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We introduce an iterative algorithm for finding a common element of the set of common
fixed points of a finite family of closed quasi-φ-asymptotically nonexpansive mappings, the set
of solutions of an equilibrium problem, and the set of solutions of the variational inequality
problem for a γ-inverse strongly monotone mapping in Banach spaces. Then we study the
strong convergence of the algorithm. Our results improve and extend the corresponding results
announced by many others.

1. Introduction and Preliminary

Let E be a Banach space with the dual E∗. A mapping A : D(A) ⊂ E → E∗ is said to be
monotone if, for each x, y ∈ D(A), the following inequality holds:

〈
Ax −Ay, x − y

〉 ≥ 0. (1.1)

A is said to be γ-inverse strongly monotone if there exists a positive real number γ such that

〈
x − y,Ax −Ay

〉 ≥ γ
∥∥Ax −Ay

∥∥2
, ∀x, y ∈ D(A). (1.2)
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IfA is γ-inverse strongly monotone, then it is Lipschitz continuous with constant 1/γ , that is,
‖Ax −Ay‖ ≤ (1/γ)‖x − y‖, for all x, y ∈ D(A), and hence uniformly continuous.

Let C be a nonempty closed convex subset of E and f : C×C → R a bifunction, where
R is the set of real numbers. The equilibrium problem for f is to find x̂ ∈ C such that

f
(
x̂, y

) ≥ 0 (1.3)

for all y ∈ C. The set of solutions of (1.3) is denoted by EP(f). Given a mapping T : C → E∗,
let f(x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then x̂ ∈ EP(f) if and only if 〈Tx̂, y − x̂〉 ≥ 0 for
all y ∈ C; that is, x̂ is a solution of the variational inequality. Numerous problems in physics,
optimization, engineering, and economics reduce to find a solution of (1.3). Some methods
have been proposed to solve the equilibrium problem; see, for example, Blum and Oettli
[1] and Moudafi [2]. For solving the equilibrium problem, let us assume that f satisfies the
following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt→ 0f(tz + (1 − t)x, y) ≤ f(x, y);

(A4) for each x ∈ C, the function y �→ f(x, y) is convex and lower semicontinuous.

Let E be a Banach space with the dual E∗. We denote by J the normalized duality
mapping from E to 2E

∗
defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, (1.4)

where 〈·, ·〉 denotes the generalized duality pairing. Let dimE ≥ 2, and the modulus of
smoothness of E is the function ρE : [0,∞) → [0,∞) defined by

ρE(τ) = sup

{∥∥x + y
∥∥ +

∥∥x − y
∥∥

2
− 1 : ‖x‖ = 1;

∥∥y
∥∥ = τ

}

. (1.5)

The space E is said to be smooth if ρE(τ) > 0, for all τ > 0 and E is called uniformly smooth if
and only if limt→ 0+(ρE(t)/t) = 0. A Banach space E is said to be strictly convex if ‖x+y‖/2 < 1
for x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x /=y. The modulus of convexity of E is the function
δE : (0, 2] → [0, 1] defined by

δE(ε) = inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : ‖x‖ =
∥∥y

∥∥ = 1; ε =
∥∥x − y

∥∥
}
. (1.6)

E is called uniformly convex if and only if δE(ε) > 0 for every ε ∈ (0, 2]. Let p > 1, then E
is said to be p-uniformly convex if there exists a constant c > 0 such that δE(ε) ≥ cεp for all
ε ∈ (0, 2]. Observe that every p-uniformly convex space is uniformly convex. We know that if
E is uniformly smooth, strictly convex, and reflexive, then the normalized duality mapping J
is single-valued, one-to-one, onto and uniformly norm-to-norm continuous on each bounded
subset of E. Moreover, if E is a reflexive and strictly convex Banach space with a strictly
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convex dual, then J−1 is single-valued, one-to-one, surjective, and it is the duality mapping
from E∗ into E and thus JJ−1 = IE∗ and J−1J = IE (see, [3]). It is also well known that E is
uniformly smooth if and only if E∗ is uniformly convex.

Let C be a nonempty closed convex subset of a Banach space E and T : C → C a
mapping. A point x ∈ C is said to be a fixed point of T provided Tx = x. A point x ∈ C is said
to be an asymptotic fixed point of T provided C contains a sequence {xn} which converges
weakly to x such that limn→∞‖xn − Txn‖ = 0. In this paper, we use F(T) and F̃(T) to denote
the fixed point set and the asymptotic fixed point set of T and use → to denote the strong
convergence and weak convergence, respectively. Recall that a mapping T : C → C is called
nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.7)

A mapping T : C → C is called asymptotically nonexpansive if there exists a sequence {kn}
of real numbers with kn → 1 as n → ∞ such that

∥∥Tnx − Tny
∥∥ ≤ kn

∥∥x − y
∥∥, ∀x, y ∈ C, ∀n ≥ 1. (1.8)

The class of asymptotically nonexpansive mappings was introduced by Goebel and
Kirk [4] in 1972. They proved that if C is a nonempty bounded closed convex subset of a
uniformly convex Banach space E, then every asymptotically nonexpansive self-mapping T
of C has a fixed point. Further, the set F(T) is closed and convex. Since 1972, a host of authors
have studied the weak and strong convergence problems of the iterative algorithms for such
a class of mappings (see, e.g., [4–6] and the references therein).

It is well known that if C is a nonempty closed convex subset of a Hilbert spaceH and
PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact actually
characterizes Hilbert spaces and, consequently, it is not available in more general Banach
spaces. In this connection, Alber [7] recently introduced a generalized projection operator
ΠC in a Banach space E which is an analogue of the metric projection in Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the functional defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y

∥∥2
, ∀x, y ∈ E. (1.9)

Following Alber [7], the generalized projection ΠC : E → C is a mapping that assigns to an
arbitrary point x ∈ E the minimum point of the functional φ(y, x), that is, ΠCx = x, where x
is the solution to the following minimization problem:

φ(x, x) = inf
y∈C

φ
(
y, x

)
. (1.10)

It follows from the definition of the function φ that

(∥∥y
∥∥ − ‖x‖)2 ≤ φ

(
y, x

) ≤ (∥∥y
∥∥ + ‖x‖)2, ∀x, y ∈ E. (1.11)

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 andΠC = PC is the metric projection ofH onto
C.
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Remark 1.1 (see [8, 9]). If E is a reflexive, strictly convex, and smooth Banach space, then for
x, y ∈ E, φ(x, y) = 0 if and only if x = y.

Let C be a nonempty, closed, and convex subset of a smooth Banach E and T
a mapping from C into itself. The mapping T is said to be relatively nonexpansive if
F̃(T) = F(T)/= ∅, φ(p, Tx) ≤ φ(p, x), for allx ∈ C, p ∈ F(T). The mapping T is said to
be φ-nonexpansive if φ(Tx, Ty) ≤ φ(x, y), for allx, y ∈ C. The mapping T is said to be
quasi-φ-nonexpansive if F(T)/= ∅, φ(p, Tx) ≤ φ(p, x), for allx ∈ C, p ∈ F(T). The mapping
T is said to be relatively asymptotically nonexpansive if there exists some real sequence
{kn} with kn ≥ 1 and kn → 1 as n → ∞ such that F̃(T) = F(T)/= ∅, φ(p, Tnx) ≤
knφ(p, x), for allx ∈ C, p ∈ F(T). The mapping T is said to be φ-asymptotically nonexpansive
if there exists some real sequence {kn} with kn ≥ 1 and kn → 1 as n → ∞ such that
φ(Tnx, Tny) ≤ knφ(x, y), for allx, y ∈ C. The mapping T is said to be quasi-φ-asymptotically
nonexpansive if there exists some real sequence {kn} with kn ≥ 1 and kn → 1 as n → ∞
such that F(T)/= ∅, φ(p, Tnx) ≤ knφ(p, x), for allx ∈ C, p ∈ F(T). The mapping T is said to be
asymptotically regular on C if, for any bounded subset K of C, lim supn→∞{‖Tn+1x − Tnx‖ :
x ∈ K} = 0. The mapping T is said to be closed on C if, for any sequence {xn} such that
limn→∞xn = x0 and limn→∞Txn = y0, Tx0 = y0.

We remark that a φ-asymptotically nonexpansive mapping with a nonempty fixed
point set F(T) is a quasi-φ-asymptotically nonexpansive mapping, but the converse may
be not true. The class of quasi-φ-nonexpansive mappings and quasi-φ-asymptotically
nonexpansive mappings is more general than the class of relatively nonexpansive mappings
and relatively asymptotically nonexpansive mappings, respectively.

Recently, many authors studied the problem of finding a common element of the set of
fixed points of nonexpansive or relatively nonexpansive mappings, the set of solutions of an
equilibrium problem, and the set of solutions of variational inequalities in the frame work of
Hilbert spaces and Banach spaces, respectively; see, for instance, [10–21] and the references
therein.

In 2009, Takahashi and Zembayashi [22] introduced the following iterative process:

x0 = x ∈ C,

yn = J−1(αnJxn + (1 − αn)JSxn),

un ∈ C, f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Hn =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx, ∀n ≥ 1,

(1.12)

where f : C × C → R is a bifunction satisfying (A1)–(A4), J is the normalized duality
mapping on E and S : C → C is a relatively nonexpansive mapping. They proved the
sequence {xn} defined by (1.12) converges strongly to a common point of the set of solutions
of the equilibrium problem (1.3) and the set of fixed points of S provided the control
sequences {αn} and {rn} satisfy appropriate conditions in Banach spaces.
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Qin et al. [8] introduced the following iterative scheme on the equilibrium problem
(1.3) and a family of quasi-φ-nonexpansive mapping:

x0 ∈ E, C1 = C, x1 = ΠC1x0,

yn = J−1
(
αn,0Jxn + ΣN

i=1αn,iJTixn

)
,

un ∈ C, f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 1.

(1.13)

Strong convergence theorems of common elements are established in a uniformly smooth
and strictly convex Banach space which also enjoys the Kadec-Klee property.

Very recently, for finding a common element of ∩r
i=1F(Ti) ∩ EP(f, B) ∩ VI(A,C) Zegeye

[23] proposed the following iterative algorithm:

x0 ∈ C0 = C,

zn = ΠCJ
−1(Jxn − λnAxn),

yn = J−1
(
α0Jxn + Σr

i=1αiJTizn
)
,

un ∈ C, f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 1,

(1.14)

where Ti : C → C is closed quasi-φ-nonexpansive mapping (i = 1, . . . , r), f : C × C → R

is a bifunction satisfying (A1)–(A4) and A is a γ-inverse strongly monotone mapping of C
into E∗. Strong convergence theorems for iterative scheme (1.14) are obtained under some
conditions on parameters in 2-uniformly convex and uniformly smooth real Banach space E.

In this paper, inspired and motivated by the works mentioned above, we introduce
an iterative process for finding a common element of the set of common fixed points of a
finite family of closed quasi-φ-asymptotically nonexpansive mappings, the solution set of
equilibrium problem, and the solution set of the variational inequality problem for a γ-inverse
strongly monotone mapping in Banach spaces. The results presented in this paper improve
and generalize the corresponding results announced by many others.

In order to the main results of this paper, we need the following lemmas.

Lemma 1.2 (see [24]). Let E be a 2-uniformly convex and smooth Banach space. Then, for all x, y ∈
E, one has

∥∥x − y
∥∥ ≤ 2

c2
∥∥Jx − Jy

∥∥, (1.15)
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where J is the normalized duality mapping ofE and 1/c(0 < c ≤ 1) is the 2-uniformly convex constant
of E.

Lemma 1.3 (see [7, 25]). Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E. Then

φ
(
x,ΠCy

)
+ φ

(
ΠCy, y

) ≤ φ
(
x, y

)
, ∀x ∈ C, y ∈ E. (1.16)

Lemma 1.4 (see [25]). Let E be a smooth and uniformly convex Banach space and let {xn} and
{yn} be sequences in E such that either {xn} or {yn} is bounded. If limn→∞φ(xn, yn) = 0, then
limn→∞‖xn − yn‖ = 0.

Lemma 1.5 (see [7]). Let C be a nonempty closed convex subset of a smooth Banach space E, let
x ∈ E and let z ∈ C. Then

z = ΠCx ⇐⇒ 〈
y − z, Jx − Jz

〉 ≤ 0, ∀y ∈ C. (1.17)

We denote byNC(v) the normal cone for C ⊂ E at a point v ∈ C, that is,NC(v) = {x∗ ∈
E∗ : 〈v − y, x∗〉 ≥ 0, for ally ∈ C}. We shall use the following lemma.

Lemma 1.6 (see [26]). Let C be a nonempty closed convex subset of a Banach space E and let A be a
monotone and hemicontinuous operator of C into E∗ with C = D(A). Let S ⊂ E × E∗ be an operator
defined as follows:

Sv =

{
Av +NC(v), v ∈ C,

∅, v /∈ C.
(1.18)

Then S is maximal monotone and S−1(0) = VI(C,A).

We make use of the function V : E × E∗ → R defined by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2, (1.19)

for all x ∈ E and x∗ ∈ E∗ (see [7]). That is, V (x, x∗) = φ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗.

Lemma 1.7 (see [7]). Let E be a reflexive, strictly convex, and smooth Banach space with E∗ as its
dual. Then,

V (x, x∗) + 2
〈
J−1x∗ − x, y∗

〉
≤ V

(
x, x∗ + y∗) (1.20)

for all x ∈ E and x∗, y∗ ∈ E∗.
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Lemma 1.8 (see [1]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive
Banach space E, let f be a bifunction from C ×C to R satisfying (A1)–(A4), and let r > 0 and x ∈ E.
Then, there exists z ∈ C such that

f
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (1.21)

Lemma 1.9 (see [22]). Let C be a closed convex subset of a uniformly smooth, strictly convex, and
reflexive Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4). For r > 0 and
x ∈ E, define a mapping Tr : E → C as follows:

Tr(x) =
{
z ∈ C : f

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
(1.22)

for all x ∈ E. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
; (1.23)

(3) F(Tr) = EP(f);

(4) EP(f) is closed and convex;

(5) φ(q, Trx) + φ(Trx, x) ≤ φ(q, x), for all q ∈ F(Tr).

Lemma 1.10 (see [8, 23]). Let E be a uniformly convex Banach space, s > 0 a positive number
and Bs(0) a closed ball of E. Then there exists a strictly increasing, continuous, and convex function
g : [0,∞) → [0,∞) with g(0) = 0 such that

∥∥∥∥∥

N∑

i=0
(αixi)

∥∥∥∥∥

2

≤
N∑

i=0

αi‖xi‖2 − αkαlg(‖xk − xl‖) (1.24)

for any k, l ∈ {0, 1, . . . ,N}, for all x0, x1, . . . , xN ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s} and α0, α1, . . . , αn ∈
[0, 1] such that

∑N
i=0 αi = 1.

Lemma 1.11 (see [27]). Let E be a uniformly convex and uniformly smooth Banach space, C
a nonempty, closed, and convex subset of E, and T a closed quasi-φ-asymptotically nonexpansive
mapping from C into itself. Then F(T) is a closed convex subset of C.

2. Main Results

Theorem 2.1. Let C be a nonempty, closed, and convex subset of a 2-uniformly convex and uniformly
smooth real Banach space E and Ti : C → C a closed quasi-φ-asymptotically nonexpansive mapping
with sequence {kn,i} ⊂ [1,∞) such that limn→∞kn,i = 1 for each 1 ≤ i ≤ N. Let f be a bifunction
from C × C to R satisfying (A1)–(A4). Let A be a γ-inverse strongly monotone mapping of C into E∗
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with constant γ > 0 such that F = (
⋂N

i=1 F(Ti))
⋂

EP(f)
⋂

VI(C,A)/= ∅ and F is bounded. Assume
that Ti is asymptotically regular on C for each 1 ≤ i ≤ N and ‖Ax‖ ≤ ‖Ax −Ap‖ for all x ∈ C and
p ∈ F. Define a sequence {xn} in C in the following manner:

x0 ∈ C0 = C chosen arbitrarily,

zn = ΠCJ
−1(Jxn − λnAxn),

yn = J−1
(
αn,0Jxn + αn,1JT

n
1 zn + · · · + αn,NJTn

Nzn
)
,

un ∈ C, f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =

{

z ∈ Cn : φ(z, un) ≤ φ(z, xn) +
N∑

i=1

αn,i(kn,i − 1)Ln

}

,

xn+1 = ΠCn+1x0

(2.1)

for every n ≥ 0, where {rn} is a real sequence in [a,∞) for some a > 0, J is the normalized duality
mapping on E and Ln = sup{φ(p, xn) : p ∈ F} < ∞. Assume that {αn,0}, {αn,1}, . . ., {αn,N} are real
sequences in (0, 1) such that

∑N
i=0 αn,i = 1 and lim infn→∞αn,0αn,i > 0, for all i ∈ {1, 2, . . . ,N}. Let

{λn} be a sequence in [s, t] for some 0 < s < t < c2γ/2, where 1/c is the 2-uniformly convex constant
of E. Then the sequence {xn} converges strongly toΠFx0.

Proof. We break the proof into nine steps.

Step 1. ΠFx0 is well defined for x0 ∈ C.
By Lemma 1.11 we know that F(Ti) is a closed convex subset of C for every 1 ≤ i ≤

N. Hence F = (
⋂N

i=1 F(Ti))
⋂
EP(f)

⋂
VI(C,A)/= ∅ is a nonempty closed convex subset of C.

Consequently, ΠFx0 is well defined for x0 ∈ C.

Step 2. Cn is closed and convex for each n ≥ 0.
It is obvious that C0 = C is closed and convex. Suppose that Cn is closed and convex

for some integer n. Since the defining inequality in Cn+1 is equivalent to the inequality:

2〈z, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2 +
N∑

i=1

αn,i(kn,i − 1)Ln, (2.2)

we have that Cn+1 is closed and convex. So Cn is closed and convex for each n ≥ 0. This in
turn shows that ΠCn+1x0 is well defined.

Step 3. F ⊂ Cn for all n ≥ 0.
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We do this by induction. For n = 0, we have F ⊂ C = C0. Suppose that F ⊂ Cn for some
n ≥ 0. Let p ∈ F ⊂ C. Putting un = Trnyn for all n ≥ 0, we have that Trn is quasi-φ-nonexpansive
from Lemma 1.9. Since Ti is quasi-φ-asymptotically nonexpansive, we have

φ
(
p, un

)
= φ

(
p, Trnyn

) ≤ φ
(
p, yn

)

= φ

(

p, J−1
(

αn,0Jxn +
N∑

i=1

αn,iJT
n
i zn

))

=
∥∥p

∥∥2 − 2

〈

p, αn,0Jxn +
N∑

i=1

αn,iJT
n
i zn

〉

+

∥
∥
∥
∥
∥
αn,0Jxn +

N∑

i=1

αn,iJT
n
i zn

∥
∥
∥
∥
∥

2

≤ ∥
∥p

∥
∥2 − 2αn,0

〈
p, Jxn

〉 − 2
N∑

i=1

αn,i

〈
p, JTn

i zn
〉
+ αn,0‖xn‖2 +

N∑

i=1

αn,i

∥
∥Tn

i zn
∥
∥2

= αn,0φ
(
p, xn

)
+

N∑

i=1

αn,iφ
(
p, Tn

i zn
)

≤ αn,0φ
(
p, xn

)
+

N∑

i=1

αn,ikn,iφ
(
p, zn

)
.

(2.3)

Moreover, by Lemmas 1.3 and 1.7, we get that

φ
(
p, zn

)

= φ
(
p,ΠCJ

−1(Jxn − λnAxn)
)

≤ φ
(
p, J−1(Jxn − λnAxn)

)

= V
(
p, Jxn − λnAxn

)

≤ V
(
p, (Jxn − λnAxn) + λnAxn

) − 2
〈
J−1(Jxn − λnAxn) − p, λnAxn

〉

= V
(
p, Jxn

) − 2λn
〈
J−1(Jxn − λnAxn) − p,Axn

〉

= φ
(
p, xn

) − 2λn
〈
xn − p,Axn

〉 − 2λn
〈
J−1(Jxn − λnAxn) − xn,Axn

〉

≤ φ
(
p, xn

) − 2λn
〈
xn − p,Axn −Ap

〉 − 2λn
〈
xn − p,Ap

〉

+ 2
〈
J−1(Jxn − λnAxn) − xn,−λnAxn

〉
.

(2.4)

Thus, since p ∈ VI(C,A) and A is γ-inverse strongly monotone, we have from (2.4) that

φ
(
p, zn

) ≤ φ
(
p, xn

) − 2λnγ
∥∥Axn −Ap

∥∥2 + 2
〈
J−1(Jxn − λnAxn) − xn,−λnAxn

〉
. (2.5)
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Therefore, from (2.5), Lemma 1.2 and the fact that λn < c2γ/2 and ‖Ax‖ ≤ ‖Ax −Ap‖ for all
x ∈ C and p ∈ F, we have

φ
(
p, zn

) ≤ φ
(
p, xn

) − 2λnγ
∥
∥Axn −Ap

∥
∥2 +

4
c2
λ2n

∥
∥Axn −Ap

∥
∥2

= φ
(
p, xn

)
+ 2λn

(
2
c2
λn − γ

)∥
∥Axn −Ap

∥
∥2

≤ φ
(
p, xn

)
.

(2.6)

Substituting (2.6) into (2.3), we get

φ
(
p, un

) ≤ φ
(
p, xn

)
+

N∑

i=1

αn,i(kn,i − 1)Ln, (2.7)

that is, p ∈ Cn+1. By induction, F ⊂ Cn and the iteration algorithm generated by (2.1) is well
defined.

Step 4. limn→∞φ(xn, x0) exists and {xn} is bounded.
Noticing that xn = ΠCnx0 and Lemma 1.3, we have

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ
(
p, x0

) − φ
(
p, xn

) ≤ φ
(
p, x0

)
(2.8)

for all p ∈ F and n ≥ 0. This shows that the sequence {φ(xn, x0)} is bounded. From xn = ΠCnx0

and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, we obtain that

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0, (2.9)

which implies that {φ(xn, x0)} is nondecreasing. Therefore, the limit of {φ(xn, x0)} exists and
{xn} is bounded.

Step 5. We have xn → x∗ ∈ C.
By Lemma 1.3, we have, for any positive integer m ≥ n, that

φ(xm, xn) = φ(xm,ΠCnx0) ≤ φ(xm, x0) − φ(ΠCnx0, x0) = φ(xm, x0) − φ(xn, x0). (2.10)

In view of Step 4 we deduce that φ(xm, xn) → 0 as m,n → ∞. It follows from Lemma 1.4
that ‖xm − xn‖ → 0 asm,n → ∞. Hence {xn} is a Cauchy sequence of C. Since E is a Banach
space and C is closed subset of E, there exists a point x∗ ∈ C such that xn → x∗ (n → ∞).

Step 6. We have x∗ ∈ ⋂N
i=1 F(Ti).

By taking m = n + 1 in (2.10), we have

lim
n→∞

φ(xn+1, xn) = 0. (2.11)
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From Lemma 1.4, it follows that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.12)

Noticing that xn+1 ∈ Cn+1, we obtain

φ(xn+1, un) ≤ φ(xn+1, xn) +
N∑

i=1

αn,i(kn,i − 1)Ln. (2.13)

From (2.11), limn→∞kn,i = 1 for any 1 ≤ i ≤ N, and Lemma 1.4, we know

lim
n→∞

‖xn+1 − un‖ = 0. (2.14)

Notice that

‖xn − un‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − un‖ (2.15)

for all n ≥ 0. It follows from (2.12) and (2.14) that

lim
n→∞

‖xn − un‖ = 0, (2.16)

which implies that un → x∗ as n → ∞. Since J is uniformly norm-to-norm continuous on
bounded sets, from (2.16), we have

lim
n→∞

‖Jxn − Jun‖ = 0. (2.17)

Let s = sup{‖xn‖, ‖Tn
1 xn‖, ‖Tn

2 xn‖, . . . , ‖Tn
Nxn‖ : n ∈ N}. Since E is uniformly smooth Banach

space, we know that E∗ is a uniformly convex Banach space. Therefore, from Lemma 1.10 we
have, for any p ∈ F, that

φ
(
p, un

)
= φ

(
p, Trnyn

)

≤ φ
(
p, yn

)

= φ

(

p, J−1
(

αn,0Jxn +
N∑

i=1

αn,iJT
n
i zn

))

=
∥∥p

∥∥2 − 2αn,0
〈
p, Jxn

〉 − 2
N∑

i=1

αn,i

〈
p, JTn

i zn
〉
+

∥∥∥∥∥
αn,0Jxn +

N∑

i=1

αn,iJT
n
i zn

∥∥∥∥∥

2
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≤ ∥
∥p

∥
∥2 − 2αn,0

〈
p, Jxn

〉 − 2
N∑

i=1

αn,i

〈
p, JTn

i zn
〉
+ αn,0‖xn‖2

+
N∑

i=1

αn,i

∥
∥Tn

i zn
∥
∥2 − αn,0αn,1g

(∥∥Jxn − JTn
1 zn

∥
∥)

= αn,0φ
(
p, xn

)
+

N∑

i=1

αn,iφ
(
p, Tn

i zn
) − αn,0αn,1g

(∥∥Jxn − JTn
1 zn

∥
∥)

≤ αn,0φ
(
p, xn

)
+

N∑

i=1

αn,ikn,iφ
(
p, zn

) − αn,0αn,1g
(∥∥Jxn − JTn

1 zn
∥
∥).

(2.18)

Therefore, from (2.6) and (2.18), we have

φ
(
p, un

) ≤ φ
(
p, xn

)
+

N∑

i=1

αn,i(kn,i − 1)φ
(
p, xn

) − αn,0αn,1g
(∥∥Jxn − JTn

1 zn
∥∥)

+ 2λn
(

2
c2
λn − γ

)∥∥Axn −Ap
∥∥2

N∑

i=1

αn,ikn,i.

(2.19)

It follows from λn < c2γ/2 that

αn,0αn,1g
(∥∥Jxn − JTn

1 zn
∥∥) ≤ φ

(
p, xn

) − φ
(
p, un

)
+

N∑

i=1

αn,i(kn,i − 1)φ
(
p, xn

)
. (2.20)

On the other hand, we have

∣∣φ
(
p, xn

) − φ
(
p, un

)∣∣

=
∣∣∣‖xn‖2 − ‖un‖2 − 2

〈
p, Jxn − Jun

〉∣∣∣

≤ |‖xn‖ − ‖un‖|(‖xn‖ + ‖un‖) + 2‖Jxn − Jun‖
∥∥p

∥∥

≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2‖Jxn − Jun‖
∥∥p

∥∥.

(2.21)

It follows from (2.16) and (2.17) that

lim
n→∞

(
φ
(
p, xn

) − φ
(
p, un

))
= 0. (2.22)

Since limn→∞kn,i = 1 and lim infn→∞αn,0αn,1 > 0, from (2.20) and (2.22) we have

lim
n→∞

g
(∥∥Jxn − JTn

1 zn
∥∥) = 0. (2.23)
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Therefore, from the property of g, we obtain

lim
n→∞

∥
∥Jxn − JTn

1 zn
∥
∥ = 0. (2.24)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥∥xn − Tn
1 zn

∥∥ = 0, (2.25)

and hence Tn
1 zn → x∗ as n → ∞. Since ‖Tn+1

1 zn − x∗‖ ≤ ‖Tn+1
1 zn − Tn

1 zn‖ + ‖Tn
1 zn − x∗‖, it

follows from the asymptotic regularity of T1 that

lim
n→∞

∥∥∥Tn+1
1 zn − x∗

∥∥∥ = 0. (2.26)

That is, T1(Tn
1 zn) → x∗ as n → ∞. From the closedness of T1, we get T1x∗ = x∗. Similarly, one

can obtain that Tix∗ = x∗ for i = 2, . . . ,N. So, x∗ ∈ ⋂N
i=1 F(Ti).

Moreover, from (2.19) we have that

2λn
(
γ − 2

c2
λn

)∥∥Axn −Ap
∥∥2(1 − αn,0)

≤ 2λn
(
γ − 2

c2
λn

)∥∥Axn −Ap
∥∥2

N∑

i=1

αn,ikn,i

≤ φ
(
p, xn

) − φ
(
p, un

)
+

N∑

i=1

αn,i(kn,i − 1)φ
(
p, xn

)
,

(2.27)

which implies that

lim
n→∞

∥∥Axn −Ap
∥∥ = 0. (2.28)
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Now, Lemmas 1.3 and 1.7 imply that

φ(xn, zn) = φ
(
xn,ΠCJ

−1(Jxn − λnAxn)
)

≤ φ
(
xn, J

−1(Jxn − λnAxn)
)

= V (xn, Jxn − λnAxn)

≤ V (xn, (Jxn − λnAxn) + λnAxn) − 2
〈
J−1(Jxn − λnAxn) − xn, λnAxn

〉

= φ(xn, xn) + 2
〈
J−1(Jxn − λnAxn) − xn,−λnAxn

〉

= 2
〈
J−1(Jxn − λnAxn) − xn,−λnAxn

〉

≤ 2
∥∥∥J−1(Jxn − λnAxn) − J−1Jxn

∥∥∥ · ‖λnAxn‖.

(2.29)

In view of Lemma 1.2 and the fact that ‖Ax‖ ≤ ‖Ax −Ap‖ for all x ∈ C, p ∈ F, we have

φ(xn, zn) ≤ 4
c2
λ2n

∥∥Axn −Ap
∥∥2 ≤ 4

c2
t2
∥∥Axn −Ap

∥∥2
. (2.30)

From (2.28) and Lemma 1.4 we get

lim
n→∞

‖xn − zn‖ = 0, (2.31)

and hence zn → x∗ as n → ∞.

Step 7. We have x∗ ∈ VI(C,A).
Let S ⊂ E × E∗ be an operator as follows:

Sv =

{
Av +NC(v), v ∈ C,

∅, v /∈ C.
(2.32)

By Lemma 1.6, S is maximal monotone and S−1(0) = VI(C,A). Let (v,w) ∈ G(S). Since w ∈
Sv = Av +NC(v), we have w −Av ∈ NC(v). It follows from zn ∈ C that

〈v − zn,w −Av〉 ≥ 0. (2.33)

On the other hand, from zn = ΠCJ
−1(Jxn − λnAxn) and Lemma 1.5 we obtain that

〈v − zn, Jzn − (Jxn − λnAxn)〉 ≥ 0, (2.34)
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and hence

〈
v − zn,

Jxn − Jzn
λn

−Axn

〉
≤ 0. (2.35)

Then, from (2.33) and (2.35), we have

〈v − zn,w〉 ≥ 〈v − zn,Av〉

≥ 〈v − zn,Av〉 +
〈
v − zn,

Jxn − Jzn
λn

−Axn

〉

=
〈
v − zn,Av −Axn +

Jxn − Jzn
λn

〉

= 〈v − zn,Av −Azn〉 + 〈v − zn,Azn −Axn〉 +
〈
v − zn,

Jxn − Jzn
λn

〉

≥ − ‖v − zn‖ · ‖Azn −Axn‖ − ‖v − zn‖ · ‖Jxn − Jzn‖
s

.

(2.36)

Hence we have 〈v − x∗, w〉 ≥ 0 as n → ∞, since the uniform continuity of J and A imply
that the right side of (2.36) goes to 0 as n → ∞. Thus, since S is maximal monotone, we have
x∗ ∈ S−1(0) and hence x∗ ∈ VI(C,A).

Step 8. We have x∗ ∈ EP(f) = F(Tr).
Let p ∈ F. From un = Trnyn, (2.3), (2.6) and Lemma 1.9 we obtain that

φ
(
un, yn

)
= φ

(
Trnyn, yn

)

≤ φ
(
p, yn

) − φ
(
p, Trnyn

)

≤ φ
(
p, xn

)
+

N∑

i=1

αn,i(kn,i − 1)φ
(
p, xn

) − φ
(
p, un

)
.

(2.37)

It follows from (2.22) and kn,i → 1 that φ(un, yn) → 0 as n → ∞. Now, by Lemma 1.4 we
have that ‖un − yn‖ → 0 as n → ∞. Consequently, we obtain that ‖Jun − Jyn‖ → 0 and
yn → x∗ from un → x∗ as n → ∞. From the assumption rn > a, we get

lim
n→∞

∥∥Jun − Jyn

∥∥

rn
= 0. (2.38)

Noting that un = Trnyn, we obtain

f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C. (2.39)
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From (A2), we have

〈
y − un,

Jun − Jyn

rn

〉
≥ −f(un, y

) ≥ f
(
y, un

)
, ∀y ∈ C. (2.40)

Letting n → ∞, we have from un → x∗, (2.38) and (A4) that f(y, x∗) ≤ 0 (for all y ∈ C). For
t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)x∗. Since y ∈ C and x∗ ∈ C, we have yt ∈ C and
hence f(yt, x

∗) ≤ 0. Now, from (A1) and (A4) we have

0 = f
(
yt, yt

) ≤ tf
(
yt, y

)
+ (1 − t)f

(
yt, x

∗) ≤ tf
(
yt, y

)
(2.41)

and hence f(yt, y) ≥ 0. Letting t → 0, from (A3), we have f(x∗, y) ≥ 0. This implies that
x∗ ∈ EP(f). Therefore, in view of Steps 6, 7, and 8 we have x∗ ∈ F.

Step 9. We have x∗ = ΠFx0.
From xn = ΠCnx0, we get

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn. (2.42)

Since F ⊂ Cn for all n ≥ 1, we arrive at

〈
xn − p, Jx0 − Jxn

〉 ≥ 0, ∀p ∈ F. (2.43)

Letting n → ∞, we have

〈
x∗ − p, Jx0 − Jx∗〉 ≥ 0, ∀p ∈ F, (2.44)

and hence x∗ = ΠFx0 by Lemma 1.5. This completes the proof.

Strong convergence theorem for approximating a common element of the set of
solutions of the equilibrium problem and the set of fixed points of a finite family of closed
quasi-φ-asymptotically nonexpansive mappings in Banach spaces may not require that E be
2-uniformly convex. In fact, we have the following theorem.

Theorem 2.2. Let C be a nonempty, closed, and convex subset of a uniformly convex and uniformly
smooth real Banach space E and Ti : C → C a closed quasi-φ-asymptotically nonexpansive mapping
with sequence {kn,i} ⊂ [1,∞) such that limn→∞kn,i = 1 for each 1 ≤ i ≤ N. Let f be a bifunction
from C × C to R satisfying (A1)–(A4) such that F = (

⋂N
i=1 F(Ti))

⋂
EP(f)/= ∅ and F is bounded.
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Assume that Ti is asymptotically regular on C for each 1 ≤ i ≤ N. Define a sequence {xn} in C in the
following manner:

x0 ∈ C0 = C chosen arbitrarily,

yn = J−1
(
αn,0Jxn + αn,1JT

n
1 xn + · · · + αn,NJTn

Nxn

)
,

un ∈ C, f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =

{

z ∈ Cn : φ(z, un) ≤ φ(z, xn) +
N∑

i=1

αn,i(kn,i − 1)Ln

}

,

xn+1 = ΠCn+1x0

(2.45)

for every n ≥ 0, where {rn} is a real sequence in [a,∞) for some a > 0, J is the normalized duality
mapping on E and Ln = sup{φ(p, xn) : p ∈ F} < ∞. Assume that {αn,0}, {αn,1}, . . ., {αn,N} are real
sequences in (0, 1) such that

∑N
i=0 αn,i = 1 and lim infn→∞αn,0αn,i > 0, for all i ∈ {1, 2, . . . ,N}. Then

the sequence {xn} converges strongly toΠFx0.

Proof. Put A ≡ 0 in Theorem 2.1. We have zn = xn. Thus, the method of proof of Theorem 2.1
gives the required assertion without the requirement that E is 2-uniformly convex.

As some corollaries of Theorems 2.1 and 2.2, we have the following results
immediately.

Corollary 2.3. Let C be a nonempty, closed, and convex subset of a Hilbert space H and Ti : C →
C a closed quasi-φ-asymptotically nonexpansive mapping with sequence {kn,i} ⊂ [1,∞) such that
limn→∞kn,i = 1 for each 1 ≤ i ≤ N. Let f be a bifunction from C × C to R satisfying (A1)–(A4).
Let A be a γ-inverse strongly monotone mapping of C into H with constant γ > 0 such that F =
(
⋂N

i=1 F(Ti))
⋂
EP(f)

⋂
VI (C,A)/= ∅ and F is bounded. Assume that Ti is asymptotically regular

on C for each 1 ≤ i ≤ N and ‖Ax‖ ≤ ‖Ax −Ap‖ for all x ∈ C and p ∈ F. Define a sequence {xn} in
C in the following manner:

x0 ∈ C0 = C chosen arbitrarily,

zn = PC(xn − λnAxn),

yn = αn,0xn + αn,1T
n
1 zn + · · · + αn,NTn

Nzn,

un ∈ C, f
(
un, y

)
+

1
rn

〈
y − un, un − yn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =

{

z ∈ Cn : ‖z − un‖2 ≤ ‖z − xn‖2 +
N∑

i=1

αn,i(kn,i − 1)Ln

}

,

xn+1 = PCn+1x0

(2.46)

for every n ≥ 0, where {rn} is a real sequence in [a,∞) for some a > 0 and Ln = sup{‖xn − p‖2 : p ∈
F} < ∞. Assume that {αn,0}, {αn,1}, . . ., {αn,N} are real sequences in (0, 1) such that

∑N
i=0 αn,i = 1
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and lim infn→∞αn,0αn,i > 0, for all i ∈ {1, 2, . . . ,N}. Let {λn} be a sequence in [s, t] for some
0 < s < t < γ/2. Then the sequence {xn} converges strongly to PFx0.

Corollary 2.4. Let C be a nonempty, closed, and convex subset of a Hilbert space H and Ti : C →
C a closed quasi-φ-asymptotically nonexpansive mapping with sequence {kn,i} ⊂ [1,∞) such that
limn→∞kn,i = 1 for each 1 ≤ i ≤ N. Let f be a bifunction from C×C to R satisfying (A1)–(A4) such
that F = (

⋂N
i=1 F(Ti))

⋂
EP(f)/= ∅ and F is bounded. Assume that Ti is asymptotically regular on C

for each 1 ≤ i ≤ N. Define a sequence {xn} in C in the following manner:

x0 ∈ C0 = C chosen arbitrarily,

yn = αn,0xn + αn,1T
n
1 xn + · · · + αn,NTn

Nxn,

un ∈ C, f
(
un, y

)
+

1
rn

〈
y − un, un − yn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =

{

z ∈ Cn : ‖z − un‖2 ≤ ‖z − xn‖2 +
N∑

i=1

αn,i(kn,i − 1)Ln

}

,

xn+1 = PCn+1x0

(2.47)

for every n ≥ 0, where {rn} is a real sequence in [a,∞) for some a > 0 and Ln = sup{‖xn − p‖2 : p ∈
F} < ∞. Assume that {αn,0}, {αn,1}, . . ., {αn,N} are real sequences in (0, 1) such that

∑N
i=0 αn,i = 1

and lim infn→∞αn,0αn,i > 0, for all i ∈ {1, 2, . . . ,N}. Let {λn} be a sequence in [s, t] for some
0 < s < t < γ/2. Then the sequence {xn} converges strongly to PFx0.

Remark 2.5. Theorems 2.1 and 2.2 extend the main results of [23] from quasi-φ-nonexpansive
mappings to more general quasi-φ-asymptotically nonexpansive mappings.
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