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We take account of the stability of higher ring derivation in intuitionistic fuzzy Banach algebra
associated to the Jensen type functional equation. In addition, we deal with the superstability of
higher ring derivation in intuitionistic fuzzy Banach algebra with unit.

1. Introduction and Preliminaries

The stability problem of functional equations has originally been formulated by Ulam
[1]: under what condition does there exist a homomorphism near an approximate homomorphism?
Hyers [2] answered the problem of Ulam under the assumption that the groups are
Banach spaces. A generalized version of the theorem of Hyers for approximately additive
mappings was given by Aoki [3] and for approximately linear mappings was presented by
Rassias [4] by considering an unbounded Cauchy difference. The paper work of Rassias
[4] has had a lot of influence in the development of what is called the generalized Hyers-
Ulam stability of functional equations. Since then, more generalizations and applications of
the generalized Hyers-Ulam stability to a number of functional equations and mappings
have been investigated (e.g., [5-7]). In particular, Badora [8] gave a generalization of the
Bourgin’s result [9], and he also dealt with the stability and the Bourgin-type superstability
of derivations in [10]. Recently, fuzzy version is discussed in [11, 12]. Quite recently, the
intuitionistic fuzzy stability problem for Jensen functional equation and cubic functional
equation is considered in [13-15], respectively, while the idea of intuitionistic fuzzy normed
space was introduced in [16], and there are some recent and important results which are
directly related to the central theme of this paper, that is, intuitionistic fuzziness (see e.g.,
[17-20]).
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In this paper, we establish the stability of higher ring derivation in intuitionistic fuzzy
Banach algebra associated to the Jensen type functional equation If (x + y/I) = f(x) + f(y).
Moreover, we consider the superstability of higher ring derivation in intuitionistic fuzzy
Banach algebra with unit.

We now recall some notations and basic definitions used in this paper.

Definition 1.1 (see [5]). Let «# and B be algebras over the real or complex field F. Let N be
the set of the natural numbers. From m € N U {0}, a sequence H = {ho, hy,..., hy} (resp.,
H = {ho, hy,..., hx,...}) of additive operators from < into B is called a higher ring derivation
of rank m (resp., infinite rank) if the functional equation hy(xy) = Zf:o hi(x)h-i(y) holds for
eachk =0,1,...,m (resp.,, k = 0,1,...) and for all x,y € 4. A higher ring derivation H of
additive operators on <, particularly, is called strong if hy is an identity operator.

Of course, a higher ring derivation of rank 0 from < into B (resp., a strong higher
ring derivation of rank 1 on &) is a ring homomorphism (resp., a ring derivation). Note
that a higher ring derivation is a generalization of both a ring homomorphism and a ring
derivation.

Definition 1.2. A binary operation * : [0,1] x [0,1] — [0,1] is said to be a continuous t-norm if
it satisfies the following conditions:

(1) = is associative and commutative, (2) * is continuous, (3) a*x1 = a for all a €
[0,1], and (4) a*b < c*d whenever a < cand b <d foreach a,b,c,d € [0,1].

Definition 1.3. A binary operation ¢ : [0,1] x [0,1] — [0,1] is said to be a continuous t-conorm
if it satisfies the following conditions:

(1) ¢ is associative and commutative, (2) ¢ is continuous, (3) a© 0 = a for all a €
[0,1], and (4) a¢b < cod whenever a<cand b <d foreacha,b,c,d € [0,1].

Using the notions of continuous f-norm and t-conorm, Saadati and Park [16] have
recently introduced the concept of intuitionistic fuzzy normed space as follows.

Definition 1.4. The five-tuple (X, u, v, *,¢) is said to be an intuitionistic fuzzy normed space if X
is a vector space, * is a continuous t-norm, ¢ is a continuous f-conorm, and y, v are fuzzy sets
on X x (0, o) satisfying the following conditions. For every x,y € L and s,t > 0, (1) u(x,t) +
v(x,t) <1, (2) pulx,t) >0, (3) p(x,t) = 1if and only if x = 0, (4) p(ax,t) = u(x,t/|al) for
each a#0, (5) p(x,t) » u(y,s) < u(x +y,t+s), (6) u(x,-) : (0,00) — [0,1] is continuous,
(7) limy—, op(x,t) = 1 and lim;_,ou(x,t) = 0, (8) v(x,t) < 1, (9) v(x,t) = 0 if and only if
x =0, (10) v(ax,t) = v(x,t/|a|) foreacha #0, (11) v(x,t)ou(y,s) > v(x+y,t+s), (12) v(x,-) :
(0,00) — [0,1] is continuous, (13) lim;_, ,v(x,t) = 0 and lim; _yv(x,t) = 1.
In this case, (i, v) is called an intuitionistic fuzzy norm.

Example 1.5. Let (X,] - ||) be a normed space, a *xb = ab, and a ¢ b = min{a + b, 1} for all
a,be[0,1]. Forall x € X and every t > 0, consider

1, if t> |« ( t)z{o, if £> x|, 1)

b) =
Hx b {o, if £ < ], 1, if t < x|

Then (X, p, v, *,¢) is an intuitionistic fuzzy normed space.
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Example 1.6. Let (X, || - ||) be a normed space, a * b = ab, and a o b = min{a + b,1} for all
a,be[0,1]. Forall x € X and every t > 0 and k = 1,2, consider

Mgy 0

t

——, ift>0, ,

plx, t) =3 t+ x|l v(x,t) = 4 t+k|x]| (1.2)
0, if t<0, 0, if t<0.

Then (X, p, v, *,0) is an intuitionistic fuzzy normed space.

Definition 1.7 (see [21]). The five-tuple (X, p,v,*,0) is said to be an intuitionistic fuzzy
normed algebra if X is an algebra, * is a continuous f-norm, ¢ is a continuous #-conorm,
and p, v are fuzzy sets on X x (0, oo) satisfying the conditions (1)—(13) of the Definition 1.4.
Furthermore, for every x,y € X and s,t > 0, (14) max{pu(x,t),u(y,s)} < ulxy,t +
s), (15) min{v(x,t),v(y,s)} > v(xy,t +s).

For an intuitionistic fuzzy normed algebra (X, y, v, *,¢), we further assume that (16)
axa=aandaca=aforallae [0,1].

The concepts of convergence and Cauchy sequences in an intuitionistic fuzzy normed
space are studied in [16]. Let (X, p,v,*,¢) be an intuitionistic fuzzy normed space or
intuitionistic fuzzy normed algebra. A sequence x = {xi} is said to be intuitionistic fuzzy
convergent to L € X if limy_, op(xx — L,t) = 1 and limy_, ,v(xx — L,t) = O for all ¢t > 0. In

this case, we write (u,v) — limg_, xXx = L or xx ELask - o A sequence x = {xi}
in (X, p,v,*,0) is said to be intuitionistic fuzzy Cauchy sequence if limy _, o pt(Xpsp — xx,t) = 1
and limy _, oV (Xk4p — xx,t) = O forallt > 0 and p = 1,2,.... An intuitionistic fuzzy normed
space (resp., intuitionistic fuzzy normed algebra) (X, pu,v,*,¢) is said to be complete if
every intuitionistic fuzzy Cauchy sequence in (X, p, v, *,¢) is intuitionistic fuzzy convergent
in (X, pu,v,%,0). A complete intuitionistic fuzzy normed space (resp., intuitionistic fuzzy
normed algebra) is also called an intuitionistic fuzzy Banach space (resp., intuitionistic fuzzy
Banach algebra).

2. Stability of Higher Ring Derivation in
Intuitionistic Fuzzy Banach Algebra

As a matter of convenience in this paper, we use the following abbreviation:

n [ee]
Haj:=a1*a2*-~*an, Haj:=a1*a2*---. (2])
j=0 j=0
In addition,
n [ee]
]_[a]-::aloa2<>-~-<>an, L[aj::aloa2<>~--. (2,2)
=0 j=0

We begin with a generalized Hyers-Ulam theorem in intuitionistic fuzzy Banach space
for the Jensen type functional equation. The following result is also the generalization of the
theorem introduced in [13].
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Theorem 2.1. Let o4 be a vector space, and let f be a mapping from 4 to an intuitionistic fuzzy
Banach space (B, p, v, *,0) with f(0) = 0. Suppose that ¢ is a function from <4 to an intuitionistic
fuzzy normed space (C, y',v', x, 0) such that

u(lf<x - y) —f)=f(y)t+ S> 21 (p(x) 1) * W (9 (y).5), (2.3)

(17 () = £ = £ ).t +5) <99, 0) 0¥ (90, ) 24)

forall x,y € A\ {0}, t >0and s >0.If] > 1is a fixed integer, and ((I + 1)x) = ap(x) for some
real number a with 0 < |a| <1+ 1, then there exists a unique additive mapping £ : # — B such that
L(x) == (u,v) —lim, o (f((I+1)"x) /(1 +1)"),

p(L(x) - f(x),1) 2 gM<x' 2(1+1) )
o (2.5)
) & @+h-at
v(L(x) - f(x),t) < !:OIN <x' 2(1+1) >

forall x € A and t > 0, where

Mot = (9, “t) (g0, St ) o (oo, S o) s (@ D), S,

N(x,t) := v’(q;(x), ITTlt> o ((p(—x), lJ:Tlt) o ((p(—x), “:T1t> o <(p((l +1)x), HT1t>
(2.6)

Proof. Without loss of generality, we assume that 0 < & <[+ 1. From (2.3) and (2.4), we get

P70+ £, ) 2 (9, 5t ) < (w0 1),

(2.7)
v(£0) + f0,10) <9 (90, 5t) o (o0, 31)
forall x € &/ and f > 0. Again, by (2.3) and (2.4), we obtain
l
HFG) = F-2) = £+ D10 2 0 (90, 5t) < (9 1000, 5t),
(2.8)

W(1f () = £=) = £+ D, 10) <9/ (90, 50) o9 (9@ + 1), 5t)
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for all x € &/ and t > 0. Combining (2.7) and (2.8), we arrive at

u((+ 1) () = F((+1)x),20E) > ‘u’<(p(x),ét> *y’((p(—x),ét> . ((p(—x),ét>
il (940, 51),
(2.9)
v((I+1)f(x) = f((I+1)x),20t) <V <(p(x), %t) oy (tp(—x), ét) <>v'<(p(—x), %t)
o (9412, 31),

for all x € & and t > 0. This implies that
ﬂ(f(x) - %O 2 #’((p(x), HTlt> * #'<so(—x), HTlt> * #’<<p(—x), l%f)
el (o=, ),
F((+1)x) 1+1 1+1 1+1 (10
v(f(x) TS t> < ((p(x), Tt> o v’<(p(—x), Tt) oV <(p(—x), Tt)
o/ (p(+ D0, 5,
for all x € &/ and t > 0. Now we define
Mot = (90, St ) (g0, ) o (e, o) s (0@ D), S,

N(x,t) := v’<(p(x), ZTTlt> o <<p(—x), lTTlt) o <(p(—x), HT1t> o <(p((l +1)x), HT1t>,
2.11)

for all x € &/ and t > 0. Then we have by assumption
M((+ 1)x, t) = M(x, i) NI+ 1)x, ) = N<x, é) (2.12)
for all x € & and f > 0. Using (2.10) and (2.12), we get
f(I+1)"x) f((l +1)"x) gy . f((l + 1)””96)
I4< T T (l+1)n> #(f((l+1) x) H—lf“nt>

>M((I+1)"x,a’t) = M(x,1),




6 Abstract and Applied Analysis

f((l+1)"x) f((l+1)n+1x> a't ~ . f<(1+1)n+1x> )
v< +0"  grpm asnt )77 FA+1)"x) = =gt

<SN((1+1)"x,a") = N(x,1),

(2.13)

for all x € &/ and t > 0. Therefore, for all n > m, we have
f(I+1)"x) f((l+1) x) alt
#< +1n™ (I+1)" Z(1+1)1>
nl f((l + 1)jX> f<(l + 1)j+1x) nl iy
- ,Zm (+1)  (+1t ]:Zm(l+1
1 (f((l +1yx)  F(a+ 1))

i+  (+1)* (l+1> HM(xt)

V<f((l+1)"‘x)_f((l+1)”x) 1 gt >

(I+1)" +1" &1+
(| arvx) f(arrR) |
=v ]:Zm (l+1)] - (l+1)f+1 ]:Zm l+1)]

- f<(1+1)fx) f<(1+1)7+1> J
= v< (+1y @+ (l+1)1 HN(“)

v
T3
o

(2.14)

;a

]m

forall x € # and t > 0. Let ¢ > 0 and & > 0 be given. Since hmt_m]—[ 1M(x f) =1and
llmt_m]_I] 1N(x t) = 0, there exists some t( such that]_[ M(x t)) >1-¢, ]_[" 1N(x ty) <

£.Since 3772 o(@lt/(1+1))) < oo, there exists a positive integer ry such that Z" L@t/ (1+1)) < 6
for all n > m > ny.
Then

<f((1+1)mx) f(U+1"%) 5> >‘u<f((l+1)’"x) F(U+1)"x) 2 Z aity >

i+ I+n" T+ I+n" = (1+1)/

Ju

n—

> M(X,t0)>1—5,

T
3
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v<f((l+1)mx) F(A+1)") )Sv<f((l+1)mx) FA+1)") 7 Z ity )

i+n" I+n" +1n" Ir+n" =~ (1+1)

n-1
<[ INGx to) <e.
j=m

(2.15)

This shows that {(f((I +1)"x))/((I +1)")} is a Cauchy sequence in (B, i, V', *,¢). Since B is
complete, we can define a mapping £ by £(x) := (4, v) —lim, o (f ([ +1)"x)/(1+1)") for all
x € o#. Moreover, if we let m = 0 in (2.14), then we get

1+1 n-1 n-1
u<f((,11; ) >21‘[M<x,t>,

j= O(Z 1) j=0
(2.16)
f((l+1)ﬂx> ~ n-1 Dlt n-1
V<—(Z+1)n f(x), ]Zo(l 1) > sgN(x,t),
for all x € &/ and t > 0. Therefore, we find that
f(A+1)"x) > il t
—_— - ) > M) x, - ,
”< (+ 1)71 f(x) 2 X Z;‘:‘Ol (ij/(l x 1)])
(2.17)

f((l 4 l)nX) > n-1 t
A A ) <IN x, :
v< 1+1)" f) =0 * 272—01 (cxf/(l + 1)j>

Next, we will show that £ is additive mapping. Note that

ﬂ(llf(x?y) £(x) - _ﬁ(y)> <M<x;y>_lf(((l+(11)i(13§:y))/l),£>

F(I+1)"x) t f(I+1D)"y) t
*#<W - L(x), Z> *#<W ‘—E(y>/1>

Y ) /) fA D) (@ D")
# (+1)" (+1)" i+1)" '4)
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v(12(55Y) - 26 - 2(0).t) < v<l£<x;y> _ ’f(<<’+(11>:<;;: y))/l>,£>

f(T+1)"x) t f+1)"y) t
OV<W —.ﬁ(X),Z> OV<W —ﬁ(y), Z>

w<lf(((l +)"(x+y)/0)  fU+D"x)  f(I+D)"y) 3>

1+1)" I+1)" I+1)" ’'4)
(2.18)
On the other hand, (2.3) and (2.4) give the following:
FA@+D)"(x+y))/D)  f(I+D)"x) f(I+D"y) ¢
# (+1)" (+1)" (+1)" 4
, I+1\"t , I+1\"t
(o () 5) (00 () 5) o

(I+1)" (I+1)" i+1)" '4
ol (52 )l (222,

Letting n — oo in (2.18) and (2.19), we yield

,1<m<x’;y> — 2(x) —.B(y),t) -1, v<zz<x;y> ~ 2(x) —.Z(y),t) =0, (220)

v<lf(((l+1)"(X+y))/l) A" fA+Dy) 5>

So we see that £ is additive mapping.
Now, we approximate the difference between f and £ in an intuitionistic fuzzy sense.
By (2.17), we get

f((l+1)"x) t f((l+1)"x) t
p(L(x) = f(x),t) > #(—ﬁ(x) I §> *H<W —f(x),§>

2 ((+1) -t
ng<x, 2(+1) )

141y 1+1)"
v(L(x) - f(2),1) < v<_£(x) _ f(((zi—1;"X)§> ov(% —f(x),%)

* (1+1) - a)t
< HN<X’ 20+ 1) )

j=0

(2.21)

for all x € &/ and t > 0 and sufficiently large n.
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In order to prove the uniqueness of £, we assume that T is another additive mapping
from & to B3, which satisfies the inequality (2.5). Then

H() =T, 0 > p( 200 = £, 5 ) (T - £, 5 )

*® (1+1) —a)t
gM<’ 4(1+1) >
(2.22)
H(20x) T, 1) < »(£(0) - f), ) ov(T60) - £, )
* (I+1) —a)t
S!:P(' )
for all x € &/ and t > 0. Therefore, due to the additivity of .£ and T, we obtain that
(L) ~T(x), 1) = p(L((1+1)"x) = T((+1)"x), (1 +1)")
© I+1\"((I+1) - a)t
T () S )
(2.23)

v(L(x)-T(x),t) =v(L((I+1)"x) -T((+1)"x), 1 +1)")

. ﬁ ( <l+1>"((l;(ll4)_;)a)t>'

Since 0 <a <I+1, lim,_,((I+1)/a)" = oo, and we get

b () ) (e S
2.24

that is, p(L(x) = T(x),t) = 1 and v(£(x) - T(x),t) =0 forallx € &#, t > 0. So £ = T, which
completes the proof. O

In particular, we can prove the preceding result for the case when a > [+1. In this case,
the mapping £(x) := (u,v) — lim, (I + 1)" f((I + 1)"x). We now establish a generalized
Hyers-Ulam stability in intuitionistic fuzzy Banach algebra for the higher ring derivation.

Theorem 2.2. Let of be an algebra, and let F = { fo, f1,..., fk, ...} be a sequence of mappings from 4
to an intuitionistic fuzzy Banach algebra (B, u, v, *, o) wzth fk(O) =0 foreach k =0,1,.... Suppose
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that ¢ is a function from &4 to an intuitionistic fuzzy normed algebra (C, ', v', %, ) such that for each
k=0,1,...

p(15 () = 0 - o)t 5) 2 00,0+ 1 (9(0),9),
(2.25)

(1 (5FE) - @) = e+ 5) <9 (90,1) 0¥ (90 )

forall x,y € A\ {0},t > 0and s > 0, and that @ is a function from &4 to an intuitionistic fuzzy
normed space (D, y",v", , ) such that for each k =0,1,...,

k
(a9 = 0 ) 45 ) 2 it @60, 0.0 (000, 9)),
= (2.26)

k
v<fk (xy) - Zfi(x)fk,i (), t+ s> <min{v"(®(x),t),v" (©(y),s)}
i=0

forall x,y € #4,t >0,and s > 0. If | > 1 is a fixed integer, p((I + 1)x) = ap(x), and ®((I + 1)x) =
Pd(x) for some real numbers a and p with 0 < |a| <1+ 1and 0 < |B| < I+ 1, then there exists a
unique higher ring derivation H = { £y, £1, ..., Ly, ...} of any rank such that for each k =0,1,...,

p(Li(x) = fi(x),t) 2 M(’“ %>

-~ t (2.27)
+ —_
v(Li(x) - filx), ) < N<x,%>,
forall x € A and t > 0. In this case,
Moty = (9, St )+ (e, o) s (o D), ),
(2.28)
N(x,t) = v <(p(x), HTlt> o <‘P(—JC), lTTlt> o v'(go((l +1)x), lTTlt>
Moreover, the identity
k
DLW Li-i(y) ~ fiei(y)} =0 (2.29)
i=0

holds for each k =0,1,...and all x,y € 4.
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Proof. 1t follows by Theorem 2.1 that for each k = 0,1,... and all x € &4, there exists a unique
additive mapping Ly : # — B given by

L (x) = (g, v) - lim M

Jim (2.30)

satisfying (2.27) since (C, ¢, V', %, ¢) is an intuitionistic fuzzy normed algebra.

Without loss of generality, we suppose that 0 < f < I + 1. Now, we need to prove that
the sequence H = {£y, 2y,..., L, ...} satisfies the identity Ly (xy) = Zf:o Li(x)Ly-i(y) for
each k=0,1,...and all x € &4. It is observed that for each k = 0,1, ...,

p <ﬂk (xy) - Zkoﬂi(x)fk_i(y), f>

n nx k £ n
ZP,(Jzk(xy)_M £> *#<fk<<l+1> v) S+ x)fki(y)@

I+n" "3 I+n" =  (1+1)"

k i l "x k
* P‘<Z %ﬁ(_i(y) - Z(;'Ei(x)fk—i W), §>

i=0

v<zk<xy> SYIETe <y>,t>

fi(@+D)"xy) ¢t fr(@+1)"xy) & fi((+1)"x) t
SV<£k(xy)_W’§>ov< (l+1)n _Z (l+1)n fkl(y)’§>

i=0

((I+1) k .
<§f (l: R Ly "'<y)‘§1i<x>fk—i(y>,§>
(2.31)

forall x,y € & and t > 0. On account of (2.26), we see that foreach k =0,1,...,

fil@+D)"x-y) & fi(A+1)"x) t
”< D S f"‘i(y)’§>

i=0

—#<fk((l+1) xy) - Zﬁ((m) ) feos(), L t>

Zmax{ ”<(I)( ), (l;l) 6>/ﬂ"<q)(y), (l+61)"t>},
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fr(A+D)'x-y) & fi((1+1)"x) (l+1) t
”< 1+1)" _%; Rk >
—V<fk((l+1) xoy) - Zfz(<l+1) ) feost), t>
(. 1+1 g’ 1+1)"t
oo (5 o o 22,
(2.32)
for all x,y € &4 and t > 0. Due to additivity of £y, foreachk =0,1,...,
Fi((1+1)"x) k ¢
(g L i(v) —;ﬁi(x)fki(y),§>
k
> [TH(A(@ 170 i (v) - 041 2009, S5 )
) (2.33)
K £i((1+1)"x) < N
;O L i(y)—gol i) fi-i(¥). 3
k _ . N 0, Loy (D)
< LI (A0 D) for ) = 0 D" 209 o). 557 )
for all x, y € &/ and t > 0. In addition, we feel that
1+1)"
p(A+ 1) i) = D 2 fecs W), 77 )
1+1)" 1+1)"
> maxf u(fi(0+ 1) - 1020, (0 ) (Fest) 500 )
(2.34)

(A1) () - 0+ 10" 200 e (), S )

smin{v<fi((l+1)"x)‘(l+1)n£i(x)’ g(k-lk)l)> <f’”( ) g(lti)l)t>}

Lettingn — ooin (2.31), (2.32), (2.33), and (2.34), we get u(Lr(xy) - Zf:o Li(x) fr-i(y), 1) =1
and v(Lg (xy) - 35 £i(x) fr_i(y), ) = 0. This implies that

k
Li(xy) = D Li(x) frei (), (2.35)
=0

foreachk =0,1,...and all x,y € 4.
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Using additivity of £, and (2.35), we find that

k k
I+ 1)"> L) fri(y) = LZi((+D"x - y) = Li(x- 1+ D"y) = D Lx) f(T+D)"y).
i=0 i=0
(2.36)

So we obtain 31X 2i(x) froi(y) = 35, 2i(x) (frzi((L + 1)"y) /(I + 1)"). Hence for each k = 0,
1,...,

. k S+
#<Z,f.’l~(x)fk—i(]/) - Z,ei(x)%’o =1’

(2.37)
fr-i((L+ )"y
<Z£ () fiei () - Z/z (x )%O -0,
for all x,y € o and t > 0. This relation yields that for each k = 0,1, ...,
k k
,M<Z—’-’i(x)—£k—i(y) - Z—Ei(x)fk—i (y),t>
fi-i(U+1D)%y) ¢t
> ﬂ<Zﬂ () Li-i(y) - Z—’f (x )%, 2>
) (2.38)
fr-i((L+1)"y)
*#<§ﬂi(x)w %—ﬁ i(x) fr-i (), >
k fre-i(+1)"y) t
> £OIV<£i(x)—£k—i<y) - 2Li(x) I+1)" ’ 2(k+1) >’
k k
V<Zﬁi(X)—ﬁk—i(3/) =D Li(0)f k—i(y),t>
i=0 i=0
k k I+ D"y) ¢
< v@zi(x).ek_i ) ST, §>
(2.39)

ov(Zﬁ()w iﬁ(x)sz(y) >

i=0

fk—i((l + 1)"]/) t
< ]lTO[V<‘£1(x)£k1(y) _*ﬁi(x) (l + 1)71 4 2(k + 1)>’
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for all x, y € &/ and t > 0. On the other hand, we see that

i l n
P‘<—£i(x)—ﬁk_i(y)—£i(x)fk (@+D)") ¢ >

(I+1D)"  "2(k+1)

(1+1)" fea(@+D)"y) ¢
Zmax{‘u<£,-(x),m>,ﬂ<—ﬁki(y) G '4(k+1)>}’

( ) (2.40)
fri(U+ 1)y t
”<£i(x)ﬁ""'(y) )Ty ’2(k+1)>
. (1+1)"t fiei(U+D)"y) ¢
Sm1n{v<£i(x),m>,v<£k_i(y)— R '4(k+1)>}'
Sending n — oo in (2.38) and (2.40), we have that foreach k =0,1,...,
k k
W(Ze0a) - Sa@piawr) -1
ko IZO (2.41)
v<zﬁi(x)13k—i(y) - Zﬂi(x)fk—i(]/),t> =0,
i=0 i=0
for all x,y € & and t > 0. Thus, we conclude that
k k
D Li(x) Lii(y) = D Lix) fi-i(y), (2.42)
i=0 i=0

foreachk =0,1,...and all x,y € 4.
Therefore, by combining (2.35) and (2.42), we get the required result, which completes
the proof. O

As a consequence of Theorem 2.2, we get the following superstability.

Corollary 2.3. Let (B, u,v,*,0) be an intuitionistic fuzzy Banach algebra with unit, and let a
sequence of operators F = { fo, f1,..., fx,...} on o4 satisfy fi(0) = 0 for each k = 0,1,..., where f
is an identity operator. Suppose that ¢ is a function from &4 to an intuitionistic fuzzy normed algebra
(C, i, V', *,0) satisfying (2.25) and (2.14) and that @ is a function from 4 to an intuitionistic fuzzy
normed space (D, y",v",*,) satisfying (2.26). If 1 > 1 is a fixed integer, p((I + 1)x) = ap(x), and
D((I+1)x) = pD(x) for some real numbers a and pwith 0 < |a| <1+1and 0 < |p| <1+1, then F is
a strong higher ring derivation on .

Proof. According to (2.30), we have £y(x) = x for all x € &, and so Ly(=fy) is an identity
operator on <. By induction, we get the conclusion. If k = 1, then it follows from (2.29)
that f1(x) = £1(x) holds for all x € <4 since «# contains the unit element. Let us assume that
fm(x) = £,(x)is valid for all x € &/ and m < k. Then (2.29) implies that x{£,,(y) - fm(y)} =0
forall x, y € &4. Since & has the unit element, fx(y) = £k (y) for all x € &#. Hence we conclude
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that fi(y) = Lk(y) foreach k =0,1,2,... and all x € &#. So this tells us that F is a higher ring
derivation of any rank from & and B. The proof of the corollary is complete. O

We remark that we can prove the preceding result for the case when a > [ + 1 and
p>1+1
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