective domain of B is denoted by dom(B), that
is, dom(B) = {x ∈ H : Bx/= ∅}. A multi valued mapping B is said to be a monotone operator
on H iff

〈

x − y, u − v
〉 ≥ 0, (1.4)

for all x, y ∈ dom(B), u ∈ Bx, and v ∈ By. A monotone operator B onH is said to be maximal
if its graph is not strictly contained in the graph of any other monotone operator onH. Let B
be a maximal monotone operator on H, and let B−10 = {x ∈ H : 0 ∈ Bx}.

For a maximal monotone operator B on H and λ > 0, we may define a single-valued
operator JB

λ
= (I + λB)−1 : H → dom(B), which is called the resolvent of B for λ. It is known

that the resolvent JB
λ
is firmly nonexpansive, that is,

∥
∥
∥JBλ x − JBλ y

∥
∥
∥

2 ≤
〈

JBλ x − JBλ y, x − y
〉

, (1.5)

for all x, y ∈ C and B−10 = F(JBλ ) for all λ > 0.
Algorithms for finding the fixed points of nonlinear mappings or for finding the zero

points of maximal monotone operators have been studied by many authors. The reader can
refer to [1–24]. Especially, Takahashi et al. [6] recently gave the following convergence result.

Theorem 1.1. Let C be a closed and convex subset of a real Hilbert space H. Let A be an α-inverse
strongly monotone mapping of C into H and let B be a maximal monotone operator on H, such that
the domain of B is included in C. Let JB

λ
= (I + λB)−1 be the resolvent of B for λ > 0, and let S be

a nonexpansive mapping of C into itself, such that F(S) ∩ (A + B)−10 /= ∅. Let x1 = x ∈ C and let
{xn} ⊂ C, be a sequence generated by

xn+1 = βnxn +
(

1 − βn
)

S
(

αnx + (1 − αn)JBλn(xn − λnAxn)
)

, (1.6)

for all n ≥ 0, where {λn} ⊂ (0, 2α), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ b < 2α, < c ≤ βn ≤ d < 1,

lim
n→∞

(λn+1 − λn) = 0, lim
n→∞

αn = 0,
∑

n

αn = ∞, (1.7)

then {xn} generated by (1.6) converges strongly to a point of F(S) ∩ (A + B)−10.

Motivated and inspired by the works in this field, the purpose of this paper is to con-
struct an implicit algorithm for finding the common solution of maximal monotone operators
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and strictly-pseudocontractive mappings in Hilbert spaces. Some applications are also
included.

2. Preliminaries

The following resolvent identity is well known: for λ > 0 and μ > 0, there holds the identity

JBλ x = JBμ

(μ

λ
x +

(

1 − μ

λ

)

JBλ x
)

, x ∈ H. (2.1)

We use the following notation:

(i) xn ⇀ x stands for the weak convergence of {xn} to x;

(ii) xn → x stands for the strong convergence of {xn} to x.

We need the following lemmas for the next section.

Lemma 2.1 (see[14]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
S : C → H be a ρ-strict pseudo contraction. Define T : C → H by Tx = αx + (1 − α)Tx for each
x ∈ C, then, as α ∈ [ρ, 1), T is nonexpansive such that F(S) = F(T).

Lemma 2.2 (see[15]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let the
mapping A : C → H be α-inverse strongly monotone and λ > 0 a constant, then one has

∥
∥(I − λA)x − (I − λA)y

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + λ(λ − 2α)

∥
∥Ax −Ay

∥
∥
2
, ∀x, y ∈ C. (2.2)

In particular, if 0 ≤ λ ≤ 2α, then I − λA is nonexpansive.

Lemma 2.3 (see[14]). LetC be a nonempty, closed and convex of a real Hilbert spaceH. Let T : C →
C be a λ-strictly pseudo-contractive mapping, then I − T is demi closed at 0, that is, if xn ⇀ x ∈ C
and xn − Txn → 0, then x = Tx.

Lemma 2.4 (see[16]). Let {xn} and {yn} be bounded sequences in a Banach spaceX, and let {βn} be
a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose that xn+1 = (1 − βn)yn +
βnxn for all n ≥ 0 and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0, then limn→∞‖yn − xn‖ = 0.

Lemma 2.5 (see[17]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(

1 − γn
)

an + δnγn, (2.3)

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1 γn = ∞,

(2) lim supn→∞δn ≤ 0 or
∑∞

n=1 |δnγn| < ∞, then limn→∞an = 0.
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3. Main Results

In this section, we will prove our main results.

Theorem 3.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A be an
α-inverse strongly monotone mapping of C into H, and let B be a maximal monotone operator on H,
such that the domain of B is included in C. Let JB

λ
= (I + λB)−1 be the resolvent of B for λ which

satisfies a ≤ λ ≤ b where [a, b] ⊂ (0, 2α). Let κ ∈ (0, 1) be a constant and S : C → C a ρ-strict
pseudocontraction with ρ ∈ [0, 1) such that F(S)∩(A + B)−10/= ∅. For t ∈ (0, 1−λ/2α), let {xt} ⊂ C
be a net defined by

xt =
κ
(

1 − ρ
)

1 − κρ
Sxt +

1 − κ

1 − κρ
JBλ ((1 − t)xt − λAxt), (3.1)

then the net {xt} converges strongly, as t → 0+, to a point x̃ = PF(S)∩(A+B)−10(0), where P is the
metric projection.

Remark 3.2. Now, we show that the net {xt} defined by (3.1) is well defined. For any t ∈
(0, 1 − λ/2α), we define a mappingW := κ(ρI + (1 − ρ)S) + (1 − κ)JB

λ
((1 − t)I − λA). Note that

ρI + (1 − ρ)S (by Lemma 2.1), JB
λ
, and I − λ/(1 − t) A (by Lemma 2.2) are nonexpansive. For

any x, y ∈ C, we have

∥
∥Wx −Wy

∥
∥ =

∥
∥
∥κ

(

ρx +
(

1 − ρ
)

Sx
)

+ (1 − κ) JBλ ((1 − t)x − λAx)

−κ(ρy +
(

1 − ρ
)

Sy
) − (1 − κ)JBλ

(

(1 − t)y − λAy
)
∥
∥
∥

≤ κ
∥
∥ρ

(

x − y
)

+
(

1 − ρ
)(

Sx − Sy
)∥
∥

+ (1 − κ)
∥
∥
∥
∥
(1 − t)

(

x − λ

1 − t
Ax

)

− (1 − t)
(

y − λ

1 − t
Ay

)∥
∥
∥
∥

≤ [1 − (1 − κ)t]
∥
∥x − y

∥
∥,

(3.2)

which implies the mapping T is a contraction onC. We use xt to denote the unique fixed point
ofW in C. Therefore, {xt} is well defined. We can rewrite (3.1) as

xt = κ
(

ρxt +
(

1 − ρ
)

Sxt

)

+ (1 − κ)JBλ ((1 − t)xt − λAxt). (3.3)

In order to prove Theorem 3.1, we need the following propositions.

Proposition 3.3. Under the assumptions of Theorem 3.1, the net {xt} defined by (3.1) and hence
(3.3) is bounded.

Proof. Let z ∈ F(S) ∩ (A + B)−10. It follows that

z = Sz = ρz +
(

1 − ρ
)

Sz = JBλ (z − λAz), (3.4)
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for all λ > 0. We can write JBλ (z − λAz) as JBλ (tz + (1 − t)(z − λAz/(1 − t))), for all t ∈ (0, 1).
Since JB

λ
is nonexpansive for all λ > 0, we have

∥
∥
∥JBλ ((1 − t)xt − λAxt) − z

∥
∥
∥

2

=
∥
∥
∥JBλ ((1 − t)(xt − λAxt/(1 − t))) − JBλ (tz + (1 − t)(z − λAz/(1 − t)))

∥
∥
∥

2

≤ ‖((1 − t)(xt − λAxt/(1 − t))) − (tz + (1 − t)(z − λAz/(1 − t)))‖2

= ‖(1 − t)((xt − λAxt/(1 − t)) − (z − λAz/(1 − t))) + t(−z)‖2.

(3.5)

By using the convexity of ‖ · ‖ and the α-inverse strong monotonicity of A, we derive

‖(1 − t)((xt − λAxt/(1 − t)) − (z − λAz/(1 − t))) + t(−z)‖2

≤ (1 − t)‖(xt − λAxt/(1 − t)) − (z − λAz/(1 − t))‖2 + t‖z‖2

= (1 − t)‖(xt − z) − λ(Axt −Az)/(1 − t)‖2 + t‖z‖2

= (1 − t)

(

‖xt − z‖2 − 2λ
1 − t

〈Axt −Az, xt − z〉 + λ2

(1 − t)2
‖Axt −Az‖2

)

+ t‖z‖2

≤ (1 − t)

(

‖xt − z‖2 − 2αλ
1 − t

‖Axt −Az‖2 + λ2

(1 − t)2
‖Axt −Az‖2

)

+ t‖z‖2

= (1 − t)

(

‖xt − z‖2 + λ

(1 − t)2
(λ − 2(1 − t)α)‖Axt −Az‖2

)

+ t‖z‖2.

(3.6)

By the assumption, we have λ − 2(1 − t)α ≤ 0, for all t ∈ (0, 1 − λ/2α). Then, from (3.5) and
(3.6), we obtain

∥
∥
∥JBλ ((1 − t)xt − λAxt) − z

∥
∥
∥

2

≤ (1 − t)

(

‖xt − z‖2 + λ

(1 − t)2
(λ − 2(1 − t)α)‖Axt −Az‖2

)

+ t‖z‖2

≤ (1 − t)‖xt − z‖2 + t‖z‖2.

(3.7)

It follows from (3.3) and (3.7) that

‖xt − z‖2 ≤ κ
∥
∥(ρI + (1 − ρ)S)xt − z

∥
∥
2 + (1 − κ)

∥
∥
∥JBλ ((1 − t)xt − λAxt) − z

∥
∥
∥

2

≤ κ‖xt − z‖2 + (1 − κ)
∥
∥
∥JBλ ((1 − t)xt − λAxt) − z

∥
∥
∥

2

≤ κ‖xt − z‖2 + (1 − κ)
[

(1 − t)‖xt − z‖2 + t‖z‖2
]

.

(3.8)

It follows that

‖xt − z‖ ≤ ‖z‖. (3.9)

Therefore, {xt} is bounded.
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Remark 3.4. Since A is α-inverse strongly monotone, it is 1/α-Lipschitz continuous. At the
same time, S is nonexpansive. So, from the boundedness, we deduce immediately that {Axt},
JB
λ
((1 − t)xt − λAxt), and {Sxt} are also bounded.

Proposition 3.5. Assume that all conditions in Theorem 3.1 hold. Let {xt} be the net defined by (3.1),
then one has limt→ 0+‖xt − Sxt‖ = 0 and limt→ 0+‖xt − JB

λ
((1 − t)xt − λAxt)‖ = 0.

Proof. By (3.7) and (3.8), we obtain

‖xt − z‖2 ≤ [1 − (1 − κ)t]‖xt − z‖2

+
λ(1 − κ)
(1 − t)

(λ − 2(1 − t)α)‖Axt −Az‖2 + (1 − κ)t‖z‖2.
(3.10)

So,

λ

(1 − t)
(2(1 − t)α − λ)‖Axt −Az‖2 ≤ t‖z‖2 − t‖xt − z‖2 −→ 0. (3.11)

Since lim inft→ 0+(λ/(1 − t))(2(1 − t)α − λ) > 0, we obtain

lim
t→ 0+

‖Axt −Az‖ = 0. (3.12)

Next, we show ‖xt − Sxt‖ → 0. By using the firm nonexpansivity of JB
λ
, we have

∥
∥
∥JBλ ((1 − t)xt − λAxt) − z

∥
∥
∥

2

=
∥
∥
∥JBλ ((1 − t)xt − λAxt) − JBλ (z − λAz)

∥
∥
∥

2

≤
〈

(1 − t)xt − λAxt − (z − λAz), JBλ ((1 − t)xt − λAxt) − z
〉

=
1
2

(

‖(1 − t)xt − λAxt − (z − λAz)‖2 +
∥
∥
∥JBλ ((1 − t)xt − λAxt) − z

∥
∥
∥

2

−
∥
∥
∥(1 − t)xt − λ(Axt − λAz) − JBλ ((1 − t)xt − λAxt)

∥
∥
∥

2
)

.

(3.13)

By the nonexpansivity of I − λA/(1 − t), we have

‖(1 − t)xt − λAxt − (z − λAz)‖2

= ‖(1 − t)(xt − λAxt/(1 − t) − (z − λAz/(1 − t))) + t(−z)‖2

≤ (1 − t)‖(xt − λAxt/(1 − t) − (z − λAz/(1 − t)))‖2 + t‖z‖2

≤ (1 − t)‖xt − z‖2 + t‖z‖2.

(3.14)
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It follows that

∥
∥
∥JBλ ((1 − t)xt − λAxt) − z

∥
∥
∥

2

≤ 1
2

(

(1 − t)‖xt − z‖2 + t‖z‖2 +
∥
∥
∥JBλ ((1 − t)xt − λAxt) − z

∥
∥
∥

2

−
∥
∥
∥(1 − t)xt − JBλ ((1 − t)xt − λAxt) − λ(Axt −Az)

∥
∥
∥

2
)

.

(3.15)

Thus,

∥
∥
∥JBλ ((1 − t)xt − λAxt) − z

∥
∥
∥

2

≤ (1 − t)‖xt − z‖2 + t‖z‖2

−
∥
∥
∥(1 − t)xt − JBλ ((1 − t)xt − λAxt) − λ(Axt −Az)

∥
∥
∥

2

= (1 − t)‖xt − z‖2 + t‖z‖2 −
∥
∥
∥(1 − t)xt − JBλ ((1 − t)xt − λAxt)

∥
∥
∥

2

+ 2λ
〈

(1 − t)xt − JBλ ((1 − t)xt − λAxt), Axt −Az
〉

− λ2‖Axt −Az‖2

≤ (1 − t)‖xt − z‖2 + t‖z‖2 −
∥
∥
∥(1 − t)xt − JBλ ((1 − t)xt − λAxt)

∥
∥
∥

2

+ 2λ
∥
∥
∥(1 − t)xt − JBλ ((1 − t)xt − λAxt)

∥
∥
∥‖Axt −Az‖.

(3.16)

This together with (3.8) implies that

‖xt − z‖2 ≤
∥
∥
∥JBλ ((1 − t)xt − λAxt) − z

∥
∥
∥

2

≤ (1 − t)‖xt − z‖2 + t‖z‖2 −
∥
∥
∥(1 − t)xt − JBλ ((1 − t)xt − λAxt)

∥
∥
∥

2

+ 2λ
∥
∥
∥(1 − t)xt − JBλ ((1 − t)xt − λAxt)

∥
∥
∥‖Axt −Az‖.

(3.17)

Hence,

∥
∥
∥(1 − t)xt − JBλ ((1 − t)xt − λAxt)

∥
∥
∥

2

≤ t
(

‖z‖2 − ‖xt − z‖2
)

+ 2λ
∥
∥
∥(1 − t)xt − JBλ ((1 − t)xt − λAxt)

∥
∥
∥‖Axt −Az‖.

(3.18)

Since ‖Axt −Az‖ → 0 (by (3.12)), we deduce

lim
t→ 0+

∥
∥
∥(1 − t)xt − JBλ ((1 − t)xt − λAxt)

∥
∥
∥ = 0. (3.19)

Therefore,

lim
t→ 0+

∥
∥
∥xt − JBλ ((1 − t)xt − λAxt)

∥
∥
∥ = 0. (3.20)
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Hence,

lim
t→ 0+

‖xt − Sxt‖ = lim
t→ 0+

∥
∥
∥xt − JBλ ((1 − t)xt − λAxt)

∥
∥
∥ = 0. (3.21)

Finally, we prove Theorem 3.1.

Proof. From (3.5) and (3.8), we have

‖xt − z‖2 ≤
∥
∥
∥
∥
(1 − t)

((

xt − λ

1 − t
Axt

)

−
(

z − λ

1 − t
Az

))

− tz

∥
∥
∥
∥

2

= (1 − t)2
∥
∥
∥
∥

(

xt − λ

1 − t
Axt

)

−
(

z − λ

1 − t
Az

)∥
∥
∥
∥

2

− 2t(1 − t)
〈

z,

(

xt − λ

1 − t
Axt

)

−
(

z − λ

1 − t
Az

)〉

+ t2‖z‖2

≤ (1 − t)2‖xt − z‖2 − 2t(1 − t)
〈

z, xt − λ

1 − t
(Axt −Az) − z

〉

+ t2‖z‖2

= (1 − 2t)‖xt − z‖2 + 2t
{

−(1 − t)
〈

z, xt − λ

1 − t
(Axt −Az) − z

〉

+
t

2

(

‖z‖2 + ‖xt − z‖2
)}

.

(3.22)

It follows that

‖xt − z‖2 ≤ −
〈

z, xt − λ

1 − t
(Axt −Az) − z

〉

+
t

2

(

‖z‖2 + ‖xt − z‖2
)

+ t‖z‖
∥
∥
∥
∥
xt − λ

1 − t
(Axt −Az) − z

∥
∥
∥
∥

≤ −
〈

z, xt − λ

1 − t
(Axt −Az) − z

〉

+ tM,

(3.23)

where M is some constant such that

sup
t∈(0,1−λ/2α)

{

‖z‖2 + ‖xt − z‖2 + ‖z‖
∥
∥
∥
∥
xt − λ

1 − t
(Axt −Az) − z

∥
∥
∥
∥

}

≤ M. (3.24)

Next we show that {xt} is relatively norm compact as t → 0+. Assume that {tn} ⊂ (0, 1−λ/2α)
is such that tn → 0+ as n → ∞. Put xn := xtn . From (3.23), we have

‖xn − z‖2 ≤ −
〈

z, xn − λ

1 − tn
(Axn −Az) − z

〉

+ tnM, z ∈ F(S) ∩ (A + B)−10. (3.25)

Since {xn} is bounded, without loss of generality, we may assume that xn ⇀ x̃ ∈ C. From
(3.21), we have

lim
n→∞

‖xn − Sxn‖ = 0. (3.26)
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We can apply Lemma 2.3 to (3.26) to deduce x̃ ∈ F(S). Further, we show that x̃ is also in
(A + B)−10. Let v ∈ Bu. Set zn = JB

λ
((1 − tn)xn − λAxn), for all n, then we have

(1 − tn)xn − λAxn ∈ (I + λB)zn =⇒ 1 − tn
λ

xn −Axn − zn
λ

∈ Bzn. (3.27)

Since B is monotone, we have, for (u, v) ∈ B,

〈
1 − tn
λ

xn −Axn − zn
λ

− v, zn − u

〉

≥ 0

=⇒ 〈(1 − tn)xn − λAxn − zn − λv, zn − u〉 ≥ 0

=⇒ 〈Axn + v, zn − u〉 ≤ 1
λ
〈xn − zn, zn − u〉 − tn

λ
〈xn, zn − u〉

=⇒ 〈Ax̃ + v, zn − u〉 ≤ 1
λ
〈xn − zn, zn − u〉 − tn

λ
〈xn, zn − u〉 + 〈Ax̃ −Axn, zn − u〉

=⇒ 〈Ax̃ + v, zn − u〉 ≤ 1
λ
‖xn − zn‖‖zn − u‖ + tn

λ
‖xn‖‖zn − u‖ + ‖Ax̃ −Axn‖‖zn − u‖.

(3.28)

It follows that

〈Ax̃ + v, x̃ − u〉 ≤ 1
λ
‖xn − zn‖‖zn − u‖ + tn

λ
‖xn‖‖zn − u‖

+ ‖Ax̃ −Axn‖‖zn − u‖ + 〈Ax̃ + v, x̃ − zn〉.
(3.29)

Since

〈xn − x̃, Axn −Ax̃〉 ≥ α‖Axn −Ax̃‖2, (3.30)

Axn → Az, and xn ⇀ x̃, we have Axn → Ax̃. We also observe that tn → 0, ‖xn − zn‖ → 0
and zn ⇀ x̃. Then, from (3.29), we derive

〈−Ax̃ − v, x̃ − u〉 ≥ 0. (3.31)

Since B is maximal monotone, we have −Ax̃ ∈ Bx̃. This shows that 0 ∈ (A + B)x̃. So, we have
x̃ ∈ F(S) ∩ (A + B)−10. Hence, xn − (λ/1 − tn) (Axn − Az) ⇀ x̃ because of ‖Axn − Az‖ → 0.
Therefore, we can substitute x̃ for z in (3.25) to get

‖xn − x̃‖2 ≤ −
〈

x̃, xn − λ

1 − tn
(Axn −Ax̃) − x̃

〉

+ tnM. (3.32)

Consequently, the weak convergence of {xn} to x̃ actually implies that xn → x̃. This has
proved the relative norm compactness of the net {xt} as t → 0+.

Now we return to (3.25) and take the limit as n → ∞ to get

‖x̃ − z‖2 ≤ −〈z, x̃ − z〉, z ∈ F(S) ∩ (A + B)−10. (3.33)



10 Abstract and Applied Analysis

Equivalently,

‖x̃‖2 ≤ 〈x̃, z〉, z ∈ F(S) ∩ (A + B)−10. (3.34)

This clearly implies that

‖x̃‖ ≤ ‖z‖, z ∈ F(S) ∩ (A + B)−10. (3.35)

Therefore, x̃ is the minimum norm element in F(S)∩(A + B)−10. This completes the proof.

Corollary 3.6. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A be an
α-inverse strongly monotone mapping of C into H, and let B be a maximal monotone operator on H,
such that the domain of B is included in C. Let JB

λ
= (I + λB)−1 be the resolvent of B for λ which

satisfies a ≤ λ ≤ b where [a, b] ⊂ (0, 2α). Let κ ∈ (0, 1) be a constant and S : C → C a nonexpansive
mapping such that F(S) ∩ (A + B)−10/= ∅. For t ∈ (0, 1 − λ/2α), let {xt} ⊂ C be a net defined by

xt =
κ
(

1 − ρ
)

1 − κρ
Sxt +

1 − κ

1 − κρ
JBλ ((1 − t)xt − λAxt), (3.36)

then the net {xt} converges strongly, as t → 0+, to a point x̃ = PF(S)∩(A+B)−10(0).

Corollary 3.7. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A be an
α-inverse strongly monotone mapping of C into H, and let B be a maximal monotone operator on H,
such that the domain of B is included inC. Let JB

λ
= (I + λB)−1 be the resolvent of B for λ > 0 such that

(A + B)−10/= ∅. Let λ be a constant satisfying a ≤ λ ≤ b where [a, b] ⊂ (0, 2α). For t ∈ (0, 1−λ/2α),
let {xt} ⊂ C be a net generated by

xt = JBλ ((1 − t)xt − λAxt), (3.37)

then the net {xt} converges strongly, as t → 0+, to a point x̃ = P(A+B)−10(0).

4. Applications

Next, we consider the problem for finding the minimum norm solution of a mathematical
model related to equilibrium problems. Let C be a nonempty, closed, and convex subset of a
Hilbert space, and let G : C × C → R be a bifunction satisfying the following conditions:

(E1) G(x, x) = 0, for all x ∈ C,

(E2) G is monotone, that is, G(x, y) +G(y, x) ≤ 0, for all x, y ∈ C,

(E3) for all x, y, z ∈ C, lim supt↓0G(tz + (1 − t)x, y) ≤ G(x, y),

(E4) for all x ∈ C, G(x, ·) is convex and lower semicontinuous.

Then, the mathematical model related to equilibrium problems (with respect to C) is to find
x̃ ∈ C such that

G
(

x̃, y
) ≥ 0, (4.1)
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for all y ∈ C. The set of such solutions x̃ is denoted by EP(G). The following lemma appears
implicitly in Blum and Oettli [19].

Lemma 4.1. Let C be a nonempty, closed, and convex subset ofH, and let G be a bifunction of C ×C
into R satisfying (E1)–(E4). Let r > 0 and x ∈ H, then there exists z ∈ C such that

G
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C. (4.2)

The following lemma was given in Combettes and Hirstoaga [20].

Lemma 4.2. Assume thatG : C×C → R satisfies (E1)–(E4). For r > 0 and x ∈ H, define a mapping
Tr : H → C as follows:

Tr(x) =
{

z ∈ C : G
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C

}

, (4.3)

for all x ∈ H. Then, the following hold:

(1) Tr is single valued,

(2) Tr is a firmly nonexpansive mapping, that is, for all x, y ∈ H,

∥
∥Trx − Try

∥
∥
2 ≤ 〈

Trx − Try, x − y
〉

, (4.4)

(3) F(Tr) = EP(G),

(4) EP(G) is closed and convex.

We call such Tr the resolvent of G for r > 0. Using Lemmas 4.1 and 4.2, we have the following
lemma. See [18] for a more general result.

Lemma 4.3. Let H be a Hilbert space, and let C be a nonempty, closed, and convex subset of H. Let
G : C × C → R satisfy (E1)–(E4). Let AG be a multivalued mapping of H into itself defined by

AGx =

{{

z ∈ H : G
(

x, y
) ≥ 〈

y − x, z
〉

, ∀y ∈ C
}

, x ∈ C,

∅, x /∈ C,
(4.5)

then, EP(G) = A−1
G (0), and AG is a maximal monotone operator with dom(AG) ⊂ C. Further, for

any x ∈ H and r > 0, the resolvent Tr of G coincides with the resolvent of AG, that is,

Trx = (I + rAG)−1x. (4.6)

From Lemma 4.3, Theorem 3.1, and Lemma 4.2, one has the following results.

Corollary 4.4. Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let G be
a bifunction from C × C → R satisfying (E1)–(E4), and let Tr be the resolvent of G for r > 0. Let
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κ ∈ (0, 1) be a constant and S : C → C a ρ-strict pseudocontraction with ρ ∈ [0, 1) such that
F(S) ∩ EP(G)/= ∅. For t ∈ (0, 1), let {xt} ⊂ C be a net defined by

xt =
κ
(

1 − ρ
)

1 − κρ
Sxt +

1 − κ

1 − κρ
Tr((1 − t)xt), (4.7)

then the net {xt} converges strongly, as t → 0+, to a point x̃ = PF(S)∩EP(G)(0).

Corollary 4.5. Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let G be
a bifunction from C × C → R satisfying (E1)–(E4), and let Tr be the resolvent of G for r > 0. Let
κ ∈ (0, 1) be a constant and S : C → C be a nonexpansive mapping such that F(S)∩EP(G)/= ∅. For
t ∈ (0, 1), let {xt} ⊂ C be a net defined by

xt =
κ
(

1 − ρ
)

1 − κρ
Sxt +

1 − κ

1 − κρ
Tr((1 − t)xt), (4.8)

then the net {xt} converges strongly, as t → 0+, to a point x̃ = PF(S)∩EP(G)(0).

Corollary 4.6. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let G be a
bifunction from C × C → R satisfying (E1)–(E4), and let Tr be the resolvent of G for r > 0. Suppose
EP(G)/= ∅. For t ∈ (0, 1), let {xt} ⊂ C be a net generated by

xt = Tr((1 − t)xt), t ∈ (0, 1), (4.9)

then the net {xt} converges strongly, as t → 0+, to a point x̃ = PEP(G)(0).
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