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We show that the system of three difference equations x,.; = af,l)xn_z/ (bff) YnZn-1Xn—2 + cflw),

Yni1 = azz)yn—Z/(bizZ)znxn—lyn—Z + CEtZ))r and Zpyl = af) Zn—Z/(bilS)xnyn—lzn—Z + C£l3))l ne NO/ where
all elements of the sequences ag,”, b,({) cﬁp, n € Ny, i € {1,2,3}, and initial values x_j, y_j, z_j,
j € {0,1,2}, are real numbers, can be solved. Explicit formulae for solutions of the system are
derived, and some consequences on asymptotic behavior of solutions for the case when coefficients
are periodic with period three are deduced.

1. Introduction

Studying nonlinear difference equations and systems is an area of a great interest nowadays
(see, e.g., [1-39] and the references therein).
This paper studies the system of three difference equations

1 2
aiz )xn—2 aiz >yn72

Xn+l = 1 1 Yn+1 = > X
b )ynzn—lxn—Z +cV bz Yno + e
(1.1)
a9z,
Znl = 3 L 3’ n € Ny,
by XnYn12no + Cp
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where all elements of the sequences a,(f ), bfj ), cff ), n € Ny, i € {1,2,3}, and initial values x_j, y_j,

z_j,j € {0,1,2} are real numbers. The cases when both b,(f) and cﬁf ) are equal to zero for some
fixed i € {1,2,3} and an n € Ny, are not interesting so they are excluded. In [37] we have
shown that system (1.1) for the case when the sequences as), b;i), cs), neNyie (1,23},
are constant can be explicitly solved (if solutions are well defined). Some recent results on
solving difference equations can be found, for example, in [6, 7, 12, 24, 25, 34, 35, 38, 39]. For
some old results see, for example, classic book [14].

Note that the solutions of (1.1) such that all sequences aili), b,(f), cﬁ,i), neNy,ie{l,2,3},

and initial values in system (1.1) are positive, are also positive, that is,

x>0, y,>0, z,>0 foreveryn>-2, (1.2)

so that there are a lot of well defined solutions of the system. In fact, for “majority” initial
values of system (1.1), solutions are well defined, but we will not discuss the problem here.
Instead of that we assume, throughout the paper, that solutions of (1.1) are well defined. We
also adopt the customary notation [T5,,,¢i=1and 3¥,., ¢ = 0.

We show that in the main case, system (1.1) is transformed to a third-order system of
nonhomogeneous linear first-order difference equations, which can be explicitly solved.

This idea appeared for the first time in [24] for the case of the scalar equation with
constant coefficients corresponding to system (1.1) and was also used later in [1, 4]. Some
related transformations are used also in [25, 30]. For a different approach in dealing with
the scalar difference equation see [2, 3]. For some related scalar difference equations see, for
example, [8, 13, 26] and the related references therein. Some related results on systems of
difference equations can be found in [11, 15-22] (see also references therein).

Here we give explicit formulae for solutions of system (1.1) and present some con-
sequences on asymptotic behavior of the solutions for the case when coefficients are periodic
with period three.

2. Case a,(f) =( for Some i€ {1,2,3} and All n € N,

If aﬁll) =0, n € Ny, then the first equation in (1.1) becomes

x,=0, neN, (2.1)

so that from the second and the third equations and since the solution is well defined we get

a(Z) a(s)
Yn2 = ?_2-;1yn—1/ Zn+1 = %ZH—ZI neN, (22)

n+1 n
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c? 20+#c?, n €N, from which it follows that

n+1

(2) a?

Yanel = yll_[ oK Yane2 = yzH (]+1, Yan=Yo) |~

j=1¢ 3j 3]+1

(3) a®
3]+1

Z3n+l = le | 3’ Z3p-1 = Z- 1| | @)’ Z3n = 20

j=1 C3; j=0 C3j4q

If af) =0, n € Ny, then the second equation in (1.1) becomes

¥y,=0, neN,

so that from the first and the third equations we get

3
_ 11511) a£1+)1
Xn+1 = Wxn—L Zp2 = @) —a Zn-1s
Cn n+l

CS) #0+# c,(i)l, from which it follows that

1) 2w

3]+1
x3n+1—x1| I '’ X3p-1 = X- 1| | O

j=1 C3; j=0 C3j1q j=1 G35
(3) (3) (3)
z =2z g e z ZH3]+1 ZH neN
3n+l = . 3)’ 3n+2 = 42 (3) s 0 (3) s .
j=1 C5; =1 G351 C3j-1

Finally, if a? =

z, =0, neN,

so that from the first and the second equation we get

a(1>1 af)
Xnt2 = O — Xn-1, Yni1 = Wyn—b
C

n+l n

neN,

n ad,
xOH (1) ’

=0, n € Ny, then the third equation in (1.1) becomes

neN,

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
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) #0# c,(f), from which it follows that

n+1

(1)
n
3+1
X3ni1 = X1H (1) X3ns2 = in RO X3n = XOH (1) , neN,

3;+1 3; -1
(2.9)
a9 v a®,
3 +1
Yansl = y1H Q) Y1 =Y- 11_[ @ s Y= ]/OH o s ME N.
j=1 €35 j=0 €341 j=1 G351

3. Explicit Formulae for the Case al 7é 0 for Alli € {1,2,3} and n € N,

Here we consider system (1.1) in the case when a 76 Oforalli € {1,2,3} and n € Nj. Noticing
that in this case, system (1.1) can be written in the form

x _ Xn-2 y _ Yn-2
n+l — =1 17 n+l — 2’
b Yz 120 + b 2y Xn 1Y + 5 31)
. .
Zptl = =G n2 ) n € Ny,
b XnYn-1Zn-2 +Cp
where b = b /g 9 = D /50 G ¢ {1,2,3}, we see that we may assume that a® =1, for
every n € Ny and for each ie{1,2,3}.
Hence we consider, without loss of generality, the system
x _ Xn-2 y _ Yn-2
n+l — 1 I n+l — >
bSl )ynznflxn72 + C‘El ) b£1 )ann 1yn 2+ C‘El )’
. (3.2)
_ n-2
Znel = ) m €N

by XnYn12Zn— + Cp

using the same notation for coefficients as in (1.1) except for the coefficients ay, assuming

that a,(f) =1forallie {1,2,3} and n € Ny.

First we consider the case when some of initial values of solutions of system (3.2) is
equal to zero.

If x,,, = 0 for some ny € N then from (3.2) it follows that x,,_3x = 0, for each k € Ny
such that ng — 3k > —-2. Hence, we have that x_, = 0 or x_; = 0 or xo = 0.

If x_, =0, then x3,0 = 0, n € Ny, which implies

1 1
Y3ns3 = e o Y Zm2 = g Zem-l, ME No, (3.3)
3n+2 Csn+1
and consequently
Yo Z
Yan = ——CT Z3n+2 = 0 n € Ny. (3.4)

ITjz0 340 ITj=0¢3):1
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If x4 =0, then x3,.1 = 0, n € Ny, which implies

1 1
Yol = —yYan-2,  Zamsd = —g—Zam,  ME No, (3.5)
3n 3n+2
and consequently
) Zo
Yans1 = —SL/ o = _— o5 nE€ No. (3.6)
IT j=0C3; ITi= C3j42

If xg = 0, then x3,, = 0, n € Ny, which implies

1 1
Yone2 =~ Yan-1,  Zonel = —gyZam2,  ME No, (3.7)
3n+1 3n
and consequently
-1 Z_2
Ysni2 = ny—(z)/ el = ——5 NE Np. (3.8)
ITj=0¢55: j=063;

If y,, = 0 or z,,, = 0 for some n; € N then similar results are obtained analogously.

3.1. Main Case

Here we study well-defined solutions of system (1.1) when neither of the sequences (as ))neNO,
i € {1,2,3}, or initial conditions x_;, y_;, z_;, i € {0,1,2}, is equal to zero. Recall that we may
assume that as) =1, for every n € Ny and for eachi € {1,2,3}.

Following the idea in [37], we use a transformation which reduces nonlinear systems
(1.1) and (3.2) to third-order systems of nonhomogeneous linear difference equations.

If we multiply the first equation in system (3.2) by y,z,-1, the second by z,x,_; and

the third by x,1,-1, and then using in such obtained system the change of variables

1 1 1
Upyl = ————— Un ;o Wnil = —
Zpn+1XnYn-1

= — n>-1, (3.9)
Xn+1YnZn-1 Yn+1ZnXn-1

the system is, for n € Ny, transformed into

1 1
Up1 = C1(1 )vn + b1(1 )/

Vni1 = 5w, + b7, (3.10)
3 3
Wpt1 = C'El )un + biz )~
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System (3.10) implies that for n > 2

w1 = e e + e 0P+ eV + b, (3.11)
1 2) (3 2) (3 1 2)1.(3 2

Uyl = cflf)zc,(1 )cfl_)lvn_z +cl )Ci_)lbijz +cl )bi_)l +b, (3.12)

Want = C i Wy + ey e b, + b + by, (3.13)

where values for uy, vy, wy are computed by (3.9) with n = -1.
Equation (3.11) implies that the sequences (u3n+i) e, i € {0,1,2}, are solutions of the
first-order linear difference equation

_ (2) (3) ) (1) (2) (3)
Usnei = Capi 1CanrioaCansiaU3(n=1)+i + C3pi 1Cansi2bansia

(1) (2) (1)
+Cp1io1P3nsiia + D3pniins

(3.14)
n € N.

Applying the well-known formula for solutions of first-order difference equation we
have that the general solution of equation (3.14) is

n

T @@
Un+i = qu<C3j+i—103j+i—zc3j+i—3>

=1
(3.15)
n n
(1) (2) 3) 1) ) 1) o (2) ©)
+ 2 <C3l+i—1c31+i—2b3l+i—3 + i Dathin b3l+i—1> [ ] <C3j+i—1c3j+i—2C3j+i—3>
=1 j=ii

for every n € Nand eachi € {0,1,2}.
From (3.12) we get that the sequences (v34+i) e, I € {0, 1,2}, are solutions of the first-
order linear difference equation

. (2) 3) . (2) (3) 1)
Usnti = Capri 3C3n4i-1Canio2V3(n-1i + Canyii1CapriaDapniiss

@ L0 @) (3:16)
+ C3psic1Oaniin + O3piicn, MEN,
from which it follows that
(O @ O
U3n+i = UiH(C3j+i—3c3j+i—1c3j+i—2>
j=1
(3.17)
n n
) ©) o 2 3) ) © ) 3)
+2> <C3l+i—1c3l+i—2b3l+i—3 + i1 Daeia b3l+i—1> I <63j+i73c3j+i—163j+i—2>'
=1 j=14

for every n € Nand eachi € {0,1,2}.
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From (3.13) we get that the sequences (wsn+i),en,, i € {0,1,2}, are solutions of the
first-order linear difference equation

Wane: = C(l) C(2) C(3) w )
3n+i = €35412C314i-3C3n+i-1 P3(n-1)+i

M G O @ M @) (3.18)
+ Cric2Cansi1Pansioa T CanriciPansica ¥ Oapuir M EN.
Hence, for every n € Nand each i € {0,1,2}, we have that
(O @
Wan+i = wil_[<C3j+i—2C3j+i73C3j+i—l>
i=1
(3.19)
n n
1) 3) (2) 3) 1) 3) 1 (2) ®3)
2 <C31+i—2C31+i—1b3l+i—3 + i bain b3l+i—1> I1 (c3j+i—2c3j+i—3c3j+i—1>‘
I=1 j=l+1
Now note that from (3.9) we have
1 Uy, 1 Wy,
Xn+l = = Xn-2, Yni1 = = Yn-2,
Un+1YnZn-1 Un+1 Un+1ZnXn-1 Un+l
(3.20)
1 u,
Zpl = = Zn2, n€Np.
Wn+1XnYn-1 Whn+1
Hence
n e U3jyi .
Xansist = Xia] | , meNy, i€{0,1,2}, (3.21)
j=0 Uzj+i+l
N W) .
Yansisl = yi—zn , neNy, i€{0,1,2}, (3.22)
j=0 U3j+i+1
N U3je .
Z3n+itl = Zi—ZH ’ ne NO/ (NS {0/ 1/2} (323)
j:O w3j+i+1

Applying (3.15), (3.17) and (3.19) in (3.21)—(3.23), we get explicit solutions of system
(3.2) in terms of sequences b,(f), cg,’), neNy, i€ {0,1,2}.

The results in this section can be summed up in Table 1.
Remark 3.1. Formulae for the solutions of system (3.2) when some of the numbers bs ), cs ),
n € Ny, i€ {0,1,2} are zero follow from the formulae given in Table 1.
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Table 1
Case Formulas for well-defined solutions of system (3.2)
Yo _
X, =0 X3p2=0, Y3, = l_[" — TR Z3n+2 = 1_[—(3)/ n € Ny
j=0C3j+2 j=0C3)+1
- __ Y=
x4 =0 X3n-1 =0, Yane1 = — . l— O n €Ny
j=0C3; [Tiz0 35502
- -2
xo =0 0 =0, Ysna2 = —=—5—/ Zanr1 = & "€No
j=0C3j41 j=0C3;
20
Y2 =0 Y2 =0, Zan = ———5—, Xan2 = o "€No
j=0C3j42 j=0€3j41
Z-2 X0
_ Yan-1 =0, Zans1 = S Xan = , €Ny
Y= 0 n C(3) Hn—lc(l)
j=0%3j j=0"%3j+2
Z-1 -2
Yo=0 Yon =0, Zans2 = ——a—, Xapu1 = o €N
j=0C3j+1 j=0C3j
_ _ X0 _ Y-1
z,=0 Z3n—2 = 0, X3, = T a Yans2 = " @ neNy
=0 C3j+z j=OC3j+1
X2 Yo
_ Z3n-1 =0, X3u41 = ; Yan = , n€Ny
z1=0 n (1) n-1_(2)
j=0C3; [Tiz0 3502
X1
20=0 an =0, X3ni2 = ——a=/ Yanr1 = @ "€No
j=0C3j41 j=0C3;
o U3j+i o Ws3j+i o Ugj+i
X3n+itl = xi—ZHu s Y3n+itl = Yi-2 = s Z3n+ivl = Zi- 2Hw
j=0H3j+i+1 j=0Y3j+i+1 j=0 3]+1+1
nelNy, i€ {0,1,2}
n
— . (1) 2 3)
Usn+i = u’H(C3]+1 1C3]+1 2C3]+1 3)
(1) 2 ®3) (1) (2) (1) ) (2) (3)
x_i#0# Yy +Z(C31+1 131+i-2P314i3 + Capii Do + 31+i—1),1:[ (C3]+1 163j+i-2 3]+i—3)’
f=n
2. #0, . RGN
3n+i — ”UIH(C C )
c {0/ 1/2} 3j+i-373j+i-1 3]+1 -2

(2) (3) 1)
+Z(CSI+1 1C314i-2b3105 +

(1)

2 3) )

W3n+i = le(C3/+l 263j4i-3C3j+i-1

j=1
n
1)
+z§ (S350

B 2
Caltie 1b3l+1 3

(2) (3) (2) 1) (2) (3)
C1ricPatsion + Oyl 1) H (C3]+l 3€3)+i-1C3)+i— )
(3) 1) (3) (1) (2) (3)
Cap1ic1Patiioa + O3 1) H (€3/4+i-23/+i-3C37+i-1)

4. Some Consequences

4.1. Case aff)yéOforie {1,2,3} and n € Ny

First we use the formulae in Section 3 to get solutions of system (1.1), when al) #0fori €

{1,2,3} and n € Nj.
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Table 2
Case Formulas for well-defined solutions of system (1.1)
) (3)
n-1 a,. n A,
3j+2 3j+1
xo=0 X3p2=0, Y3 = yoH ) Z3n42 = Zfln B ) n € Ny
=0\ €340 =0\ G
2 3
n aé]) n-1 agjiz
x1=0 X3n-1 = 0, Yot = y2II —5 ), 230 = 20I1| —5~ ), n€No
=0\ 3 =0\ 3142
(2) (3)
n o f Az n [ 4
x0=0 X3n =0, Yani2 = yfll'[ o ) P = Zfzn - ) "€ No
=0\ G =0\ ¢
(3) 1)
n-1 a,. n a,.
3j+2 3j+1
Yy2=0 Yan-2 =0, z3n = 20]1| —5; >, xani2 = Xl I{ — >, n €Ny
=0\ Gjin =0\ €314
3 1
n Lléj) n-1 ai(ij)+2
y-1=0 Yon1 = 0,200 = 221\ —57 ), Xan =xII| —5~ ), n€No
=0\ &5 =0\ €342
(3) 1)
n Qi n [ a;
Yo =0 Yan =0, Zan2 = 211] & ) Xenn = x2]1 @ ) ne Ny
=0\ €341 =0\ ¢35
1) (2)
nl [ Q35,9 n o f Az
z,=0 zan2 =0, xan = %01\ —5= ), Ysn2 =yall| —5— ), n€No
=0\ Gjia =0\ €341
1) ()
n s nl f G350
z1=0 z3n-1 = 0, X3n1 = x2] ] ) Y= oIl o ) "€ Np
=0\ &3 '\ Gj+2
1) )
n f Qs n f as;
zo=0 z3n =0, X3p2 = x—ln ) Y = ]/721_[ o ) "€ Ny
=0\ €311 =0\ &3
o U3j+i o W3j+i
X3p4ir1 = Xi2] | , Yansiel = Yi2 [ [ —,
j=0 U3j+i+1 j=0U3j+i+1
o U3j+i .
Z3p+i+l = Zi*ZH , NE NO/ [AS] {0/ 1/2}
j=0 W3j+i+1
1) () (3)
6341934003403
Yo =Wl L7073y )
1= 8511951029343
x_ i #0# vy (1) (2) (3) (1) 2) (1) (1) (2) (3)
z;#0, +§: Caria Casiobairics | CatricaPaica | Pansina C3j+i-13j+i-23j+i-3
= 1 (2) 3) 1) 2 1) P 1) (2) B 7
i€{0,1,2} FUN 34ic1 %2313 BasictBarvice Fapicr / 77 B340 1934 0337403
1) 2 (3)
631403031401 C3ji2
Vo =0T )
1944553931193
@ B O @ 10 ) PR C)
N i Catris1asi2Pasics  Catrie1 Papeio alvicl \ 1y S3j+i-33)+i-153)+i-2
= (2) (3) 1) (2) 3) (2) P 1) (2) @ 7
FUN %34ic1%314i2%314ie3. Bavic1Bwice Garvic1 /171 O34 3035 1935050
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Table 2: Continued.

Case Formulas for well-defined solutions of system (1.1)

1) (2 ®3)
n C3i4i9C354i-3C3]4i-1

1) (2 (3)
j=1 a3]+1 2a3]+1 3a3]+1 1

o 6 @ G O o) o @ 0
<c3l+1 2C314i-1P30i3 + Caryio1Paiioa . b31+i1> o C34i003j4i-363)4i-1

W3n+i = Wi

=

+Z

() 3) 2) ®3) (1) ®3) (1) (2) ®3)

A1sioBa1i1 Faiics FarviciBatvica Farvic1 /771 33100 993540 3934

For this we replace sequences
b, o ief{1,23), @1

in formulas of Section 3 with sequences

b(i) (i)
Ino L ied1,2,3). (4.2)
a(l) a(l)

n

n

We arrange these formulae in Table 2.

4.2. Case bg), c,(f), n € Ny, i € {1,2,3} Are Period-Three Sequences
Now we get formulae for solutions of system (3.2) when the sequences b, ¥
i € {1,2,3} are periodic with period three.

If this holds then from (3.15) we have that

, n € Ny,

n n
— 1 .2 .03 1 (2 (3) (1) 1,(2) 1) 1 () .3
U3n+i = uiH( 1+2C1+1C ) + Z( z+2cz+1 bz 1+2b1+1 + bz+2> H < z+2C1+1C >
j=1 I=1 j=1+1

n
- @ .6 @@ 4 D@ M @ .2 e
= Ui (Cz+2C1+1 ¢ ) + ( 1+2C1+1b 1+2b1+1 b1+2>z< Ci2Cin1 € > (4.3)

=1
1 .2 .03
C. ,C. C
— ® .2 3 @50 4 D@, pM) <1+2 i+1 )
= Ui (C1+2c1+1c ) +( 1+2c1+1b1 1+2bz+1 +b1+2> 1 @2 ()
1-c¢;5¢6
i+27i+1

for every n € Ny, when cl(i)zcl(f)lc(s) #1, for some i € {0,1,2}, while

_ 1) ,(2) (3) (1) () 1)
Usn+i = Ui + < CioCint bz z+2b1+1 + bz+2> (4.4)

when cHzcl(ﬂcB) =1, forsomei € {0,1,2}. Here we regard that c(]) Fj), forsomej € {1,2,3},

i€1{0,1,2} and k > 3, when k =i (mod3).
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Similarly, we get

i+1

™ @ 6)\"
1—<ci C;iinC )

_ @@ B\ (2) .(3)4,(1) (2)1,3) (2)
U3n+i = Ui (Ci Ci+2ci+1> + <Ci+2ci+1bi +¢iabig + bi+2> D@ 06 (4.5)
1-c ¢ hc
i +27i+1
for every n € Ny, if clgl)ci(f)zcg #1, for somei € {0,1,2}, and
2) 3).(1 2),.(3 2
Usn+i = Ui + (ci(+)2ci(+;bi( ) + C§+>2b§+i + bi(+;>n (46)
for every n € Ny, when clgl)cl.(f;cg =1, forsomeie€ {0,1,2}.
Finally
n
1- <c.(1)c§2)c.(3)>
_ m_ @ _3\" (OO RO PRORIEING) T T2
Wan+i = wi<ci+1ci Ci+2> + <Ci+1ci+2bi + b +bi+2> o206 (4.7)
1-c.;c”c
+171 i+2
1) (2 (3 .
for every n € Ny, when c;,j¢;”c;.5 #1, for some i € {0,1,2}, and
1) (3) L2 3),.(1 3
Wan+i = Wi + <C1(+;Cz(+;bz( ) + Ci(+)2bi(+i + b§+)2>n’ (48)

for every n € Ny, when c?lic.i(z) cf_)z

1+
If we assume that a,(f) #0foralli € {1,2,3} and n € Ny, that these three sequences are
also periodic with period three, and replace the sequences in (4.1) with the corresponding
in (4.2) we get formulae for solutions of system (1.1) when the sequences as), b,(f), and CS >,
n € Ny, i€ {1,2,3} are periodic with period three.

These formulae follows from above obtained ones and are summarized in Table 3.

=1, for somei € {0,1,2}.

5. Some Applications

Using above listed formulae the behavior of solutions of system (1.1) or (3.2) can be
described. We will present here some results which can be obtained from these formulae,
to demonstrate how they can be used. Before we formulate the results note that if c,(f ), n € Ny,
j €{1,2,3} are periodic with period three, then

®_@ 6 _ 1 @ 3 M @ .6 _ 1) 2.0
Ci Cip2Civ1 = CinaCinnCisy i+1€i+3Ci+2 = €16 Civor (5.1)
1 2 G _ 1) (2) (3)
CinCinCi = CinCinCise (5.2)
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Table 3
Ca Formulas for well-defined solutions of system (1.1) with period-three
s¢ coefficients
n U3+ o W3j+i
xi#20#y Xsin1 = Xio] | —— Yansie1 = Via] | thi

7 7
j=0 U3j+i+l j=0U3j+i+1

o U3j+i .
z;#0,i€1{0,1,2} Z3n+it] = Zi—ZHw3 = neNy, i€{0,1,2}
j=0 j+i+
1 (2 ) 1) (2)4,3) (1) 1,(2) (1)
_ Cin2Cin€i 1 e = " + CivaCinbi ciobin  bip \1-47 neN, i€{0,1,2)
N=—m o e snei = Uilfy 0,06 0o h )Tog’ o o
Ai128;14; i+2@i119; 128 i+2
1 (2) .©3) 1) (2)4,3) (1) 1,(2) 1)
_ GiCinC o Ci 12 b; Ciobiiy 2 .
"= o @ Ui =Wt | —q GGt o om ) nENe 1€ {01,2)
2419 ;129,19 211 i+2
1) .(2) (3) (2) (3)4,(1) (2)1,3) (2)
_ S CiCin #1 o = o 4 CiraCini b Cinbin | bin \1-43 neNy, i€ f{0,1,2)
2="0 @ 0 Snvi = Vil ® 6.0 0.6 o )T g o 1,
a; a0, ;12919 A1 i
1) .(2) (3) (2) (3)4,(1) (2)1,3) ()
_ G CipCi _ CiiaCinb; Ciabi b .
=00 6 Ui =Vt | o g m t o e e ) €N 1€{0.1,2)
a; 4 2814 2% i+2
1) (2 (3) 1) (3)4,(2) (3)4,(1) (3) n
c...c.”c C.,1C:ob: c:ob: b, -q
_ i+l i+2 L on i+17i+2710 i+270+1 i+2 3 .
B=n o@oe Pl WGt g Gt e n t g )7, e N i€(012)
ai19; Ay 11942 A28 Gy
M2, .G @0 6
_ i+l i+2 C. 1C. zb, C: ZbA 1 b > .
B 0,00 T Wi wit | GG g 5 Jn neNo, 1€{0,1,2)
i+17 i+2 ai+1ai+2ai ai+2ai+1 ai+2

(()R0)]

Theorem 5.1. Consider system (3.2). Let the sequences by, ¢, n € Ny, j € {1,2,3} be periodic

with period three,

M) @0 4 D@ L O

when c; ;¢

+37 427 0+1

(2) (3)4,(1) (2)1,3) (2)
- CinCiby + bl + b

T @,0) , (1)@ 07
Ciy3Cinabiyy + Ciisbin + b3

Ui — Uiy

=0 0,06, 0,0 . .0
Ci3Ciabi + ¢isbi, + b3

(5.3)

U; + Uiy

1) (2)1,3) 1) 4,2 @’
Ci3Ciabi + Cisbin + b3

ri ==

#0, and for some i € {0,1,2} the following condition holds:

i+2 i+3

M@ 8 _1

Ci CiaCin (5.4)

Then if X311 # 0 for every n € Ny, the following statements hold:

(a) 1f|Pz| <1, then x3u4is1 — 0,851 — o0,
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(b) if |pi| > 1, then |x3,4i11] — o0, a5 1 — o0,

(c) ifpi=1and q; <0, then x3y4:1 — 0,451 — oo;

(d) if pi = 1 and g; > O, then |x344is1] — 00,451 — o0;

(e) if pi = 1 and g; = 0, then X3,.i11 1S convergent;

(f) if pi = -1and r; > 0, then x34451 — 0,451 — o0;

(g)if pi = —1land r; <0, then |x3u4i+1] — o0, as 1 — oo, so that Xgpiis1 — +oo and

Xentisd — —O0, OF Xepsis]l — —O0 ANd Xepyisa — +00AS N — O0;

(h) If pi = -1 and r; = 0, then Xen+is1 AN Xen+isa are convergent, asn — co.
If cl(i;cff)zbfﬁ + cfi;bff)z + bg; = 0, then the following statements hold:

o\ - 2) (3)4.(1 2)1.3 2
(i) if ¢ M + 26 +b2) 20, then |x3p1i1] — o0, a5 1 — o0;

) if e oM +c2p) + b2

+27i+1 i+27i+1 i+2

=0, then

n+l
(%1
X3n+itl = xi—2< > . (5-5)

Uil

Proof. (a), (b) From (3.21), (5.4) and (5.1), we have that for each i € {0,1,2}

U3j+i
X3n+i+l = Xi-2 —
j:O u3]+l+l
5.6)
(2) 3), @) (24,3 @\ (
no Uit <Ci+2Ci+1bi +Ciabi + bi+2>]

= Xi-2 ’
n (1) .(2)1,(3) (1) 1,(2) MY
j=0 Uiy1 + (Ci+3ci+2bi+l + b + bi+3>]

for every n € Ny.
Since

(2) [(3)1,(1) (2)4,3) (2)
v + <Ci+2ci+1bi +ciabiy + bi+2>”

020, (0@ 0

lim =pi,
Wiv1 + <Ci+3ci+2 i1+ Cis3Vin2 z+3>"

n—oo

(5.7)

the results in (a) and (b) follow from (5.6) easily.
(c), (d), (e) Since p; = 1, we have that

U3n+i Ui Ui+l

=1 1+ 1+
U3p+i (1) (2)1,3) 1)4,2) (1) (1) .(2)1,(3) (1) 1.,(2) (1)
Snitl <Ci+3ci+2bi+1 +e b + bi+3>" <Ci+3ci+2bi+1 +¢3bi + bi+3>"

gi 1 qi 1
=1+ W +O<F> = eXp(; +O<ﬁ>)' n — oo.

(5.8)
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From (5.8) and by using well-known asymptotic relation

zn: 1 ~1Inn, (5.9)

j=no

where we assume 1y > 1 and n — oo; the results in (c), (d), and (e) easily follow.
(f), (g), (h) Since p; = -1, we have that

-1

Osn+i _ _ Ui Ui+l
U3pti (1) (2)1,03) 14,2 1) (1) (2)1,3) (1) 1.(2) (1)
Snitl <Ci+3ci+2bi+1 +Cabin + bi+3)” <Ci+3ci+2bi+1 +Ciabin + bi+3>”

Ti 1 _ _2 l .
_—<1—;+O<;>>— exp< n+o<n2>>' n 0.

From (5.6), (5.10) and asymptotic relation (5.9) the results in (f), (g), and (h) follow.
(1), (j) These two statements follow easily from (5.6). O

(5.10)

Remark 5.2. 1f x34,+is1 = 0 for an ng € Ny, then by (3.2) we get x3,4i+1 = 0, for n > ny, which is
the reason why we posed the condition x3,.i.1 #0, for every n € Ny, in Theorem 5.1. Similar
conditions will be posed in the theorems which follow.

Theorem 5.3. Consider system (3.2). Let the sequences b,(j ’ , c,(j ), n € Ny, j € {1,2,3} be periodic
with period three,

1) (3)1,(2) (3)4,(1) (3)

B = CiCigb " +¢iob) + b,
@ 3D (2)1,3) 27

Cii3Cinabiy) + Ciisbin + b3

~ Wi — Vi1
=0 6,0 . 2,0 .0’ (5.11)
Ci3Ciabi + Ci3biy + b3

~ Wi + Uiyl

rl‘ = 7
(2) [(3)4,(1) (2)4,3) (2)
Cii3Cinabiy) + Ciisbin + b5

when cl(f;cl(f)zbfﬂ + cl(f;bl(f; + bff; #0, and that for some i € {0,1,2} the following condition holds

M@0 _q

Cin1Ci43Ci2

(5.12)

Then if Y3p.ia1 #0 for every n € Ny, the following statements hold:
() if |pil <1, then yapsinn — 0,451 — oo;
(b) lf|ﬁl| > 1, then |y3n+i+1| — 00, A5 N — QO;
(c) if pi=1and g; <0, then yzpsis1 — 0,45 1 — oo;
)

(d) if pi = 1and g; > O, then |y3p4is1| — 00,451 — o0;
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(e) if pi = 1 and g; = 0, then Y3p4iv1 1S convergent;

(f) if pi = -1and 7; > 0, then Y341 — 0,451 — o0;

(g)if pi = —1and 7; < 0, then |Yzp+is1| — o0, a5 1 — o0, 50 that Yepsis1 — +oo and
Yonsisd — —00, OF Yonsisl — —00 ANd Yoppissa — +00aASH — 0]

(h) if pi = =1 and 7; = O, then Yep+iv1 and Yen+iva are convergent, as n — oo.

@b + @)+ b2)

i43Ci120i41 T Ciy3Pin T 03

=0, then the following statements hold:

(i) if ¢ eDbP + cOb) 1+ b2) 20, then |yspeina| — o0, as n — oo;

i+17i+2 i+270+1 +
AN e (1) 3@ (3) (1) ®3)
() if ci1Cinabi™ +€iabyy +bify = 0, then
w; n+1
Yanvisl = yi—2< . > . (5.13)
Ui+l

Proof. From (3.22), by using condition (5.12) and the second equality in (5.1), we have that

1 3)1,(2) 3y, @)Y
no Wit <Ci+1ci+2bi +Ci+2bi+1+bi+2>]

. @ B0, @30 @Y.
j=0 Vis1 + (Ci+3ci+2bi+1 + b + bi+3>]

Y3n+itl = Yi-2 (5.14)

foreachi € {0,1,2} and every n € Ny, from which the results in this theorem follows similar
to Theorem 5.1. O
Theorem 5.4. Consider system (3.2). Let the sequences b, V) n e N, j € {1,2,3} be periodic
with period three,

M @250 | 0@ 4O

pr = Ci12%i1Y; 2%+ T Vi
L 1) 302, )M, 107
CiinCinabiyy + Ciisbin + b3
" Ui — Wil
=70 0,0, 0,0 .0 (5.15)
CiraCivabiin + Cipabiny + by
oo Ui + Wi
P M 3@, B, 13)7
CinaCivabiin + Cipabiny + b3
when cﬁ%cﬁébfﬂ + cl(i;bl(g + bl(z #0, and for some i € {0,1,2} the following condition holds
1 (2 6 _
CinCinGi = L. (5.16)

Then if z3p+is1 #0 for every n € Ny, the following statements hold:
(a) if |p;| < 1, then zzpsiv1 — 0,451 — o0;
(b) if Ip?] > 1, then |zansisa] — o0, a5 — oo;

(c) if p; = land q; <O, then zz4i11 — 0,451 — o0,
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(d) if p; = 1and q; > O, then |z3u4i41| — o0, a5 1 — o0,

(e) ifp; = 1and q; =0, then z3,.i1 is convergent;

() if p; = -land r} >0, then zzni1 — 0,451 — o0;
)

(g) if pf = ~1and r} < 0, then |z3,4is1| — o0, a5 n — o0, 50 that zguiiv1 — +oo and
Zensird — —00, OF Zepyiyl — —00 AN Zepyiyg — +00AS N — 0O;

(h) ifp; = =land r} = 0, then zepsis1 and Zepsiva are convergent, asn — oo.
FcDe®p@ 4 @pM L 36) 0, then the following statements hold:
4271437 i+1 i+37i+2 i+3 &g

(i) if ¢ De2b® + cDbP + b #0, then |zapsin| — o0,as 1 — oo;

i+27i+1 i+2
o i (D) (2)71.3) (1) 1,(2) @ _
() if ciacinbi” +¢iabily + by = 0, then
U n+1
ZSn+i+1=Zi—2< : ) . (5.17)
Wit1

Proof. From (3.23), by using conditions (5.16) and (5.2), we have that

1) (21,3 1,2 MY
n ”i+<ci+2ci+1bi +ci+2bi+1+bi+2>]

, (5.18)
n 1) ,(3)1,(2) (3)4,(1) @Y
j=0 Wis1 + (Ci+zci+3bi+1 +Ciabin + bi+3>]

Z3p+isl = Zi-2

foreachi € {0,1,2} and every n € Ny, from which the results in this theorem follows similar
to Theorem 5.1. O
Theorem 5.5. Consider system (3.2). Let the sequences b, V) n e N, j € {1,2,3} be periodic
with period three and for some i € {0,1,2} the following condition holds:

PP 21, (5.19)

i+1

Then if X311 # 0 for every n € Ny, the following statements hold:

1) (2 3
(a) 1f|c( )ci(+)zc( )| >1,

i i+1

2O 1 (DB 4 b2)

e o i+171d i+27i+1 i+2
S 1_ 0.2 .0 =0
—C GG (5.20)
M@, , W@ , 10 '
R Ci3Ciabiy + €iabin +bis
t1+1 = Uiyl — 0

1) (2 3)
1-ci3650600
then x3p4i01 — 0,481 — o0;

®) if 1V e e > 1, 520, and tig = 0, then |Xzpsina| — o0,a5 1 — o0;

i+1
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(c) zfc.(l)3c.(2)b.(3) +c

i+37i+270+1

(1)b-(2) + b(l)S ‘f 0, S; = ti+1 = 0, then

+37i+2 i+

@ @0, @33 , ;@\ "
CinCibi +¢iobi + bl . (5.21)

1) (2)1,03) 14,2 (1) ! ’
Ciy3Cinabiy + Ciyabiin +byyg

X3n+i+l = Xi-2

(d) if ci(gc(z)b@) + cﬁ;bﬁg + bz(i)s = cl.(f;cgbgl) + cf)zbl(i’)l + bl(f)z = 0 and (5.20) holds, then

i+27i+1

s; n+1
X3n+itl = xi—2<_> ; (5.22)

tiv1

(€) if eV ce)| > 1and 0 < |s;| < [, then Xueisn — 0asn — oo;

0 if 1cVcDe | > 1and [si| > |tia| > 0, then [Xzpsin| — +o0as n — oo;

(g) if |cl.(1)ci(2cl.(fi| > 1and s; = tip1 #0, then X3,4i41 cOnvVErges, asn — oo;

(h) if |cl.(1)ci(f)2ci(f;| > 1and s; = —ti1 20, then Xepsic1 ANd Xepsiva CONVErge, s N — oo;

¢ zf|cl.(1)ci(f)2c§2| <1and0 < |a;| < |bi|, where

(2) (3)4,(1) (2)1.3) (2) (1) (2)1,3) (1)1,(2) 1)
o= CinCinbi  +¢iobl + bl b = Ciy3Cinbiy +Ciabin + by (5.23)
L 1 (2 0 ’ P [ENE) ¢ ‘
1T-c¢7cinci 1-c¢i 36000

then X3n+i+l — Oasn — oo,

G) if 1D | < 1and |a;] > |b;| > 0, then |x3psin1| — +o0asn — oo;

(k) if |c1.(1)cff;ci(3| <1and a; = bj #0, then x3,4i41 converges, as n — oo;
D if |cl.(1)cff)chfi| <land a; = =b; #0, then Xep+is1 AN Xep1ivs CONVEIE, AS N — 0O.

Proof. From (3.21) and by using conditions (5.19) and (5.2), we have that

1 (2 (3 j (2) (3)1,(1) (2)4,3) (2) 1 (2 (3
n 5i<ci Ci+2ci+1> + <<Ci+2ci+1bi +Ci+2bi+1+bi+2>/<1_ci Ci+ZCi+1>>
X3n+itl = xile |

i @ 0\ 1) (2)4,3) (1) 1,(2) 1) 1 .2 )
720 tis <Ci+3ci+2Ci+1> + ((Ci+3Ci+2bi+1 +ciabin + bi+3> / <1 - Ci+3ci+2ci+1>>

(5.24)

7

forevery n € Nyand foreachi € {0,1,2}. Using (5.24) the statements in (a)—(d) easily follows.
(e)-(h) Let A := cl.(l)cl@c@) Then

i+1°

o _@ e\ @ (3)1,(1) (2)1,3) ) @ 2 (3 .
Si(ci Ci+2ci+1> +<<Ci+2ci+1bi +Ci+2bi+1+bi+2>/<1_ci ci+2ci+1>> sV +a

@ 3\ O @30 , D@ , 0 M @@\ M +b
tiva <Ci+3ci+zci+1> + <<Ci+3ci+2bi+1 +Ciabin + bi+3> / <1 - Ci+3ci+2Ci+1>> " '

. (5.25)
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where a;, b; are defined by (5.23). We have

Si)ti + a; Si a; b,‘ -1 Si a; bi 1 1
ST Sy 4Ny ) S (BN io(=)). (526
tinM +b;  tin ( siA ) ( ti M ) tiv1 < (Si tin > A <)L2, )) (5-26)

From this and since || > 1, the results in these four cases easily follow.
(i)—(1) We have

siV +a; _ a Si i tin,\ " a si tin1\ 2i
SihTai 4 Siyi i) 24 Si iy j
tiaM +b; b <1+ﬂil><l+ b; A) b; <1+<ai b; >)t +O<J\ >> (5-27)

From this and since || < 1, the results in these four cases easily follow. O

Theorem 5.6. Consider system (3.2). Let the sequences b,(j ), c,(j ), n € Ny, j € {1,2,3} be periodic
with period three and for some i € {0,1,2} the following condition holds:

cfﬂc,@c@ #1. (5.28)

i+2

Then if Yansic1 # 0 for every n € Ny, the following statements hold:
() @) 6
(a) 1f|c.(+ic§ el )| >1,

i i+2

M Bp@ | OpD) | O

~ . CinaCia 201 T 0
o= 1 D@0 -
Ci1Ci Cip
@ @30 , 2.0, @ 6-2)
2) (3),.( 2),. (3 2
T = pn — Civ3Cinabint + Cilabiny + bils 0
i+1 = Ui+l 1 o @ 6 ’
Cir1Ci43Ci2
then y3psic1 — 0,as 1 — oo;
) (@ . ~
(b) zf|cl.(+;c§ )cl.(+;| >1,5#0, and tiy1 =0, then |Yzpsiv1| — o0, a5 1 — 00;
@ (3.0 2), (3 2 o =
(0) lfci(+)3ci(+;bi(+i + ci(+g>bi(+; + bz(+)3 #0,5; =tiy1 =0, then
M 3.2, ®Op® , 20\ "
R Ciy1Cinbi” +¢iobi + b . (5.30)
Yomeint = Y2\ ") 0,0, 0,0 @ ) 7 '
+37i+27i+1 i+37i+2 i+3

() if D cOb® + (DD 4 53 = (BAOpD 4 (Dp®) 4 b

i+27i+1 i+2 T Ti+3Ti+27 i+l +37i+2 i+3

. n+l
Yan+isl = Yi2 <Ai> ; (5.31)

i+l

= 0and (5.29) holds, then

(o) iflefiiei” el > 1 and 0 < |8i] < [Eia, then Yauris — 0asn — oo;
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()2 @3 o
() 1f|Cl-(+iC§ >Cl-(+;| > 1and [8i] > [tis1| > O, then |yspsiva| — +o0asn — oo,

(g) if |cl.(iicl.(2)ci(2| > 1and §; = ti;, #0, then Y3n+isl CONVEreEs, as n — oo;

(h) if |cl.(ﬂcl.(2)ci(f;| >1and 8; = —tin #0, then Yep+ir1 ANd Yopsira CONVEIgE, s 1 — 00;

() if | cP D] < 1and 0 < |a;| < |b|, where

(1) (3)1,(2) (3)4,(1) (3) (2) [(3)4,(1) (2)4,3) (2)
. CiCiab” +eiabi) + b, b= Ci3Cinabi + Ciabin + b (5.32)
P 1-c0 2.0 ’ b 1— D@0 ’ :
~CinC G ~ €163

then yspiiv1 — 0asn — oo;

G) if lc P e < 1and |a;| > |bi] > 0, thet |ysnsini| — +ooasn — oo;

(k) if |c1.(3cfz) Ci(i;| <land a; = Ei #0, then Y3p.iv1 converges, asn — oo;

D) if |cl.(ﬂc§2) cl(f;| <landa; = —l;i #0, then Yep+is1 aNd Yopsisa CONVEIgE, AS 1 — 00.

Proof. From (3.22) and by using condition (5.28), we have that

OO (1) .(3)1,(2) (3)1,(1) (3) 1 .2 3

no Si <Ci+1ci Ci+2> + <(Ci+1ci+2bi +Ciobia + bi+2>/<1 = GG ci+2>>
Y3n+it1 = yi—zl | -

0T m @ @Y (2) .(3)1,(1) (2)1,3) (2) 1) (2 )
7=0 ti (Ci+1ci+3ci+2> + <<Ci+3ci+2bi+1 +cisbio + bi+3> / <1 - Ci+1ci+3ci+2>>

(5.33)

7

for every n € Ny and for each i € {0, 1,2}, from which the statements in (a)—(l) follows similar
as the corresponding ones in Theorem 5.5. O
Theorem 5.7. Consider system (3.2). Let the sequences b,(j ), c,(,j ), n € Ny, j € {1,2,3} be periodic
with period three and for some i € {0,1,2} the following condition holds

@ @3
cf+)ch+ici( ) #1. (5.34)

Then if z3p+is1 #0 for every n € Ny, the following statements hold:

. 1 2 3
(@) ifleipc e > 1,

1+

W) Ope) 4 D@ 0

* L _ o 2701 i+2 7 i+1 i+2 —
Si = Ui 1_ 000 ’
Ci12Cin1Ci
M B , B0 , 10 (5:35)
£ = Wi — Cir2Ciralivt T Civabina + b1l 0

1 () (3
1-cia6i16is
then z3peiv1 — 0,451 — o0;

(b) if|cl.(3cl.(acf3)| > 1,57 20,7, =0, then |z3p4is1| — 00,451 — o0;
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(o) ifc.a%c@)b.(z) + ci(i’;b.(l) + b§3)3 #0,s7 =t7, =0, then

i+27i+37i+1 i+2 i+ i+1

M@0, 0@ o\ "™
CiCinb;” +cinbi + by, )
Ve p@ 4 By 3,6)

+27i+37i+1 i+37i+2 i+3

Z3n+i+l = Zi-2 (536)

(d) if e + b + b1 = e + b + b = 0 and (5.35) holds, then

i+270+1 i+2 i+37i+1 i+37i+2 i+3

5* n+l
Z3n+itl = Zi—2< t*l > ; (5.37)
i+1

(@) iflcthe e > 1and 0 < |s?| < |t2,,|, then zapsisn — Oasn — oo;

() if leleP e > 1and |st| > |t,] > 0, then |z3paina| — +o0as n — oo;

(g) if |c1.(1;cl.(acfs) | >1and s; = t;,, #0, then z3,i41 converges, asn — oo;
(h) if |cl.(i;cgc§3) | >1and s} = ~t7,, #0, then zenyis1 and Zep.ira cOnverge, asn — oo;

¢ if|cﬁ£c§fic§3)| <1land0 < |a;| < |b}|, where

(1) ,(2)1,3) (1) 1,(2) ©) (1) .(3)1,(2) (3)1,(1) 3)
v CindCinbi” * Cinbin T b b o CiaCivabina * Civabina + b (5.38)
i 1000 ’ i 1_ 0006 ’ :
+27i+1 i +27i+17i+3

then zzpeiv1 — 0asn — oo;
G) if 1cheP e < 1and |az| > ] > 0, then |2apsis1] — +o0asn — oo;
(k) if |cﬁ£cﬂcfs) | <1land a; = b} #0, then z3,.i41 converges, asn — oo;
M if |cﬁéc§fic§3)| <land a} = -b} #0, then zeu,iv1 and Zeu.ir4 cONvErge, asn — oo.

Proof. From (3.23) and by using condition (5.34), we have that

D@ BN 1) (2)4,3) (1) 1,2 (1) 1) (2 (3
LY <Ci+2Ci+1ci ) +<<Ci+2ci+1bi +Ci+2bi+1+bi+2>/<1_ci+2ci+1ci >>
Z3n+i+l = Zi-2
j=0 t*

NGO 1) (3)1,(2) (3) 1, (1) @) Mm@ @Y
i+1 (Ci+2Ci+1Ci+3> + <<Ci+zci+3bi+1 +¢iabiy + bi+3> / (1 - Ci+ZCi+1Ci+3>>

(5.39)

for every n € Ny and for each i € {0, 1,2}, from which the statements in (a)—(1) follow similar
as the corresponding ones in Theorem 5.5. O
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