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We show that the system of three difference equations xn+1 = a
(1)
n xn−2/(b

(1)
n ynzn−1xn−2 + c

(1)
n ),

yn+1 = a
(2)
n yn−2/(b

(2)
n znxn−1yn−2 + c

(2)
n ), and zn+1 = a

(3)
n zn−2/(b

(3)
n xnyn−1zn−2 + c

(3)
n ), n ∈ N0, where

all elements of the sequences a
(i)
n , b(i)n , c(i)n , n ∈ N0, i ∈ {1, 2, 3}, and initial values x−j , y−j , z−j ,

j ∈ {0, 1, 2}, are real numbers, can be solved. Explicit formulae for solutions of the system are
derived, and some consequences on asymptotic behavior of solutions for the case when coefficients
are periodic with period three are deduced.

1. Introduction

Studying nonlinear difference equations and systems is an area of a great interest nowadays
(see, e.g., [1–39] and the references therein).

This paper studies the system of three difference equations

xn+1 =
a
(1)
n xn−2

b
(1)
n ynzn−1xn−2 + c

(1)
n

, yn+1 =
a
(2)
n yn−2

b
(2)
n znxn−1yn−2 + c

(2)
n

,

zn+1 =
a
(3)
n zn−2

b
(3)
n xnyn−1zn−2 + c

(3)
n

, n ∈ N0,

(1.1)
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where all elements of the sequences a(i)
n , b(i)n , c(i)n , n ∈ N0, i ∈ {1, 2, 3}, and initial values x−j , y−j ,

z−j , j ∈ {0, 1, 2} are real numbers. The cases when both b
(i)
n and c

(i)
n are equal to zero for some

fixed i ∈ {1, 2, 3} and an n ∈ N0, are not interesting so they are excluded. In [37] we have
shown that system (1.1) for the case when the sequences a

(i)
n , b(i)n , c(i)n , n ∈ N0, i ∈ {1, 2, 3},

are constant can be explicitly solved (if solutions are well defined). Some recent results on
solving difference equations can be found, for example, in [6, 7, 12, 24, 25, 34, 35, 38, 39]. For
some old results see, for example, classic book [14].

Note that the solutions of (1.1) such that all sequences a(i)
n , b(i)n , c(i)n , n ∈ N0, i ∈ {1, 2, 3},

and initial values in system (1.1) are positive, are also positive, that is,

xn > 0, yn > 0, zn > 0 for every n ≥ −2, (1.2)

so that there are a lot of well defined solutions of the system. In fact, for “majority” initial
values of system (1.1), solutions are well defined, but we will not discuss the problem here.
Instead of that we assume, throughout the paper, that solutions of (1.1) are well defined. We
also adopt the customary notation

∏k
i=k+1gi = 1 and

∑k
i=k+1 gi = 0.

We show that in the main case, system (1.1) is transformed to a third-order system of
nonhomogeneous linear first-order difference equations, which can be explicitly solved.

This idea appeared for the first time in [24] for the case of the scalar equation with
constant coefficients corresponding to system (1.1) and was also used later in [1, 4]. Some
related transformations are used also in [25, 30]. For a different approach in dealing with
the scalar difference equation see [2, 3]. For some related scalar difference equations see, for
example, [8, 13, 26] and the related references therein. Some related results on systems of
difference equations can be found in [11, 15–22] (see also references therein).

Here we give explicit formulae for solutions of system (1.1) and present some con-
sequences on asymptotic behavior of the solutions for the case when coefficients are periodic
with period three.

2. Case a
(i)
n = 0 for Some i ∈ {1, 2, 3} and All n ∈ N0

If a(1)
n = 0, n ∈ N0, then the first equation in (1.1) becomes

xn = 0, n ∈ N, (2.1)

so that from the second and the third equations and since the solution is well defined we get

yn+2 =
a
(2)
n+1

c
(2)
n+1

yn−1, zn+1 =
a
(3)
n

c
(3)
n

zn−2, n ∈ N, (2.2)
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c
(2)
n+1 /= 0/= c

(3)
n , n ∈ N, from which it follows that

y3n+1 = y1

n∏

j=1

a
(2)
3j

c
(2)
3j

, y3n+2 = y2

n∏

j=1

a
(2)
3j+1

c
(2)
3j+1

, y3n = y0

n∏

j=1

a
(2)
3j−1

c
(2)
3j−1

, n ∈ N,

z3n+1 = z1
n∏

j=1

a
(3)
3j

c
(3)
3j

, z3n−1 = z−1
n−1∏

j=0

a
(3)
3j+1

c
(3)
3j+1

, z3n = z0
n∏

j=1

a
(3)
3j−1

c
(3)
3j−1

, n ∈ N.

(2.3)

If a(2)
n = 0, n ∈ N0, then the second equation in (1.1) becomes

yn = 0, n ∈ N, (2.4)

so that from the first and the third equations we get

xn+1 =
a
(1)
n

c
(1)
n

xn−2, zn+2 =
a
(3)
n+1

c
(3)
n+1

zn−1, n ∈ N, (2.5)

c
(1)
n /= 0/= c

(3)
n+1, from which it follows that

x3n+1 = x1

n∏

j=1

a
(1)
3j

c
(1)
3j

, x3n−1 = x−1
n−1∏

j=0

a
(1)
3j+1

c
(1)
3j+1

, x3n = x0

n∏

j=1

a
(1)
3j−1

c
(1)
3j−1

, n ∈ N,

z3n+1 = z1
n∏

j=1

a
(3)
3j

c
(3)
3j

, z3n+2 = z2
n∏

j=1

a
(3)
3j+1

c
(3)
3j+1

, z3n = z0
n∏

j=1

a
(3)
3j−1

c
(3)
3j−1

, n ∈ N.

(2.6)

Finally, if a(3)
n = 0, n ∈ N0, then the third equation in (1.1) becomes

zn = 0, n ∈ N, (2.7)

so that from the first and the second equation we get

xn+2 =
a
(1)
n+1

c
(1)
n+1

xn−1, yn+1 =
a
(2)
n

c
(2)
n

yn−2, n ∈ N, (2.8)
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c
(1)
n+1 /= 0/= c

(2)
n , from which it follows that

x3n+1 = x1

n∏

j=1

a
(1)
3j

c
(1)
3j

, x3n+2 = x2

n∏

j=1

a
(1)
3j+1

c
(1)
3j+1

, x3n = x0

n∏

j=1

a
(1)
3j−1

c
(1)
3j−1

, n ∈ N,

y3n+1 = y1

n∏

j=1

a
(2)
3j

c
(2)
3j

, y3n−1 = y−1
n−1∏

j=0

a
(2)
3j+1

c
(2)
3j+1

, y3n = y0

n∏

j=1

a
(2)
3j−1

c
(2)
3j−1

, n ∈ N.

(2.9)

3. Explicit Formulae for the Case a
(i)
n /= 0 for All i ∈ {1, 2, 3} and n ∈ N0

Here we consider system (1.1) in the case when a
(i)
n /= 0 for all i ∈ {1, 2, 3} and n ∈ N0. Noticing

that in this case, system (1.1) can be written in the form

xn+1 =
xn−2

b̂
(1)
n ynzn−1xn−2 + ĉ

(1)
n

, yn+1 =
yn−2

b̂
(2)
n znxn−1yn−2 + ĉ

(2)
n

,

zn+1 =
zn−2

b̂
(3)
n xnyn−1zn−2 + ĉ

(3)
n

, n ∈ N0,

(3.1)

where b̂
(i)
n = b

(i)
n /a

(i)
n , ĉ(i)n = c

(i)
n /a

(i)
n , i ∈ {1, 2, 3}, we see that we may assume that a(i)

n = 1, for
every n ∈ N0 and for each i ∈ {1, 2, 3}.

Hence we consider, without loss of generality, the system

xn+1 =
xn−2

b
(1)
n ynzn−1xn−2 + c

(1)
n

, yn+1 =
yn−2

b
(2)
n znxn−1yn−2 + c

(2)
n

,

zn+1 =
zn−2

b
(3)
n xnyn−1zn−2 + c

(3)
n

, n ∈ N0

(3.2)

using the same notation for coefficients as in (1.1) except for the coefficients a
(i)
n , assuming

that a(i)
n = 1 for all i ∈ {1, 2, 3} and n ∈ N0.
First we consider the case when some of initial values of solutions of system (3.2) is

equal to zero.
If xn0 = 0 for some n0 ∈ N then from (3.2) it follows that xn0−3k = 0, for each k ∈ N0

such that n0 − 3k ≥ −2. Hence, we have that x−2 = 0 or x−1 = 0 or x0 = 0.
If x−2 = 0, then x3n−2 = 0, n ∈ N0, which implies

y3n+3 =
1

c
(2)
3n+2

y3n, z3n+2 =
1

c
(3)
3n+1

z3n−1, n ∈ N0, (3.3)

and consequently

y3n =
y0

∏n−1
j=0 c

(2)
3j+2

, z3n+2 =
z−1

∏n
j=0c

(3)
3j+1

, n ∈ N0. (3.4)
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If x−1 = 0, then x3n−1 = 0, n ∈ N0, which implies

y3n+1 =
1

c
(2)
3n

y3n−2, z3n+3 =
1

c
(3)
3n+2

z3n, n ∈ N0, (3.5)

and consequently

y3n+1 =
y−2

∏n
j=0c

(2)
3j

, z3n =
z0

∏n−1
j=0 c

(3)
3j+2

, n ∈ N0. (3.6)

If x0 = 0, then x3n = 0, n ∈ N0, which implies

y3n+2 =
1

c
(2)
3n+1

y3n−1, z3n+1 =
1

c
(3)
3n

z3n−2, n ∈ N0, (3.7)

and consequently

y3n+2 =
y−1

∏n
j=0c

(2)
3j+1

, z3n+1 =
z−2

∏n
j=0c

(3)
3j

, n ∈ N0. (3.8)

If yn1 = 0 or zn1 = 0 for some n1 ∈ N then similar results are obtained analogously.

3.1. Main Case

Here we studywell-defined solutions of system (1.1)when neither of the sequences (a(i)
n )n∈N0

,
i ∈ {1, 2, 3}, or initial conditions x−i, y−i, z−i, i ∈ {0, 1, 2}, is equal to zero. Recall that we may
assume that a(i)

n = 1, for every n ∈ N0 and for each i ∈ {1, 2, 3}.
Following the idea in [37], we use a transformation which reduces nonlinear systems

(1.1) and (3.2) to third-order systems of nonhomogeneous linear difference equations.
If we multiply the first equation in system (3.2) by ynzn−1, the second by znxn−1 and

the third by xnyn−1, and then using in such obtained system the change of variables

un+1 =
1

xn+1ynzn−1
, vn+1 =

1
yn+1znxn−1

, wn+1 =
1

zn+1xnyn−1
, n ≥ −1, (3.9)

the system is, for n ∈ N0, transformed into

un+1 = c
(1)
n vn + b

(1)
n ,

vn+1 = c
(2)
n wn + b

(2)
n ,

wn+1 = c
(3)
n un + b

(3)
n .

(3.10)
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System (3.10) implies that for n ≥ 2

un+1 = c
(1)
n c

(2)
n−1c

(3)
n−2un−2 + c

(1)
n c

(2)
n−1b

(3)
n−2 + c

(1)
n b

(2)
n−1 + b

(1)
n , (3.11)

vn+1 = c
(1)
n−2c

(2)
n c

(3)
n−1vn−2 + c

(2)
n c

(3)
n−1b

(1)
n−2 + c

(2)
n b

(3)
n−1 + b

(2)
n , (3.12)

wn+1 = c
(1)
n−1c

(2)
n−2c

(3)
n wn−2 + c

(1)
n−1c

(3)
n b

(2)
n−2 + c

(3)
n b

(1)
n−1 + b

(3)
n , (3.13)

where values for u0, v0, w0 are computed by (3.9) with n = −1.
Equation (3.11) implies that the sequences (u3n+i)n∈N0

, i ∈ {0, 1, 2}, are solutions of the
first-order linear difference equation

u3n+i = c
(1)
3n+i−1c

(2)
3n+i−2c

(3)
3n+i−3u3(n−1)+i + c

(1)
3n+i−1c

(2)
3n+i−2b

(3)
3n+i−3

+ c
(1)
3n+i−1b

(2)
3n+i−2 + b

(1)
3n+i−1, n ∈ N.

(3.14)

Applying the well-known formula for solutions of first-order difference equation we
have that the general solution of equation (3.14) is

u3n+i = ui

n∏

j=1

(
c
(1)
3j+i−1c

(2)
3j+i−2c

(3)
3j+i−3

)

+
n∑

l=1

(
c
(1)
3l+i−1c

(2)
3l+i−2b

(3)
3l+i−3 + c

(1)
3l+i−1b

(2)
3l+i−2 + b

(1)
3l+i−1

) n∏

j=l+1

(
c
(1)
3j+i−1c

(2)
3j+i−2c

(3)
3j+i−3

)
(3.15)

for every n ∈ N and each i ∈ {0, 1, 2}.
From (3.12)we get that the sequences (v3n+i)n∈N0

, i ∈ {0, 1, 2}, are solutions of the first-
order linear difference equation

v3n+i = c
(1)
3n+i−3c

(2)
3n+i−1c

(3)
3n+i−2v3(n−1)+i + c

(2)
3n+i−1c

(3)
3n+i−2b

(1)
3n+i−3

+ c
(2)
3n+i−1b

(3)
3n+i−2 + b

(2)
3n+i−1, n ∈ N,

(3.16)

from which it follows that

v3n+i = vi

n∏

j=1

(
c
(1)
3j+i−3c

(2)
3j+i−1c

(3)
3j+i−2

)

+
n∑

l=1

(
c
(2)
3l+i−1c

(3)
3l+i−2b

(1)
3l+i−3 + c

(2)
3l+i−1b

(3)
3l+i−2 + b

(2)
3l+i−1

) n∏

j=l+1

(
c
(1)
3j+i−3c

(2)
3j+i−1c

(3)
3j+i−2

)
,

(3.17)

for every n ∈ N and each i ∈ {0, 1, 2}.
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From (3.13) we get that the sequences (w3n+i)n∈N0
, i ∈ {0, 1, 2}, are solutions of the

first-order linear difference equation

w3n+i = c
(1)
3n+i−2c

(2)
3n+i−3c

(3)
3n+i−1w3(n−1)+i

+ c
(1)
3n+i−2c

(3)
3n+i−1b

(2)
3n+i−3 + c

(3)
3n+i−1b

(1)
3n+i−2 + b

(3)
3n+i−1, n ∈ N.

(3.18)

Hence, for every n ∈ N and each i ∈ {0, 1, 2}, we have that

w3n+i = wi

n∏

j=1

(
c
(1)
3j+i−2c

(2)
3j+i−3c

(3)
3j+i−1

)

+
n∑

l=1

(
c
(1)
3l+i−2c

(3)
3l+i−1b

(2)
3l+i−3 + c

(3)
3l+i−1b

(1)
3l+i−2 + b

(3)
3l+i−1

) n∏

j=l+1

(
c
(1)
3j+i−2c

(2)
3j+i−3c

(3)
3j+i−1

)
.

(3.19)

Now note that from (3.9)we have

xn+1 =
1

un+1ynzn−1
=

vn

un+1
xn−2, yn+1 =

1
vn+1znxn−1

=
wn

vn+1
yn−2,

zn+1 =
1

wn+1xnyn−1
=

un

wn+1
zn−2, n ∈ N0.

(3.20)

Hence

x3n+i+1 = xi−2
n∏

j=0

v3j+i

u3j+i+1
, n ∈ N0, i ∈ {0, 1, 2}, (3.21)

y3n+i+1 = yi−2
n∏

j=0

w3j+i

v3j+i+1
, n ∈ N0, i ∈ {0, 1, 2}, (3.22)

z3n+i+1 = zi−2
n∏

j=0

u3j+i

w3j+i+1
, n ∈ N0, i ∈ {0, 1, 2}. (3.23)

Applying (3.15), (3.17) and (3.19) in (3.21)–(3.23), we get explicit solutions of system
(3.2) in terms of sequences b(i)n , c(i)n , n ∈ N0, i ∈ {0, 1, 2}.

The results in this section can be summed up in Table 1.

Remark 3.1. Formulae for the solutions of system (3.2) when some of the numbers b
(i)
n , c(i)n ,

n ∈ N0, i ∈ {0, 1, 2} are zero follow from the formulae given in Table 1.
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Table 1

Case Formulas for well-defined solutions of system (3.2)

x−2 = 0 x3n−2 = 0, y3n =
y0

∏n−1
j=0 c

(2)
3j+2

, z3n+2 =
z−1

∏n
j=0c

(3)
3j+1

, n ∈ N0

x−1 = 0 x3n−1 = 0, y3n+1 =
y−2

∏n
j=0c

(2)
3j

, z3n =
z0

∏n−1
j=0 c

(3)
3j+2

, n ∈ N0

x0 = 0 x3n = 0, y3n+2 =
y−1

∏n
j=0c

(2)
3j+1

, z3n+1 =
z−2

∏n
j=0c

(3)
3j

, n ∈ N0

y−2 = 0 y3n−2 = 0, z3n =
z0

∏n−1
j=0 c

(3)
3j+2

, x3n+2 =
x−1

∏n
j=0c

(1)
3j+1

, n ∈ N0

y−1 = 0 y3n−1 = 0, z3n+1 =
z−2

∏n
j=0c

(3)
3j

, x3n =
x0

∏n−1
j=0 c

(1)
3j+2

, n ∈ N0

y0 = 0 y3n = 0, z3n+2 =
z−1

∏n
j=0c

(3)
3j+1

, x3n+1 =
x−2

∏n
j=0c

(1)
3j

, n ∈ N0

z−2 = 0 z3n−2 = 0, x3n =
x0

∏n−1
j=0 c

(1)
3j+2

, y3n+2 =
y−1

∏n
j=0c

(2)
3j+1

, n ∈ N0

z−1 = 0 z3n−1 = 0, x3n+1 =
x−2

∏n
j=0c

(1)
3j

, y3n =
y0

∏n−1
j=0 c

(2)
3j+2

, n ∈ N0

z0 = 0 z3n = 0, x3n+2 =
x−1

∏n
j=0c

(1)
3j+1

, y3n+1 =
y−2

∏n
j=0c

(2)
3j

, n ∈ N0

x3n+i+1 = xi−2
n∏

j=0

v3j+i

u3j+i+1
, y3n+i+1 = yi−2

n∏

j=0

w3j+i

v3j+i+1
, z3n+i+1 = zi−2

n∏

j=0

u3j+i

w3j+i+1
,

n ∈ N0, i ∈ {0, 1, 2}
u3n+i = ui

n∏

j=1
(c(1)3j+i−1c

(2)
3j+i−2c

(3)
3j+i−3)

x−i /= 0/=y−i +
n∑

l=1
(c(1)3l+i−1c

(2)
3l+i−2b

(3)
3l+i−3 + c

(1)
3l+i−1b

(2)
3l+i−2 + b

(1)
3l+i−1)

n∏

j=l+1
(c(1)3j+i−1c

(2)
3j+i−2c

(3)
3j+i−3),

z−i /= 0,
i ∈ {0, 1, 2}

v3n+i = vi

n∏

j=1
(c(1)3j+i−3c

(2)
3j+i−1c

(3)
3j+i−2)

+
n∑

l=1
(c(2)3l+i−1c

(3)
3l+i−2b

(1)
3l+i−3 + c

(2)
3l+i−1b

(3)
3l+i−2 + b

(2)
3l+i−1)

n∏

j=l+1
(c(1)3j+i−3c

(2)
3j+i−1c

(3)
3j+i−2),

w3n+i = wi

n∏

j=1
(c(1)3j+i−2c

(2)
3j+i−3c

(3)
3j+i−1)

+
n∑

l=1
(c(1)3l+i−2c

(3)
3l+i−1b

(2)
3l+i−3 + c

(3)
3l+i−1b

(1)
3l+i−2 + b

(3)
3l+i−1)

n∏

j=l+1
(c(1)3j+i−2c

(2)
3j+i−3c

(3)
3j+i−1)

4. Some Consequences

4.1. Case a
(i)
n /= 0 for i ∈ {1, 2, 3} and n ∈ N0

First we use the formulae in Section 3 to get solutions of system (1.1), when a
(i)
n /= 0 for i ∈

{1, 2, 3} and n ∈ N0.
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Table 2

Case Formulas for well-defined solutions of system (1.1)

x−2 = 0 x3n−2 = 0, y3n = y0

n−1∏

j=0

⎛

⎝
a
(2)
3j+2

c
(2)
3j+2

⎞

⎠, z3n+2 = z−1
n∏

j=0

⎛

⎝
a
(3)
3j+1

c
(3)
3j+1

⎞

⎠, n ∈ N0

x−1 = 0 x3n−1 = 0, y3n+1 = y−2
n∏

j=0

⎛

⎝
a
(2)
3j

c
(2)
3j

⎞

⎠, z3n = z0
n−1∏

j=0

⎛

⎝
a
(3)
3j+2

c
(3)
3j+2

⎞

⎠, n ∈ N0

x0 = 0 x3n = 0, y3n+2 = y−1
n∏

j=0

⎛

⎝
a
(2)
3j+1

c
(2)
3j+1

⎞

⎠, z3n+1 = z−2
n∏

j=0

⎛

⎝
a
(3)
3j

c
(3)
3j

⎞

⎠, n ∈ N0

y−2 = 0 y3n−2 = 0, z3n = z0
n−1∏

j=0

⎛

⎝
a
(3)
3j+2

c
(3)
3j+2

⎞

⎠, x3n+2 = x−1
n∏

j=0

⎛

⎝
a
(1)
3j+1

c
(1)
3j+1

⎞

⎠, n ∈ N0

y−1 = 0 y3n−1 = 0, z3n+1 = z−2
n∏

j=0

⎛

⎝
a
(3)
3j

c
(3)
3j

⎞

⎠, x3n = x0

n−1∏

j=0

⎛

⎝
a
(1)
3j+2

c
(1)
3j+2

⎞

⎠, n ∈ N0

y0 = 0 y3n = 0, z3n+2 = z−1
n∏

j=0

⎛

⎝
a
(3)
3j+1

c
(3)
3j+1

⎞

⎠, x3n+1 = x−2
n∏

j=0

⎛

⎝
a
(1)
3j

c
(1)
3j

⎞

⎠, n ∈ N0

z−2 = 0 z3n−2 = 0, x3n = x0

n−1∏

j=0

⎛

⎝
a
(1)
3j+2

c
(1)
3j+2

⎞

⎠, y3n+2 = y−1
n∏

j=0

⎛

⎝
a
(2)
3j+1

c
(2)
3j+1

⎞

⎠, n ∈ N0

z−1 = 0 z3n−1 = 0, x3n+1 = x−2
n∏

j=0

⎛

⎝
a
(1)
3j

c
(1)
3j

⎞

⎠, y3n = y0

n−1∏

j=0

⎛

⎝
a
(2)
3j+2

c
(2)
3j+2

⎞

⎠, n ∈ N0

z0 = 0 z3n = 0, x3n+2 = x−1
n∏

j=0

⎛

⎝
a
(1)
3j+1

c
(1)
3j+1

⎞

⎠, y3n+1 = y−2
n∏

j=0

⎛

⎝
a
(2)
3j

c
(2)
3j

⎞

⎠, n ∈ N0

x3n+i+1 = xi−2
n∏

j=0

v3j+i

u3j+i+1
, y3n+i+1 = yi−2

n∏

j=0

w3j+i

v3j+i+1
,

z3n+i+1 = zi−2
n∏

j=0

u3j+i

w3j+i+1
, n ∈ N0, i ∈ {0, 1, 2}

u3n+i = ui

n∏

j=1

c
(1)
3j+i−1c

(2)
3j+i−2c

(3)
3j+i−3

a
(1)
3j+i−1a

(2)
3j+i−2a

(3)
3j+i−3

x−i /= 0/=y−i
z−i /= 0,
i ∈ {0, 1, 2}

+
n∑

l=1

⎛

⎝
c
(1)
3l+i−1c

(2)
3l+i−2b

(3)
3l+i−3

a
(1)
3l+i−1a

(2)
3l+i−2a

(3)
3l+i−3

+
c
(1)
3l+i−1b

(2)
3l+i−2

a
(1)
3l+i−1a

(2)
3l+i−2

+
b
(1)
3l+i−1

a
(1)
3l+i−1

⎞

⎠
n∏

j=l+1

c
(1)
3j+i−1c

(2)
3j+i−2c

(3)
3j+i−3

a
(1)
3j+i−1a

(2)
3j+i−2a

(3)
3j+i−3

,

v3n+i = vi

n∏

j=1

c
(1)
3j+i−3c

(2)
3j+i−1c

(3)
3j+i−2

a
(1)
3j+i−3a

(2)
3j+i−1a

(3)
3j+i−2

+
n∑

l=1

⎛

⎝
c
(2)
3l+i−1c

(3)
3l+i−2b

(1)
3l+i−3

a
(2)
3l+i−1a

(3)
3l+i−2a

(1)
3l+i−3

+
c
(2)
3l+i−1b

(3)
3l+i−2

a
(2)
3l+i−1a

(3)
3l+i−2

+
b
(2)
3l+i−1

a
(2)
3l+i−1

⎞

⎠
n∏

j=l+1

c
(1)
3j+i−3c

(2)
3j+i−1c

(3)
3j+i−2

a
(1)
3j+i−3a

(2)
3j+i−1a

(3)
3j+i−2

,
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Table 2: Continued.

Case Formulas for well-defined solutions of system (1.1)

w3n+i = wi

n∏

j=1

c
(1)
3j+i−2c

(2)
3j+i−3c

(3)
3j+i−1

a
(1)
3j+i−2a

(2)
3j+i−3a

(3)
3j+i−1

+
n∑

l=1

⎛

⎝
c
(1)
3l+i−2c

(3)
3l+i−1b

(2)
3l+i−3

a
(1)
3l+i−2a

(3)
3l+i−1a

(2)
3l+i−3

+
c
(3)
3l+i−1b

(1)
3l+i−2

a
(3)
3l+i−1a

(1)
3l+i−2

+
b
(3)
3l+i−1

a
(3)
3l+i−1

⎞

⎠
n∏

j=l+1

c
(1)
3j+i−2c

(2)
3j+i−3c

(3)
3j+i−1

a
(1)
3j+i−2a

(2)
3j+i−3a

(3)
3j+i−1

.

For this we replace sequences

b
(i)
n , c

(i)
n , i ∈ {1, 2, 3}, (4.1)

in formulas of Section 3 with sequences

b
(i)
n

a
(i)
n

,
c
(i)
n

a
(i)
n

, i ∈ {1, 2, 3}. (4.2)

We arrange these formulae in Table 2.

4.2. Case b
(i)
n , c(i)n , n ∈ N0, i ∈ {1, 2, 3} Are Period-Three Sequences

Now we get formulae for solutions of system (3.2) when the sequences b
(i)
n , c(i)n , n ∈ N0,

i ∈ {1, 2, 3} are periodic with period three.
If this holds then from (3.15) we have that

u3n+i = ui

n∏

j=1

(
c
(1)
i+2c

(2)
i+1c

(3)
i

)
+

n∑

l=1

(
c
(1)
i+2c

(2)
i+1b

(3)
i + c

(1)
i+2b

(2)
i+1 + b

(1)
i+2

) n∏

j=l+1

(
c
(1)
i+2c

(2)
i+1c

(3)
i

)

= ui

(
c
(1)
i+2c

(2)
i+1c

(3)
i

)n
+
(
c
(1)
i+2c

(2)
i+1b

(3)
i + c

(1)
i+2b

(2)
i+1 + b

(1)
i+2

) n∑

l=1

(
c
(1)
i+2c

(2)
i+1c

(3)
i

)n−l

= ui

(
c
(1)
i+2c

(2)
i+1c

(3)
i

)n
+
(
c
(1)
i+2c

(2)
i+1b

(3)
i + c

(1)
i+2b

(2)
i+1 + b

(1)
i+2

)1 −
(
c
(1)
i+2c

(2)
i+1c

(3)
i

)n

1 − c
(1)
i+2c

(2)
i+1c

(3)
i

(4.3)

for every n ∈ N0, when c
(1)
i+2c

(2)
i+1c

(3)
i /= 1, for some i ∈ {0, 1, 2}, while

u3n+i = ui +
(
c
(1)
i+2c

(2)
i+1b

(3)
i + c

(1)
i+2b

(2)
i+1 + b

(1)
i+2

)
n, (4.4)

when c
(1)
i+2c

(2)
i+1c

(3)
i = 1, for some i ∈ {0, 1, 2}. Here we regard that c(j)k = c

(j)
i , for some j ∈ {1, 2, 3},

i ∈ {0, 1, 2} and k ≥ 3, when k ≡ i (mod3).
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Similarly, we get

v3n+i = vi

(
c
(1)
i c

(2)
i+2c

(3)
i+1

)n
+
(
c
(2)
i+2c

(3)
i+1b

(1)
i + c

(2)
i+2b

(3)
i+1 + b

(2)
i+2

)1 −
(
c
(1)
i c

(2)
i+2c

(3)
i+1

)n

1 − c
(1)
i c

(2)
i+2c

(3)
i+1

(4.5)

for every n ∈ N0, if c
(1)
i c

(2)
i+2c

(3)
i+1 /= 1, for some i ∈ {0, 1, 2}, and

v3n+i = vi +
(
c
(2)
i+2c

(3)
i+1b

(1)
i + c

(2)
i+2b

(3)
i+1 + b

(2)
i+2

)
n (4.6)

for every n ∈ N0, when c
(1)
i c

(2)
i+2c

(3)
i+1 = 1, for some i ∈ {0, 1, 2}.

Finally

w3n+i = wi

(
c
(1)
i+1c

(2)
i c

(3)
i+2

)n
+
(
c
(1)
i+1c

(3)
i+2b

(2)
i + c

(3)
i+2b

(1)
i+1 + b

(3)
i+2

)1 −
(
c
(1)
i+1c

(2)
i c

(3)
i+2

)n

1 − c
(1)
i+1c

(2)
i c

(3)
i+2

, (4.7)

for every n ∈ N0, when c
(1)
i+1c

(2)
i c

(3)
i+2 /= 1, for some i ∈ {0, 1, 2}, and

w3n+i = wi +
(
c
(1)
i+1c

(3)
i+2b

(2)
i + c

(3)
i+2b

(1)
i+1 + b

(3)
i+2

)
n, (4.8)

for every n ∈ N0, when c
(1)
i+1c

(2)
i c

(3)
i+2 = 1, for some i ∈ {0, 1, 2}.

If we assume that a(i)
n /= 0 for all i ∈ {1, 2, 3} and n ∈ N0, that these three sequences are

also periodic with period three, and replace the sequences in (4.1) with the corresponding
in (4.2) we get formulae for solutions of system (1.1) when the sequences a(i)

n , b(i)n , and c
(i)
n ,

n ∈ N0, i ∈ {1, 2, 3} are periodic with period three.
These formulae follows from above obtained ones and are summarized in Table 3.

5. Some Applications

Using above listed formulae the behavior of solutions of system (1.1) or (3.2) can be
described. We will present here some results which can be obtained from these formulae,
to demonstrate how they can be used. Before we formulate the results note that if c(j)n , n ∈ N0,
j ∈ {1, 2, 3} are periodic with period three, then

c
(1)
i c

(2)
i+2c

(3)
i+1 = c

(1)
i+3c

(2)
i+2c

(3)
i+1, c

(1)
i+1c

(2)
i+3c

(3)
i+2 = c

(1)
i+1c

(2)
i c

(3)
i+2, (5.1)

c
(1)
i+2c

(2)
i+1c

(3)
i = c

(1)
i+2c

(2)
i+1c

(3)
i+3. (5.2)
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Table 3

Case Formulas for well-defined solutions of system (1.1)with period-three
coefficients

x−i /= 0/=y−i x3n+i+1 = xi−2
n∏

j=0

v3j+i

u3j+i+1
, y3n+i+1 = yi−2

n∏

j=0

w3j+i

v3j+i+1
,

z−i /= 0, i ∈ {0, 1, 2} z3n+i+1 = zi−2
n∏

j=0

u3j+i

w3j+i+1
, n ∈ N0, i ∈ {0, 1, 2}

q1 =
c
(1)
i+2c

(2)
i+1c

(3)
i

a
(1)
i+2a

(2)
i+1a

(3)
i

/= 1 u3n+i = uiq
n
1 +

⎛

⎝
c
(1)
i+2c

(2)
i+1b

(3)
i

a
(1)
i+2a

(2)
i+1a

(3)
i

+
c
(1)
i+2b

(2)
i+1

a
(1)
i+2a

(2)
i+1

+
b
(1)
i+2

a
(1)
i+2

⎞

⎠
1 − qn1
1 − q1

, n ∈ N0, i ∈ {0, 1, 2}

q1 =
c
(1)
i+2c

(2)
i+1c

(3)
i

a
(1)
i+2a

(2)
i+1a

(3)
i

= 1 u3n+i = ui +

⎛

⎝
c
(1)
i+2c

(2)
i+1b

(3)
i

a
(1)
i+2a

(2)
i+1a

(3)
i

+
c
(1)
i+2b

(2)
i+1

a
(1)
i+2a

(2)
i+1

+
b
(1)
i+2

a
(1)
i+2

⎞

⎠n, n ∈ N0, i ∈ {0, 1, 2}

q2 =
c
(1)
i c

(2)
i+2c

(3)
i+1

a
(1)
i a

(2)
i+2a

(3)
i+1

/= 1 v3n+i = viq
n
2 +

⎛

⎝
c
(2)
i+2c

(3)
i+1b

(1)
i

a
(2)
i+2a

(3)
i+1a

(1)
i

+
c
(2)
i+2b

(3)
i+1

a
(2)
i+2a

(3)
i+1

+
b
(2)
i+2

a
(2)
i+2

⎞

⎠
1 − qn2
1 − q2

, n ∈ N0, i ∈ {0, 1, 2}

q2 =
c
(1)
i c

(2)
i+2c

(3)
i+1

a
(1)
i a

(2)
i+2a

(3)
i+1

= 1 v3n+i = vi +

⎛

⎝
c
(2)
i+2c

(3)
i+1b

(1)
i

a
(2)
i+2a

(3)
i+1a

(1)
i

+
c
(2)
i+2b

(3)
i+1

a
(2)
i+2a

(3)
i+1

+
b
(2)
i+2

a
(2)
i+2

⎞

⎠n, n ∈ N0, i ∈ {0, 1, 2}

q3 =
c
(1)
i+1c

(2)
i c

(3)
i+2

a
(1)
i+1a

(2)
i a

(3)
i+2

/= 1 w3n+i = wiq
n
3 +

⎛

⎝
c
(1)
i+1c

(3)
i+2b

(2)
i

a
(1)
i+1a

(3)
i+2a

(2)
i

+
c
(3)
i+2b

(1)
i+1

a
(3)
i+2a

(1)
i+1

+
b
(3)
i+2

a
(3)
i+2

⎞

⎠
1 − qn3
1 − q3

, n ∈ N0, i ∈ {0, 1, 2}

q3 =
c
(1)
i+1c

(2)
i c

(3)
i+2

a
(1)
i+1a

(2)
i a

(3)
i+2

= 1 w3n+i = wi +

⎛

⎝
c
(1)
i+1c

(3)
i+2b

(2)
i

a
(1)
i+1a

(3)
i+2a

(2)
i

+
c
(3)
i+2b

(1)
i+1

a
(3)
i+2a

(1)
i+1

+
b
(3)
i+2

a
(3)
i+2

⎞

⎠n, n ∈ N0, i ∈ {0, 1, 2}

Theorem 5.1. Consider system (3.2). Let the sequences b(j)n , c(j)n , n ∈ N0, j ∈ {1, 2, 3} be periodic
with period three,

pi :=
c
(2)
i+2c

(3)
i+1b

(1)
i + c

(2)
i+2b

(3)
i+1 + b

(2)
i+2

c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

,

qi :=
vi − ui+1

c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

,

ri :=
vi + ui+1

c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

,

(5.3)

when c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3 /= 0, and for some i ∈ {0, 1, 2} the following condition holds:

c
(1)
i c

(2)
i+2c

(3)
i+1 = 1. (5.4)

Then if x3n+i+1 /= 0 for every n ∈ N0, the following statements hold:

(a) if |pi| < 1, then x3n+i+1 → 0, as n → ∞;
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(b) if |pi| > 1, then |x3n+i+1| → ∞, as n → ∞;

(c) if pi = 1 and qi < 0, then x3n+i+1 → 0, as n → ∞;

(d) if pi = 1 and qi > 0, then |x3n+i+1| → ∞, as n → ∞;

(e) if pi = 1 and qi = 0, then x3n+i+1 is convergent;

(f) if pi = −1 and ri > 0, then x3n+i+1 → 0, as n → ∞;

(g) if pi = −1 and ri < 0, then |x3n+i+1| → ∞, as n → ∞, so that x6n+i+1 → +∞ and
x6n+i+4 → −∞, or x6n+i+1 → −∞ and x6n+i+4 → +∞ as n → ∞;

(h) If pi = −1 and ri = 0, then x6n+i+1 and x6n+i+4 are convergent, as n → ∞.

If c(1)i+3c
(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3 = 0, then the following statements hold:

(i) if c(2)i+2c
(3)
i+1b

(1)
i + c

(2)
i+2b

(3)
i+1 + b

(2)
i+2 /= 0, then |x3n+i+1| → ∞, as n → ∞;

(j) if c(2)i+2c
(3)
i+1b

(1)
i + c

(2)
i+2b

(3)
i+1 + b

(2)
i+2 = 0, then

x3n+i+1 = xi−2

(
vi

ui+1

)n+1

. (5.5)

Proof. (a), (b) From (3.21), (5.4) and (5.1), we have that for each i ∈ {0, 1, 2}

x3n+i+1 = xi−2
n∏

j=0

v3j+i

u3j+i+1

= xi−2
n∏

j=0

vi +
(
c
(2)
i+2c

(3)
i+1b

(1)
i + c

(2)
i+2b

(3)
i+1 + b

(2)
i+2

)
j

ui+1 +
(
c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

)
j
,

(5.6)

for every n ∈ N0.
Since

lim
n→∞

vi +
(
c
(2)
i+2c

(3)
i+1b

(1)
i + c

(2)
i+2b

(3)
i+1 + b

(2)
i+2

)
n

ui+1 +
(
c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

)
n
= pi, (5.7)

the results in (a) and (b) follow from (5.6) easily.
(c), (d), (e) Since pi = 1, we have that

v3n+i

u3n+i+1
=

⎛

⎜
⎝1 +

vi
(
c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

)
n

⎞

⎟
⎠

⎛

⎜
⎝1 +

ui+1
(
c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

)
n

⎞

⎟
⎠

−1

= 1 +
qi
n

+O

(
1
n2

)

= exp
(
qi
n

+O

(
1
n2

))

, n −→ ∞.

(5.8)
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From (5.8) and by using well-known asymptotic relation

n∑

j=n0

1
j
∼ lnn, (5.9)

where we assume n0 ≥ 1 and n → ∞; the results in (c), (d), and (e) easily follow.
(f), (g), (h) Since pi = −1, we have that

v3n+i

u3n+i+1
= −

⎛

⎜
⎝1 − vi

(
c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

)
n

⎞

⎟
⎠

⎛

⎜
⎝1 +

ui+1
(
c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

)
n

⎞

⎟
⎠

−1

= −
(

1 − ri
n
+O

(
1
n2

))

= − exp
(

−ri
n
+O

(
1
n2

))

, n −→ ∞.

(5.10)

From (5.6), (5.10) and asymptotic relation (5.9) the results in (f), (g), and (h) follow.
(i), (j) These two statements follow easily from (5.6).

Remark 5.2. If x3n0+i+1 = 0 for an n0 ∈ N0, then by (3.2) we get x3n+i+1 = 0, for n ≥ n0, which is
the reason why we posed the condition x3n+i+1 /= 0, for every n ∈ N0, in Theorem 5.1. Similar
conditions will be posed in the theorems which follow.

Theorem 5.3. Consider system (3.2). Let the sequences b(j)n , c(j)n , n ∈ N0, j ∈ {1, 2, 3} be periodic
with period three,

p̂i :=
c
(1)
i+1c

(3)
i+2b

(2)
i + c

(3)
i+2b

(1)
i+1 + b

(3)
i+2

c
(2)
i+3c

(3)
i+2b

(1)
i+1 + c

(2)
i+3b

(3)
i+2 + b

(2)
i+3

,

q̂i :=
wi − vi+1

c
(2)
i+3c

(3)
i+2b

(1)
i+1 + c

(2)
i+3b

(3)
i+2 + b

(2)
i+3

,

r̂i :=
wi + vi+1

c
(2)
i+3c

(3)
i+2b

(1)
i+1 + c

(2)
i+3b

(3)
i+2 + b

(2)
i+3

,

(5.11)

when c
(2)
i+3c

(3)
i+2b

(1)
i+1 + c

(2)
i+3b

(3)
i+2 + b

(2)
i+3 /= 0, and that for some i ∈ {0, 1, 2} the following condition holds

c
(1)
i+1c

(2)
i+3c

(3)
i+2 = 1. (5.12)

Then if y3n+i+1 /= 0 for every n ∈ N0, the following statements hold:

(a) if |p̂i| < 1, then y3n+i+1 → 0, as n → ∞;

(b) if |p̂i| > 1, then |y3n+i+1| → ∞, as n → ∞;

(c) if p̂i = 1 and q̂i < 0, then y3n+i+1 → 0, as n → ∞;

(d) if p̂i = 1 and q̂i > 0, then |y3n+i+1| → ∞, as n → ∞;
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(e) if p̂i = 1 and q̂i = 0, then y3n+i+1 is convergent;

(f) if p̂i = −1 and r̂i > 0, then y3n+i+1 → 0, as n → ∞;

(g) if p̂i = −1 and r̂i < 0, then |y3n+i+1| → ∞, as n → ∞, so that y6n+i+1 → +∞ and
y6n+i+4 → −∞, or y6n+i+1 → −∞ and y6n+i+4 → +∞ as n → ∞;

(h) if p̂i = −1 and r̂i = 0, then y6n+i+1 and y6n+i+4 are convergent, as n → ∞.

If c(2)i+3c
(3)
i+2b

(1)
i+1 + c

(2)
i+3b

(3)
i+2 + b

(2)
i+3 = 0, then the following statements hold:

(i) if c(1)i+1c
(3)
i+2b

(2)
i + c

(3)
i+2b

(1)
i+1 + b

(3)
i+2 /= 0, then |y3n+i+1| → ∞, as n → ∞;

(j) if c(1)i+1c
(3)
i+2b

(2)
i + c

(3)
i+2b

(1)
i+1 + b

(3)
i+2 = 0, then

y3n+i+1 = yi−2

(
wi

vi+1

)n+1

. (5.13)

Proof. From (3.22), by using condition (5.12) and the second equality in (5.1), we have that

y3n+i+1 = yi−2
n∏

j=0

wi +
(
c
(1)
i+1c

(3)
i+2b

(2)
i + c

(3)
i+2b

(1)
i+1 + b

(3)
i+2

)
j

vi+1 +
(
c
(2)
i+3c

(3)
i+2b

(1)
i+1 + c

(2)
i+3b

(3)
i+2 + b

(2)
i+3

)
j
, (5.14)

for each i ∈ {0, 1, 2} and every n ∈ N0, from which the results in this theorem follows similar
to Theorem 5.1.

Theorem 5.4. Consider system (3.2). Let the sequences b(j)n , c(j)n , n ∈ N0, j ∈ {1, 2, 3} be periodic
with period three,

p∗i :=
c
(1)
i+2c

(2)
i+1b

(3)
i + c

(1)
i+2b

(2)
i+1 + b

(1)
i+2

c
(1)
i+2c

(3)
i+3b

(2)
i+1 + c

(3)
i+3b

(1)
i+2 + b

(3)
i+3

,

q∗i :=
ui −wi+1

c
(1)
i+2c

(3)
i+3b

(2)
i+1 + c

(3)
i+3b

(1)
i+2 + b

(3)
i+3

,

r∗i :=
ui +wi+1

c
(1)
i+2c

(3)
i+3b

(2)
i+1 + c

(3)
i+3b

(1)
i+2 + b

(3)
i+3

,

(5.15)

when c
(1)
i+2c

(3)
i+3b

(2)
i+1 + c

(3)
i+3b

(1)
i+2 + b

(3)
i+3 /= 0, and for some i ∈ {0, 1, 2} the following condition holds

c
(1)
i+2c

(2)
i+1c

(3)
i = 1. (5.16)

Then if z3n+i+1 /= 0 for every n ∈ N0, the following statements hold:

(a) if |p∗i | < 1, then z3n+i+1 → 0, as n → ∞;

(b) if |p∗i | > 1, then |z3n+i+1| → ∞, as n → ∞;

(c) if p∗i = 1 and q∗i < 0, then z3n+i+1 → 0, as n → ∞;
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(d) if p∗i = 1 and q∗i > 0, then |z3n+i+1| → ∞, as n → ∞;

(e) if p∗i = 1 and q∗i = 0, then z3n+i+1 is convergent;

(f) if p∗i = −1 and r∗i > 0, then z3n+i+1 → 0, as n → ∞;

(g) if p∗i = −1 and r∗i < 0, then |z3n+i+1| → ∞, as n → ∞, so that z6n+i+1 → +∞ and
z6n+i+4 → −∞, or z6n+i+1 → −∞ and z6n+i+4 → +∞ as n → ∞;

(h) if p∗i = −1 and r∗i = 0, then z6n+i+1 and z6n+i+4 are convergent, as n → ∞.

If c(1)i+2c
(3)
i+3b

(2)
i+1 + c

(3)
i+3b

(1)
i+2 + b

(3)
i+3 = 0, then the following statements hold:

(i) if c(1)i+2c
(2)
i+1b

(3)
i + c

(1)
i+2b

(2)
i+1 + b

(1)
i+2 /= 0, then |z3n+i+1| → ∞, as n → ∞;

(j) if c(1)i+2c
(2)
i+1b

(3)
i + c

(1)
i+2b

(2)
i+1 + b

(1)
i+2 = 0, then

z3n+i+1 = zi−2

(
ui

wi+1

)n+1

. (5.17)

Proof. From (3.23), by using conditions (5.16) and (5.2), we have that

z3n+i+1 = zi−2
n∏

j=0

ui +
(
c
(1)
i+2c

(2)
i+1b

(3)
i + c

(1)
i+2b

(2)
i+1 + b

(1)
i+2

)
j

wi+1 +
(
c
(1)
i+2c

(3)
i+3b

(2)
i+1 + c

(3)
i+3b

(1)
i+2 + b

(3)
i+3

)
j
, (5.18)

for each i ∈ {0, 1, 2} and every n ∈ N0, from which the results in this theorem follows similar
to Theorem 5.1.

Theorem 5.5. Consider system (3.2). Let the sequences b(j)n , c(j)n , n ∈ N0, j ∈ {1, 2, 3} be periodic
with period three and for some i ∈ {0, 1, 2} the following condition holds:

c
(1)
i c

(2)
i+2c

(3)
i+1 /= 1. (5.19)

Then if x3n+i+1 /= 0 for every n ∈ N0, the following statements hold:

(a) if |c(1)i c
(2)
i+2c

(3)
i+1| > 1,

si := vi −
c
(2)
i+2c

(3)
i+1b

(1)
i + c

(2)
i+2b

(3)
i+1 + b

(2)
i+2

1 − c
(1)
i c

(2)
i+2c

(3)
i+1

= 0,

ti+1 := ui+1 −
c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

1 − c
(1)
i+3c

(2)
i+2c

(3)
i+1

/= 0

(5.20)

then x3n+i+1 → 0, as n → ∞;

(b) if |c(1)i c
(2)
i+2c

(3)
i+1| > 1, si /= 0, and ti+1 = 0, then |x3n+i+1| → ∞, as n → ∞;
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(c) if c(1)i+3c
(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3 /= 0, si = ti+1 = 0, then

x3n+i+1 = xi−2

⎛

⎝
c
(2)
i+2c

(3)
i+1b

(1)
i + c

(2)
i+2b

(3)
i+1 + b

(2)
i+2

c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

⎞

⎠

n+1

; (5.21)

(d) if c(1)i+3c
(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3 = c

(2)
i+2c

(3)
i+1b

(1)
i + c

(2)
i+2b

(3)
i+1 + b

(2)
i+2 = 0 and (5.20) holds, then

x3n+i+1 = xi−2

(
si
ti+1

)n+1

; (5.22)

(e) if |c(1)i c
(2)
i+2c

(3)
i+1| > 1 and 0 < |si| < |ti+1|, then x3n+i+1 → 0 as n → ∞;

(f) if |c(1)i c
(2)
i+2c

(3)
i+1| > 1 and |si| > |ti+1| > 0, then |x3n+i+1| → +∞ as n → ∞;

(g) if |c(1)i c
(2)
i+2c

(3)
i+1| > 1 and si = ti+1 /= 0, then x3n+i+1 converges, as n → ∞;

(h) if |c(1)i c
(2)
i+2c

(3)
i+1| > 1 and si = −ti+1 /= 0, then x6n+i+1 and x6n+i+4 converge, as n → ∞;

(i) if |c(1)i c
(2)
i+2c

(3)
i+1| < 1 and 0 < |ai| < |bi|, where

ai :=
c
(2)
i+2c

(3)
i+1b

(1)
i + c

(2)
i+2b

(3)
i+1 + b

(2)
i+2

1 − c
(1)
i c

(2)
i+2c

(3)
i+1

, bi =
c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

1 − c
(1)
i+3c

(2)
i+2c

(3)
i+1

, (5.23)

then x3n+i+1 → 0 as n → ∞;

(j) if |c(1)i c
(2)
i+2c

(3)
i+1| < 1 and |ai| > |bi| > 0, then |x3n+i+1| → +∞ as n → ∞;

(k) if |c(1)i c
(2)
i+2c

(3)
i+1| < 1 and ai = bi /= 0, then x3n+i+1 converges, as n → ∞;

(l) if |c(1)i c
(2)
i+2c

(3)
i+1| < 1 and ai = −bi /= 0, then x6n+i+1 and x6n+i+4 converge, as n → ∞.

Proof. From (3.21) and by using conditions (5.19) and (5.2), we have that

x3n+i+1 = xi−2
n∏

j=0

si
(
c
(1)
i c

(2)
i+2c

(3)
i+1

)j
+
((

c
(2)
i+2c

(3)
i+1b

(1)
i + c

(2)
i+2b

(3)
i+1 + b

(2)
i+2

)
/
(
1 − c

(1)
i c

(2)
i+2c

(3)
i+1

))

ti+1
(
c
(1)
i+3c

(2)
i+2c

(3)
i+1

)j
+
((

c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

)
/
(
1 − c

(1)
i+3c

(2)
i+2c

(3)
i+1

)) ,

(5.24)

for every n ∈ N0 and for each i ∈ {0, 1, 2}. Using (5.24) the statements in (a)–(d) easily follows.
(e)–(h) Let λ := c

(1)
i c

(2)
i+2c

(3)
i+1. Then

si
(
c
(1)
i c

(2)
i+2c

(3)
i+1

)j
+
((

c
(2)
i+2c

(3)
i+1b

(1)
i + c

(2)
i+2b

(3)
i+1 + b

(2)
i+2

)
/
(
1 − c

(1)
i c

(2)
i+2c

(3)
i+1

))

ti+1
(
c
(1)
i+3c

(2)
i+2c

(3)
i+1

)j
+
((

c
(1)
i+3c

(2)
i+2b

(3)
i+1 + c

(1)
i+3b

(2)
i+2 + b

(1)
i+3

)
/
(
1 − c

(1)
i+3c

(2)
i+2c

(3)
i+1

)) =
siλ

j + ai

ti+1λj + bi
, (5.25)
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where ai, bi are defined by (5.23). We have

siλ
j + ai

ti+1λj + bi
=

si
ti+1

(

1 +
ai

siλj

)(

1 +
bi

ti+1λj

)−1
=

si
ti+1

(

1 +
(
ai

si
− bi
ti+1

)
1
λj

+O

(
1
λ2j

))

. (5.26)

From this and since |λ| > 1, the results in these four cases easily follow.
(i)–(l)We have

siλ
j + ai

ti+1λj + bi
=

ai

bi

(

1 +
si
ai
λj
)(

1 +
ti+1
bi

λj
)−1

=
ai

bi

(

1 +
(
si
ai

− ti+1
bi

)

λj +O
(
λ2j
))

. (5.27)

From this and since |λ| < 1, the results in these four cases easily follow.

Theorem 5.6. Consider system (3.2). Let the sequences b(j)n , c(j)n , n ∈ N0, j ∈ {1, 2, 3} be periodic
with period three and for some i ∈ {0, 1, 2} the following condition holds:

c
(1)
i+1c

(2)
i c

(3)
i+2 /= 1. (5.28)

Then if y3n+i+1 /= 0 for every n ∈ N0, the following statements hold:

(a) if |c(1)i+1c
(2)
i c

(3)
i+2| > 1,

ŝi := wi −
c
(1)
i+1c

(3)
i+2b

(2)
i + c

(3)
i+2b

(1)
i+1 + b

(3)
i+2

1 − c
(1)
i+1c

(2)
i c

(3)
i+2

= 0,

t̂i+1 = vi+1 −
c
(2)
i+3c

(3)
i+2b

(1)
i+1 + c

(2)
i+3b

(3)
i+2 + b

(2)
i+3

1 − c
(1)
i+1c

(2)
i+3c

(3)
i+2

/= 0,

(5.29)

then y3n+i+1 → 0, as n → ∞;

(b) if |c(1)i+1c
(2)
i c

(3)
i+2| > 1, ŝi /= 0, and t̂i+1 = 0, then |y3n+i+1| → ∞, as n → ∞;

(c) if c(2)i+3c
(3)
i+2b

(1)
i+1 + c

(2)
i+3b

(3)
i+2 + b

(2)
i+3 /= 0, ŝi = t̂i+1 = 0, then

y3n+i+1 = yi−2

⎛

⎝
c
(1)
i+1c

(3)
i+2b

(2)
i + c

(3)
i+2b

(1)
i+1 + b

(3)
i+2

c
(2)
i+3c

(3)
i+2b

(1)
i+1 + c

(2)
i+3b

(3)
i+2 + b

(2)
i+3

⎞

⎠

n+1

; (5.30)

(d) if c(1)i+1c
(3)
i+2b

(2)
i + c

(3)
i+2b

(1)
i+1 + b

(3)
i+2 = c

(2)
i+3c

(3)
i+2b

(1)
i+1 + c

(2)
i+3b

(3)
i+2 + b

(2)
i+3 = 0 and (5.29) holds, then

y3n+i+1 = yi−2

(
ŝi

t̂i+1

)n+1

; (5.31)

(e) if |c(1)i+1c
(2)
i c

(3)
i+2| > 1 and 0 < |ŝi| < |t̂i+1|, then y3n+i+1 → 0 as n → ∞;
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(f) if |c(1)i+1c
(2)
i c

(3)
i+2| > 1 and |ŝi| > |t̂i+1| > 0, then |y3n+i+1| → +∞ as n → ∞;

(g) if |c(1)i+1c
(2)
i c

(3)
i+2| > 1 and ŝi = t̂i+1 /= 0, then y3n+i+1 converges, as n → ∞;

(h) if |c(1)i+1c
(2)
i c

(3)
i+2| > 1 and ŝi = −t̂i+1 /= 0, then y6n+i+1 and y6n+i+4 converge, as n → ∞;

(i) if |c(1)i+1c
(2)
i c

(3)
i+2| < 1 and 0 < |âi| < |b̂i|, where

âi :=
c
(1)
i+1c

(3)
i+2b

(2)
i + c

(3)
i+2b

(1)
i+1 + b

(3)
i+2

1 − c
(1)
i+1c

(2)
i c

(3)
i+2

, b̂i :=
c
(2)
i+3c

(3)
i+2b

(1)
i+1 + c

(2)
i+3b

(3)
i+2 + b

(2)
i+3

1 − c
(1)
i+1c

(2)
i+3c

(3)
i+2

, (5.32)

then y3n+i+1 → 0 as n → ∞;

(j) if |c(1)i+1c
(2)
i c

(3)
i+2| < 1 and |âi| > |b̂i| > 0, then |y3n+i+1| → +∞ as n → ∞;

(k) if |c(1)i+1c
(2)
i c

(3)
i+2| < 1 and âi = b̂i /= 0, then y3n+i+1 converges, as n → ∞;

(l) if |c(1)i+1c
(2)
i c

(3)
i+2| < 1 and âi = −b̂i /= 0, then y6n+i+1 and y6n+i+4 converge, as n → ∞.

Proof. From (3.22) and by using condition (5.28), we have that

y3n+i+1 = yi−2
n∏

j=0

ŝi
(
c
(1)
i+1c

(2)
i c

(3)
i+2

)j
+
((

c
(1)
i+1c

(3)
i+2b

(2)
i + c

(3)
i+2b

(1)
i+1 + b

(3)
i+2

)
/
(
1 − c

(1)
i+1c

(2)
i c

(3)
i+2

))

t̂i+1
(
c
(1)
i+1c

(2)
i+3c

(3)
i+2

)j
+
((

c
(2)
i+3c

(3)
i+2b

(1)
i+1 + c

(2)
i+3b

(3)
i+2 + b

(2)
i+3

)
/
(
1 − c

(1)
i+1c

(2)
i+3c

(3)
i+2

)) ,

(5.33)

for every n ∈ N0 and for each i ∈ {0, 1, 2}, fromwhich the statements in (a)–(l) follows similar
as the corresponding ones in Theorem 5.5.

Theorem 5.7. Consider system (3.2). Let the sequences b(j)n , c(j)n , n ∈ N0, j ∈ {1, 2, 3} be periodic
with period three and for some i ∈ {0, 1, 2} the following condition holds

c
(1)
i+2c

(2)
i+1c

(3)
i /= 1. (5.34)

Then if z3n+i+1 /= 0 for every n ∈ N0, the following statements hold:

(a) if |c(1)i+2c
(2)
i+1c

(3)
i | > 1,

s∗i := ui −
c
(1)
i+2c

(2)
i+1b

(3)
i + c

(1)
i+2b

(2)
i+1 + b

(1)
i+2

1 − c
(1)
i+2c

(2)
i+1c

(3)
i

= 0,

t∗i+1 := wi+1 −
c
(1)
i+2c

(3)
i+3b

(2)
i+1 + c

(3)
i+3b

(1)
i+2 + b

(3)
i+3

1 − c
(1)
i+2c

(2)
i+1c

(3)
i+3

/= 0

(5.35)

then z3n+i+1 → 0, as n → ∞;

(b) if |c(1)i+2c
(2)
i+1c

(3)
i | > 1, s∗i /= 0,t∗i+1 = 0, then |z3n+i+1| → ∞, as n → ∞;
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(c) if c(1)i+2c
(3)
i+3b

(2)
i+1 + c

(3)
i+3b

(1)
i+2 + b

(3)
i+3 /= 0, s∗i = t∗i+1 = 0, then

z3n+i+1 = zi−2

⎛

⎝
c
(1)
i+2c

(2)
i+1b

(3)
i + c

(1)
i+2b

(2)
i+1 + b

(1)
i+2

c
(1)
i+2c

(3)
i+3b

(2)
i+1 + c

(3)
i+3b

(1)
i+2 + b

(3)
i+3

⎞

⎠

n+1

; (5.36)

(d) if c(1)i+2c
(2)
i+1b

(3)
i + c

(1)
i+2b

(2)
i+1 + b

(1)
i+2 = c

(1)
i+2c

(3)
i+3b

(2)
i+1 + c

(3)
i+3b

(1)
i+2 + b

(3)
i+3 = 0 and (5.35) holds, then

z3n+i+1 = zi−2

(
s∗i
t∗i+1

)n+1

; (5.37)

(e) if |c(1)i+2c
(2)
i+1c

(3)
i | > 1 and 0 < |s∗i | < |t∗i+1|, then z3n+i+1 → 0 as n → ∞;

(f) if |c(1)i+2c
(2)
i+1c

(3)
i | > 1 and |s∗i | > |t∗i+1| > 0, then |z3n+i+1| → +∞ as n → ∞;

(g) if |c(1)i+2c
(2)
i+1c

(3)
i | > 1 and s∗i = t∗i+1 /= 0, then z3n+i+1 converges, as n → ∞;

(h) if |c(1)i+2c
(2)
i+1c

(3)
i | > 1 and s∗i = −t∗i+1 /= 0, then z6n+i+1 and z6n+i+4 converge, as n → ∞;

(i) if |c(1)i+2c
(2)
i+1c

(3)
i | < 1 and 0 < |a∗

i | < |b∗i |, where

a∗
i :=

c
(1)
i+2c

(2)
i+1b

(3)
i + c

(1)
i+2b

(2)
i+1 + b

(1)
i+2

1 − c
(1)
i+2c

(2)
i+1c

(3)
i

, b∗i :=
c
(1)
i+2c

(3)
i+3b

(2)
i+1 + c

(3)
i+3b

(1)
i+2 + b

(3)
i+3

1 − c
(1)
i+2c

(2)
i+1c

(3)
i+3

, (5.38)

then z3n+i+1 → 0 as n → ∞;

(j) if |c(1)i+2c
(2)
i+1c

(3)
i | < 1 and |a∗

i | > |b∗i | > 0, then |z3n+i+1| → +∞ as n → ∞;

(k) if |c(1)i+2c
(2)
i+1c

(3)
i | < 1 and a∗

i = b∗i /= 0, then z3n+i+1 converges, as n → ∞;

(l) if |c(1)i+2c
(2)
i+1c

(3)
i | < 1 and a∗

i = −b∗i /= 0, then z6n+i+1 and z6n+i+4 converge, as n → ∞.

Proof. From (3.23) and by using condition (5.34), we have that

z3n+i+1 = zi−2
n∏

j=0

s∗i
(
c
(1)
i+2c

(2)
i+1c

(3)
i

)j
+
((

c
(1)
i+2c

(2)
i+1b

(3)
i + c

(1)
i+2b

(2)
i+1 + b

(1)
i+2

)
/
(
1 − c

(1)
i+2c

(2)
i+1c

(3)
i

))

t∗i+1
(
c
(1)
i+2c

(2)
i+1c

(3)
i+3

)j
+
((

c
(1)
i+2c

(3)
i+3b

(2)
i+1 + c

(3)
i+3b

(1)
i+2 + b

(3)
i+3

)
/
(
1 − c

(1)
i+2c

(2)
i+1c

(3)
i+3

)) ,

(5.39)

for every n ∈ N0 and for each i ∈ {0, 1, 2}, from which the statements in (a)–(l) follow similar
as the corresponding ones in Theorem 5.5.
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[6] L. Berg and S. Stević, “On difference equations with powers as solutions and their connection with
invariant curves,” Applied Mathematics and Computation, vol. 217, no. 17, pp. 7191–7196, 2011.
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[31] S. Stević, “Periodicity of max difference equations,” Utilitas Mathematica, vol. 83, pp. 69–71, 2010.
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