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The object of investigation of the paper is a special type of functional differential equations
containing the maximum value of the unknown function over a past time interval. An improved
algorithm of themonotone-iterative technique is suggested to nonlinear differential equations with
“maxima.” The case when upper and lower solutions of the given problem are known at different
initial time is studied. Additionally, all initial value problems for successive approximations have
both initial time and initial functions different. It allows us to construct sequences of successive
approximations as well as sequences of initial functions, which are convergent to the solution and
to the initial function of the given initial value problem, respectively. The suggested algorithm is
realized as a computer program, and it is applied to several examples, illustrating the advantages
of the suggested scheme.

1. Introduction

Equations with “maxima” find wide applications in the theory of automatic regulation. As a
simple example of mathematical simulations by means of such equations, we shall consider
the system of regulation of the voltage of a generator of constant current ([1]). The object
of regulation is a generator of constant current with parallel stimulation, and the quantity
regulated is the voltage on the clamps of the generator feeding an electric circuit with different
loads. An equation with maxima is used if the regulator is constructed such that the maximal
deviation of the quantity is regulated on the segment [t − r, t]. The equation describing the
work of the regulator has the form

Tu′(t) + u(t) + q max
s∈[t−r,t]

u(s) = f(t), (1.1)
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where T and q are constant characterizing the object, u(t) is the voltage regulated, and f(t) is
the perturbing effect.

Note that the above given model as well as all types of differential equations with
“maxima” could be considered as delay functional differential equations. Differential equa-
tions with delay are studied by many authors (see, e.g., [2–14]). At the same time, the
presence of maximum function in the equations causes impossibilities of direct application
of almost all known results for delay functional differential equations (see the monograph
[15]). Also, in themost cases, differential equations with “maxima,” including the some linear
scalar equations, are not possible to be solved in an explicit form. That requires the application
of approximate methods. In the recent years, several effective approximate methods, based
on the upper and lower solutions of the given problem, was proved for various problems of
differential equations in [16–21].

In the current paper, an approximate method for solving the initial value problem for
nonlinear differential equations with “maxima” is considered. This method is based on the
method of lower and upper solutions. Meanwhile, in studying the initial value problems
the authors usually keep the initial time unchanged. But, in the real repeated experiments
it is difficult to keep this time fixed because of all kinds of disturbed factors. It requires
the changing of initial time to be taken into consideration. Note that several qualitative
investigations of the solutions of ordinary differential equations with initial time difference
are studied in [22–30]. Also some approximate methods for various types of differential
equations with initial time difference are proved in [23, 26, 31–33].

In this paper, an improved algorithm of monotone-iterative techniques is suggested to
nonlinear differential equations with “maxima.” The case when upper and lower solutions
of the given problem are known at different initial time is studied. The behavior of the
lower/upper solutions of the initial value problems with different initial times is studied.
Also, some other improvements in the suggested algorithm are given. The main one is
connectedwith the initial functions. In the known results for functional differential equations,
the initial functions in the corresponding linear problems for successive approximations are
the same (see, e.g., [20, 34–42]). In our case, it causes troubles with obtaining the solutions,
which are successive approximations. To avoid these difficulties, we consider linear problems
with different initial functions at any step. It allows us to chose appropriate initial data.
Additionally, in connection with the presence of the maximum function in the equation
and computer application of the suggested algorithm, an appropriate computer program
is realized and it is applied to some examples illustrating the advantages and the practical
application of the considered algorithm.

2. Preliminary Notes and Definitions

Consider the following initial value problem for the nonlinear differential equation with
“maxima” (IVP):

x′ = f

(
t, x(t), max

s∈[t−r,t]
x(s)

)
for t ∈ [t0,∞), (2.1)

x(t) = ϕ(t − t0) for t ∈ [t0 − r, t0], (2.2)

where x ∈ R, t0 ≥ 0, f : R+ × R × R → R, ϕ(t) : [−r, 0] → R, and r > 0 is a fixed constant.
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In the paper, we will study the differential equation with “maxima” (2.1) with an
initial condition at two different initial points. For this purpose, we consider the differential
equation (2.1)with the initial condition

x(t) = ϕ(t − τ0) for t ∈ [τ0 − r, τ0], (2.3)

where τ0 ≥ 0.
Assume there exist a solution x(t; t0, ϕ) of the IVP (2.1), (2.2) defined on [t0 − r, t0 + T],

and there exists a solution y(t; τ0, ϕ) of the IVP (2.1), (2.3) defined on [τ0 − r, τ0 + T], where
T > 0 is a given constant. In the paper, we will compare the behavior of both solutions.

Definition 2.1. The function α ∈ C([t0−r, t0+T),R)∪C1([t0, t0+T),R) is called a lower (upper)
solution of the IVP (2.1), (2.2) for t ≥ t0 − h if the following inequalities are satisfied:

α′(t) ≤ (≥)f
(
t, α(t), max

s∈[t−r,t]
α(s)

)
for t ∈ [t0, t0 + T],

α(t) ≤ (≥)ϕ(t − t0) for t ∈ [t0 − r, t0].
(2.4)

Note that the function α(t) is a lower (upper) solution of the IVP (2.1), (2.3) for t ∈
[τ0 − r, τ0 + T] if the point t0 in the inequalities (2.4) is replaced by τ0.

3. Comparison Results

Often in the real world applications, the lower and upper solutions of one and the same
differential equation are obtained at different initial time intervals.

The following result is a comparison result for lower and upper solutions with initial
conditions given on different initial time intervals.

Theorem 3.1. Let the following conditions be satisfied.

(1) Let t0, τ0 ≥ 0 be fixed such that η = τ0 − t0 > 0.

(2) The function α ∈ C([t0 − r, t0 + T],R) ∪ C1([t0, t0 + T],R) is a lower solution of the IVP
(2.1), (2.2).

(3) The function β ∈ C([τ0 − r, τ0 +T],R)∪C1([τ0, τ0 +T],R) is an upper solution of the IVP
(2.1), (2.3).

(4) The function f(t, u, v) : R+ × R × R → R is nondecreasing in its both first and third
argument t for any u ∈ R, and there exist positive constants L1, L2 such that for t ∈ R+ and
u1 ≥ u2 and v1 ≥ v2, the inequality

f(t, u1, v1) − f(t, u2, v2) ≤ L1(u1 − u2) + L2(v1 − v2) (3.1)

holds.

(5) The function ϕ(t) ∈ C([−r, 0],R).

Then α(t) ≤ β(t + η) for t ∈ [t0, t0 + T].



4 Abstract and Applied Analysis

Proof. Choose a positive number M such that M > L1 + L2 and a positive number ε. Define a
functionw(t) = β(t + η) + εeMt for t ∈ [t0, t0 + T] andw(t) = β(t + η) + εeMt0 for t ∈ [t0 − r, t0).
Then for t ∈ [t0, t0 + T], the following inequalities

w(t) > β
(
t + η

)
,

max
s∈[t−r,t]

w(s) = max
s∈[t−r,t]

(
β
(
s + η

)
+ εeMs

)
≥ max

s∈[t−r,t]
(
β
(
s + η

))
= max

s∈[t+η−r,t+η]
β(s),

max
s∈[t−r,t]

w(s) ≤ max
s∈[t−r,t]

(
β
(
s + η

))
+ εeMt = max

s∈[t+η−r,t+η]
β(s) + εeMt

(3.2)

hold.
Therefore, we obtain

w′(t) ≥ f

(
t + η, β

(
t + η

)
, max
s∈[t+η−r,t+η]

β(s)
)
+ εMeMt

≥ −L1
(
w(t) − β

(
t + η

)) − L2

(
max

s∈[t−r,t]
w(s) − max

s∈[t+η−r,t+η]
β(s)

)

+ f

(
t + η,w(t), max

s∈[t−r,t]
w(s)

)
+ εMeMt

≥ f

(
t + η,w(t), max

s∈[t−r,t]
w(s)

)
+ εeMt(M − L1 − L2)

> f

(
t + η,w(t), max

s∈[t−r,t]
w(s)

)
≥ f

(
t,w(t), max

s∈[t−r,t]
w(s)

)
.

(3.3)

Note that for t ∈ [t0 − r, t0]we have α(t) ≤ ϕ(t − t0) = ϕ(t + η − τ0) ≤ β(t + η) < w(t). We
will prove that

α(t) ≤ w(t) for t ∈ [t0 − r, t0 + T]. (3.4)

Assume the contrary, that is, there exists a point t1 > t0 such that α(t) < w(t) for
t ∈ [t0 − r, t1), α(t1) = w(t1) and α(t) ≥ w(t) for t ∈ (t1, t2), where t2 is sufficiently
close to t1. Therefore α′(t1) ≥ w′(t1). Then w′(t1) ≤ α′(t1) ≤ f(t1, α(t1),maxs∈[t1−r,t1]α(s)) ≤
f(t1, w(t1),maxs∈[t1−r,t1]w(s)) < w′(t1). The obtained contradiction proves the claim.

Therefore, α(t) ≤ w(t) < β(t + η) for t ∈ [t0 − r, t0 + T].

Corollary 3.2. Let the conditions of Theorem 3.1 be fulfilled. Then α(t−η) ≤ β(t) for t ∈ [τ0 − r, τ0 +
T].

The comparison results are true if the inequality τ0 < t0 holds.

Theorem 3.3 (comparison result). Let the following conditions be satisfied.

(1) The conditions 2, 3, 5 of Theorem 3.1 are satisfied.

(2) Let t0, τ0 ≥ 0 be fixed such that η = τ0 − t0 < 0.
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(3) The function f(t, u, v) : R+ × R × R → R is nonincreasing in its first argument and is
nondecreasing in its third argument for any u ∈ R, and there exist positive constants L1, L2

such that for t ∈ R+ and u1 ≥ u2 and v1 ≥ v2 the inequality

f(t, u1, v1) − f(t, u2, v2) ≤ L1(u1 − u2) + L2(v1 − v2) (3.5)

holds.
Then α(t) ≤ β(t + η) for t ≥ t0.

The proof of Theorem 3.3 is similar to the proof of Theorem 3.1 and we omit it.
In what follows, we shall need that the functions α, β ∈ C([t0 − r, T + t0],R) are such

that α(t) ≤ β(t + η).
Consider the sets:

S
(
α, β, t0, η

)
=
{
u ∈ C([t0 − r, T + t0],R) : α(t) ≤ u(t) ≤ β

(
t + η

)
for t ∈ [t0 − r, T + t0]

}
,

S̃
(
α, β, τ0, η

)
=
{
u ∈ C([τ0 − r, T + τ0],R) : α

(
t − η

) ≤ u(t) ≤ β(t) for t ∈ [τ0 − r, T + τ0]
}
,

Ω
(
α, β, t0

)
=
{(

t, x, y
) ∈ [t0, T + t0] × R

2 : α(t) ≤ x ≤ β(t), max
s∈[t−r,t]

α(s) ≤ y ≤ max
s∈[t−r,t]

β(s)
}
.

(3.6)

In our further investigations, we will need the following comparison result on
differential inequalities with “maxima.”

Lemma 3.4 (see [43, Lemma 2.1]). Let the functionm ∈ C([t0 − r, T + t0],R)∪C1([t0, T + t0],R)
satisfies the inequalities

m′ ≤ −L1m(t) − L2 min
s∈[t−r,t]

m(s) for t ∈ [t0, T + t0],

m(t) ≤ 0 for t ∈ [t0 − r, t0],
(3.7)

where the positive constants L1, L2 are such that (L1 + L2)T ≤ 1.
Then the inequalitym(t) ≤ 0 holds on [t0 − r, T + t0].

In our further investigations, we will use the following result, which is a partial case
of Theorem 3.1 [44].

Lemma 3.5 (existence and uniqueness result). Let the following conditions be fulfilled.

(1) The functions Q ∈ C([t0, t0 + T],R), q ∈ C([t0, t0 + T],R).

(2) The functions ϕ ∈ C([−r, 0],R).

Then the initial value problem for the linear scalar equation

u′ = L1u(t) + L2 max
s∈[t−r,t]

u(s) +Q(t) for t ∈ [t0, T + t0],

u(t) = ϕ(t − t0) for t ∈ [t0 − r, t0]
(3.8)

has a unique solution u(t − t0) on the interval [t0 − r, T + t0].
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4. Main Results

Denote J1 = [t0 − r, T + t0] and J2 = [τ0 − r, T + τ0], where t0, τ0 ≥ 0 are fixed numbers.

Case 1. Let t0 ≤ τ0.

Theorem 4.1. Let the following conditions be fulfilled.

(1) The points t0, τ0 ≥ 0 are such that η = τ0 − t0 ≥ 0.

(2) The function α0(t) ∈ C([t0 − r, T + t0],R) ∪ C1([t0, T + t0],R) is a lower solution of the
IVP (2.1), (2.2) in J1.

(3) The function β0(t) ∈ C([τ0 − r, T + τ0],R)∪C1([τ0, T + τ0],R) is an upper solution of the
IVP (2.1), (2.3) in J2.

(4) The function ϕ ∈ C([−r, 0],R).

(5) The function f ∈ C(Ω(α0, β0, t0),R) is nondecreasing in its first argument and satisfies
the one side Lipschitz condition

f(t, u1, v1) − f(t, u2, v2) ≥ L1(u2 − u1) + L2(v2 − v1), (4.1)

for u1 ≤ u2 and v1 ≤ v2, where L1, L2 > 0 are such that

(L1 + L2)T ≤ 1. (4.2)

Then there exist two sequences of functions {αn(t)}∞0 and {βn(t)}∞0 such that

(a) the functions αn(t) = 1, 2, . . . are lower solutions of the IVP (2.1), (2.2) on [t0 − r, T + t0];

(b) the functions βn(t) = 1, 2, . . . are upper solutions of the IVP (2.1), (2.3) on [τ0 − r, T + τ0];

(c) the sequence {αn(t)}∞0 is increasing;

(d) the sequence {βn(t)}∞0 is decreasing;

(e) the inequalities

α0(t) ≤ · · · ≤ αn(t) ≤ βn
(
t + η

) ≤ · · · ≤ β0
(
t + η

)
, t ∈ [t0 − r, T + t0],

α0
(
t − η

) ≤ · · · ≤ αn

(
t − η

) ≤ βn(t) ≤ · · · ≤ β0(t), t ∈ [τ0 − r, T + τ0]
(4.3)

hold;

(f) both sequences uniformly converge and x(t) = limn→∞αn(t) is a solution of the IVP (2.1),
(2.2) in S(α0, β0, t0, η), and y(t) = limn→∞βn(t) is a solution of the IVP (2.1), (2.3) in
S̃(α0, β0, τ0, η).

Proof. According to Theorem 3.1, the inequality α0(t) ≤ β0(t + η) holds on [t0 − r, T + t0].
Let L0 = mins∈[t0−r,t0](ϕ(s − t0) − α0(s)) ≥ 0. Choose a number k0 ∈ [0, 1) such that

k0 ≤ L0. (4.4)
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Therefore, ϕ(t − t0) − α0(t) ≥ L0 > k0L0 or α0(t) ≤ ϕ(t − t0) − k0L0 on [t0 − r, t0].
We consider the linear differential equation with “maxima”

x′(t) = f

(
t, α0(t), max

s∈[t−r,t]
α0(s)

)
− L1(x(t) − α0(t))

− L2

(
max

s∈[t−r,t]
x(s) − max

s∈[t−r,t]
α0(s)

)
for t ∈ [t0, T + t0],

(4.5)

with the initial condition

x(t) = ϕ(t − t0) − k0L0 for t ∈ [t0 − r, t0]. (4.6)

According to Lemma 3.5, the linear initial value problem (4.5), (4.6) has a unique solution
α1(t) in J1.

We will prove that α0(t) ≤ α1(t) on J1.
From the choice of L0, k0 and equality (4.6), it follows that α0(t) ≤ ϕ(t−t0)−k0L0 = α1(t)

for t ∈ [t0 − r, t0].
Now, let t ∈ [t0, T + t0]. Consider the function u(t) = α0(t) − α1(t) defined on J1. It is

clear that u(t) ≤ 0 on [t0 − r, t0]. From the definition of the function α0(t) and (4.5), we have

u′(t) ≤ −L1u(t) − L2

(
max

s∈[t−r,t]
α0(s) − max

s∈[t−r,t]
α1(s)

)
for t ∈ [t0, T + t0]. (4.7)

Now from inequality (4.7) and

max
s∈[t−h,t]

α0(s) − max
s∈[t−r,t]

α1(s) = max
s∈[t−r,t]

α0(s) − α1(ξ)

≥ α0(ξ) − α1(ξ)

≥ min
s∈[t−r,t]

(α0(s) − α1(s))

= min
s∈[t−r,t]

u(s),

(4.8)

we obtain

u′(t) ≤ −L1u(t) − L2 min
s∈[t−r,t]

u(s), t ∈ [t0, T + t0]. (4.9)

According to Lemma 3.4, the inequality u(t) ≤ 0 holds on J1, that is, α0(t) ≤ α1(t).
We will prove that the function α1(t) is a lower solution of the IVP (2.1), (2.2) on J1.
From equality (4.6), it follows the validity of the inequality α1(t) ≤ ϕ(t−t0) on [t0−r, t0].

Now, let t ∈ [t0, T + t0]. Then, since α0(t) ≤ α1(t), according to the one side Lipschitz condition
2 of Theorem 4.1, we have

α′
1(t) = Q(t) − L1(α1(t) − α0(t)) − L2

(
max

s∈[t−r,t]
α1(s) − max

s∈[t−r,t]
α0(s)

)

= f

(
t, α1(t), max

s∈[t−r,t]
α1(s)

)
+ f

(
t, α0(t), max

s∈[t−r,t]
α0(s)

)
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− f

(
t, α1(t), max

s∈[t−r,t]
α1(s)

)
− L1(α1(t) − α0(t))

− L2

(
max

s∈[t−r,t]
α1(s) − max

s∈[t−r,t]
α0(s)

)

≤ f

(
t, α1(t), max

s∈[t−r,t]
α1(s)

)
for t ∈ [t0, T + t0],

(4.10)

where Q(t) = f(t, α0(t),maxs∈[t−r,t]α0(s)).
Next, according to Lemma 3.4 for the function u(t) = α1(t) − β0(t − η), the inequality

α1(t) ≤ β0(t + η) holds on J1, that is, the inclusion α1 ∈ S(α0, β0, t0, η) is valid.
Let C0 = mins∈[τ0−r,τ0](β0(s) − ϕ(s − τ0)) ≥ 0. Choose a number p0 ∈ [0, 1) such that

p0 ≤ C0. (4.11)

Therefore, β0(t) − ϕ(t − τ0) ≥ C0 > p0C0 or β0(t) ≥ ϕ(t − τ0) + p0C0 on [τ0 − r, τ0].
We consider the linear differential equation with “maxima”

x′(t) = f

(
t, β0(t), max

s∈[t−r,t]
β0(s)

)
− L1

(
x(t) − β0(t)

)

− L2

(
max

s∈[t−r,t]
x(s) − max

s∈[t−r,t]
β0(s)

)
for t ∈ [τ0, T + τ0]

(4.12)

with the initial condition

x(t) = ϕ(t + τ0) + p0C0 for t ∈ [τ0 − r, τ0]. (4.13)

There exists a unique solution β1(t) of the IVP (4.12), (4.13), which is defined on J2.
The function β1(t) is an upper solution of the IVP (2.1), (2.3) on J2, and the inclusion

β1 ∈ S̃(α0, β0, τ0, η) is valid. The proofs are similar to the ones about the function α1. We omit
the proofs.

Functions α1(t), β1(t) are a lower and an upper solution of the IVP (2.1), (2.2) and (2.1),
(2.3) correspondingly. According to Lemma 3.4 the inequality α1(t) ≤ β1(t + η) on J1 holds.

Similarly, recursively, we can construct two sequences of functions {αn(t)}∞0 and
{βn(t)}∞0 . In fact, if the functions αn(t) and βn(t) are known, and Ln = mins∈[−r,0](ϕ(s) −
αn(s)), Cn = mins∈[−r,0](βn(s) − ϕ(s)), and the numbers kn, pn ∈ [0, 1) are such that

kn ≤ Ln, pn ≤ Cn, (4.14)
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then the function αn+1(t) is the unique solution of the initial value problem for the linear
differential equation with “maxima”

x′ = f

(
t, αn(t), max

s∈[t−r,t]
αn(s)

)
− L1(x − αn(t))

− L2

(
max

s∈[t−r,t]
x(s) − max

s∈[t−r,t]
αn(s)

)
for t ∈ [t0, T + t0],

(4.15)

x(t) = ϕ(t) − knLn for t ∈ [t0 − r, t0], (4.16)

and the function βn+1(t) is the unique solution of the initial value problem

x′(t) = f

(
t, βn(t), max

s∈[t−r,t]
βn(s)

)
− L1

(
x − βn(t)

)

− L2

(
max

s∈[t−h,t]
x(s) − max

s∈[t−r,t]
βn(s)

)
for t ∈ [τ0, T + τ0],

(4.17)

x(t) = ϕ(t) + pnCn for t ∈ [τ0 − r, τ0]. (4.18)

Now following exactly as for the case n = 0, it can be proved that the function αn+1(t)
is a lower solution of the IVP (2.1), (2.2) on J1, the function βn+1(t) is an upper solution of the
IVP (2.1), (2.3) on J2, the inclusions αn+1 ∈ S(αn, βn, t0, η), βn+1 ∈ S̃(αn, βn, τ0, η) are valid, and
the inequalities (4.3) hold.

Therefore, the sequence {αn(t)}∞0 is uniformly convergent on J1 and {βn(t)}∞0 is
uniformly convergent on J2.

Denote

lim
n→∞

αn(t) = u(t), t ∈ [t0 − r, T + t0],

lim
n→∞

βn(t) = v(t), t ∈ [τ0 − r, T + τ0].
(4.19)

From the uniform convergence and the definition of the functions αn(t) and βn(t), it follows
that the following inequalities hold

α0(t) ≤ u(t) ≤ v
(
t + η

) ≤ β0
(
t + η

)
, t ∈ [t0 − r, T + t0]. (4.20)

Case 2. Let t0 > τ0.
In this case, we could approximate again the solution of the given initial value

problem, starting from lower and upper solutions given at two different initial points. Since
the proofs are similar, we will set up only the results.

Theorem 4.2. Let the following conditions be fulfilled.

(1) The points t0, τ0 ≥ 0 are such that η = t0 − τ0 ≥ 0.

(2) The conditions 2, 3, 4 of Theorem 4.1 are satisfied.
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(3) The function f ∈ C(Ω(α0, β0, τ0),R) is nonincreasing in its first argument and satisfies
the one side Lipschitz condition

f(t, u1, v1) − f(t, u2, v2) ≥ L1(u2 − u1) + L2(v2 − v1) (4.21)

for u1 ≤ u2 and v1 ≤ v2, where L1, L2 > 0 are such that

(L1 + L2)T ≤ 1. (4.22)

Then there exist two sequences of functions {αn(t)}∞0 and {βn(t)}∞0 such that

(a) the functions αn(t) = 1, 2, . . . are lower solutions of the IVP (2.1), (2.2) on [t0 − r, T + t0];

(b) the functions βn(t) = 1, 2, . . . are upper solutions of the IVP (2.1), (2.3) on [τ0 − r, T + τ0];

(c) the sequence {αn(t)}∞0 is increasing;

(d) the sequence {βn(t)}∞0 is decreasing;

(e) the inequalities

α0(t) ≤ · · · ≤ αn(t) ≤ βn
(
t + η

) ≤ · · · ≤ β0
(
t + η

)
, t ∈ [t0 − r, T + t0],

α0
(
t − η

) ≤ · · · ≤ αn

(
t − η

) ≤ βn(t) ≤ · · · ≤ β0(t), t ∈ [τ0 − r, T + τ0]
(4.23)

hold;

(f) both sequences uniformly converge and x(t) = limn→∞αn(t) is a solution of the IVP (2.1),
(2.2) in S(α0, β0, t0, η) and y(t) = limn→∞βn(t) is a solution of the IVP (2.1), (2.3) in
S̃(α0, β0, τ0, η).

5. Computer Realization

Since the set of differential equations, which could be solved in an explicit form, is very
narrow, we will realize the above suggested algorithm numerically. At present, we cannot
solve numerically differential equations with “maxima” by the existing ready-made systems,
such asMathematica, Mathlab, and so forth, because of the maximum of the unknown function
over a past time interval. It requires proposed and computer realized new algorithms for
solving such kind of equations. In [43], an algorithm for solving a class of differential
equations with “maxima,” based on the trapezoid’s method, is presented. The main problem
in the suggested algorithm is obtaining the maximum of the unknown function over a past
time interval. It is based on the idea that the local maximum depends on values that are
initially inserted and later they are removed within the range. A special structure is applied
to help quicker obtaining the local maximum ([43]). The suggested scheme could be based
on any numerical method for solving differential equations. In this paper, we will use Euler
method in the application of the algorithm ([43]) for solving differential equations with
“maxima.” We combine the algorithm of Euler method and obtaining of maximum of the
function, and we get the following modification:

tk+1 = tk + h,

yn+1(tk+1) = yn+1(tk) + hf
(
tk, yn+1(tk), yn(tk),maxyn,k,maxyn+1,k

)
,

(5.1)
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where the values maxyn,k = maxs∈[tk−r,tk]yn(s) and maxyn+1,k = maxs∈[tk−r,tk]yn+1(s) are
obtained by the algorithm suggested in [43], and the initial values of yn+1(t0) are found by
initial conditions (4.16) and (4.18).

6. Applications

Now we will illustrate the employment of the suggested above scheme to a particular
nonlinear scalar differential equations with “maxima.”

Initially we will consider the case of one and the same initial points of both initial
value problems. By this way, we will emphasize our considerations to the advantages of the
involved in the initial conditions constants.

Example 6.1. Consider the following scalar nonlinear differential equation with “maxima”:

x′ =
1

1 − x(t)
− 2 max

s∈[t−0.1,t]
x(s) − 1, for t ∈ [0, 0.35], (6.1)

with the initial condition

x(t) = 0, t ∈ [−0.1, 0], (6.2)

where x ∈ R. It is easy to check that the initial value problem (6.1), (6.2) has a zero solution.
In this case f(t, x, y) ≡ 1/(1 − x) − 2y − 1, t0 = τ0 = 0, T = 0.35, r = 0.1, J1 = J2 =

[−0.1, 0.35]. Choose α0(t) = −1/4 and β0(t) = 1/4. Then α0(t) is a lower solution and β0(t) is
an upper solution of the IVP (6.1), (6.2). In this case, Ω(α0, β0, t0) = {(t, u, v) ∈ [0, 0.35] × R

2 :
−1/4 ≤ u, v ≤ 1/4}. Let (t, u1, v1), (t, u2, v2) ∈ Ω(α0, β0, t0) and u1 ≤ u2 and v1 ≤ v2. Then

f(t, u1, v1) − f(t, u2, v2) =
1

1 − u1
− 1
1 − u2

+ 2(v2 − v1)

=
1

(1 − u1)(1 − u2)
(u2 − u1) + 2(v2 − v1)

≥ 16
25

(u2 − u1) + 2(v2 − v1).

(6.3)

That is, L1 = 0.64, L2 = 2, and the inequality (L1 + L2)T < 1 holds.
The successive approximations αn+1(t) and βn+1(t) will be the unique solutions of the

linear problems

x′ =
1

1 − αn(t)
+ 0.64αn(t) − 1 − 0.64x − 2 max

s∈[t−0.1,t]
x(s) for t ∈ [0, 0.35],

x(t) = −knLn for t ∈ [−0.1, 0],

x′(t) =
1

1 − βn(t)
− 1 + 0.64βn(t) − 0.64x − 2 max

s∈[t−0.1,t]
x(s) for t ∈ [0, 0.35],

x(t) = pnCn for t ∈ [−0.1, 0],

(6.4)
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where Ln = mins∈[−0.1,0](−αn(s)) ≥ 0, Cn = mins∈[−0.1,0](βn(s)) ≥ 0, and the numbers kn, pn ∈
[0, 1) are chosen such that kn ≤ Ln, pn ≤ Cn, n = 1, 2, 3, . . . .

Now we will construct an increasing sequence of lower solutions and a decreasing
sequence of upper solutions, which will be convergent to the zero solution.

The first lower approximation α1(t) is a solution of the IVP

x′ = − 9
25

− 0.64x − 2 max
s∈[t−0.1,t]

x(s) for t ∈ [0, 0.35],

x(t) = −k0
4
, t ∈ [−0.1, 0].

(6.5)

Choose k0 = 6/11. Then the IVP (6.5) has an exact solution α1(t) = −3/22.
The second lower approximation α2(t) is a solution of the IVP

x′ = − 57
275

− 0.64x − 2 max
s∈[t−0.1,t]

x(s) for t ∈ [0, 0.35],

x(t) = −k1 3
22

, t ∈ [−0.1, 0].
(6.6)

Choose k1 = 19/33. Then the IVP (6.6) has an exact solution α2(t) = −57/725. It is clear that
α0(t) ≤ α1(t) ≤ α2(t) < 0 = x(t).

The first upper approximation β1(t) is a solution of the IVP

x′(t) =
37
75

− 0.64x − 2 max
s∈[t−0.1,t]

x(s) for t ∈ [0, 0.35],

x(t) =
p0
4
, t ∈ [−0.1, 0].

(6.7)

Choose p0 = 74/99. Then the IVP (6.7) has an exact solution β1(t) = 37/198 ≈ 0.1869.
The second upper approximation β2(t) is a solution of the IVP

x′ = −114481
398475

− 0.64x − 2 max
s∈[t−0.1,t]

x(s) for t ∈ [0, 0.35],

x(t) = p1
37
198

, t ∈ [−0.1, 0].
(6.8)

Choose p1 = 114481/196581. Then the IVP (6.8) has an exact solution β2(t) = 114481/
1051974 ≈ 0.108825.

It is obviouse that β0(t) > β1(t) > β2(t) > 0 = x(t) > α2(t) > α1(t) > α0(t) on the interval
[−0.1, 0.35].

Example 6.1 illustrates that the presence of the constants pn and kn allow us easily to
construct each successive approximation in an explicit form.

Now we will illustrate the suggested method in the case when lower and upper
solutions are defined for different initial points and on different intervals.
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Example 6.2. Consider the following IVP for the scalar nonlinear differential equation with
“maxima”:

x′ =
t

1 + x(t)
− 0.5 max

s∈[t−0.1,t]
x(s) − 2 for t ∈ [1.5, 1.75],

x(t) = 0, t ∈ [1.4, 1.5],
(6.9)

x′ =
t

1 + x(t)
− 0.5 max

s∈[t−0.1,t]
x(s) − 2 for t ∈ [2.35, 2.6],

x(t) = 0, t ∈ [2.25, 2.35],
(6.10)

where x ∈ R.
In this case, f(t, x, y) ≡ t/(1+x)−0.5y−2, t0 = 1.5, τ0 = 2.35, η = τ0− t0 = 0.85, T = 0.25,

r = 0.1, J1 = [1.4, 1.75], J2 = [2.25, 2.6].
Choose α0(t) = −1/4. Then for t ∈ [1.5, 1.75] the inequality

f

(
t, α0(t), max

s∈[t−0.1,t]
α0(s)

)
=

t

1 − 1/4
+
1
8
− 2 =

4t
3

− 15
8

≥ 1.5
4
3
− 15

8
= 0.125 > 0 (6.11)

holds. Therefore, α0(t) is a lower solution of the IVP (6.9) in [1.4, 1.75].
Let β0(t) = 1/4. Then for t ∈ [2.35, 2.6] the inequality

f

(
t, β0(t), max

s∈[t−0.1,t]
β0(s)

)
=

t

1 + 1/4
− 1
8
− 2 =

4t
5

− 17
8

≤ 2.6
4
5
− 17

8
= −0.045 < 0 (6.12)

holds. Therefore, β0(t) is an upper solution of the IVP (6.10) on [2.25, 2.6].
In this case, τ0 > t0 and Ω(α0, β0, τ0) = {(t, u, v) ∈ [1.5, 1.75] × R

2 : −1/4 ≤ u, v ≤ 1/4}.
Let t ∈ [1.5, 1.76], −1/4 ≤ u1 ≤ u2 ≤ 1/4 and −1/4 ≤ v1 ≤ v2 ≤ 1/4. Then from the

inequality t/((1 + u1)(1 + u2)) ≤ (16/9)t ≤ 3.1111 < 3.2, we obtain

f(t, u1, v1) − f(t, u2, v2) =
t

1 + u1
− t

1 + u2
+ 0.5(v2 − v1)

=
t

(1 + u1)(1 + u2)
(u2 − u1) + 0.5(v2 − v1) ≤ 3.2(u2 − u1) + (v2 − v1).

(6.13)

That is, L1 = 3.2, L2 = 0.5, and the inequality (L1 + L2)T < 1 holds.
According to Theorem 4.1, there exist two convergent monotone sequences of

functions {αn(t)}∞0 and {βn(t)}∞0 such that (4.3) holds and their limits are solutions of the
IVP (6.9) and (6.10).
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Figure 1: (graphs of αk(t) and βk(t + .85), k = 1, 2, 3, 4).

The successive approximations αn+1(t) will be the unique solutions of the linear
problems

x′ =
t

1 + αn(t)
− 0.5αn(t) − 2 − 3.2(x − αn(t)) − 0.5

(
max

s∈[t−0.1,t]
x(s) − max

s∈[t−0.1,t]
αn(s)

)

=
t

1 + αn(t)
+ 2.7αn(t) + 0.5 max

s∈[t−0.1,t]
αn(s) − 2 − 3.2x − 0.5 max

s∈[t−0.1,t]
x(s) for t ∈ [1.5, 1.75],

x(t) = −knLn for t ∈ [1.4, 1.5],
(6.14)

and the successive approximations βn+1(t)will be the unique solutions of the linear problems

x′(t) =
t

1 + βn(t)
+ 2.7βn(t) + 0.5 max

s∈[t−0.1,t]
βn(s) − 2 − 3.2x − 0.5 max

s∈[t−0.1,t]
x(s) for t ∈ [2.35, 2.6],

x(t) = pnCn for t ∈ [2.25, 2.35],
(6.15)

where α0(t) = −1/4, β0(t) = 1/4, Ln = Cn = 0.25, kn = 0.25n, pn = 0.25n, and n = 1, 2, 3, . . . .
Note the above IVPs are linear, but we are not able to obtain their solutions in explicit

form because of the presence of maximum function.

We will use the computer realization of the considered method, explained in Section 4,
to solve the initial value problems (6.14) and (6.15) for n = 1, 2, 3, 4, 5. In this case at any
step, the function yn(tk) in (5.1) is replaced by the functions αn(tk) or βn(tk), respectively,
the function yn+1(tk) is the next approximation αn+1(tk) or βn+1(tk), respectively, and the
function f is the right part of (6.14) or (6.15), respectively, and h = 0.00001. Some of
the numerical values of the successive approximations {αn(t)}∞0 and {βn(t)}∞0 , which are
lower/upper solutions of the given problem, are shown in the Table 1. Also, the obtained
successive approximations are graped on the Figure 1. Both, Table 1 and Figure 1, illustrate us
the monotonicity of the sequences {αn(t)}∞0 and {βn(t)}∞0 and the validity of the inequalities

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ βn(t + .85) ≤ · · · ≤ β0(t + .85), t ∈ [1.5, 1.75]. (6.16)



Abstract and Applied Analysis 15

Table 1: Values of the successive lower/upper approximations αk(t) and βk(t + .85).

t 1.50 1.55 1.60 1.65 1.70 1.75

β1(t+ .85) 0.2500000 0.2396285 0.2326388 0.2286608 0.2273177 0.2281468
β2(t+ .85) 0.0625000 0.0795487 0.0954878 0.1138875 0.1307175 0.1464314
β3(t+ .85) 0.0156250 0.0322634 0.0490684 0.0671041 0.0850914 0.1029515
β4(t+ .85) 0.0039063 0.0211106 0.0383552 0.0558882 0.0734248 0.0909491
β5(t+ .85) 0.0009766 0.0183982 0.0358232 0.0532996 0.0707523 0.0881732

α5(t) −0.0009766 −0.0236676 −0.0416446 −0.0552493 −0.0648509 −0.0708277
α4(t) −0.0039063 −0.0269991 −0.0452915 −0.0591247 −0.0688717 −0.0749110
α3(t) −0.0156250 −0.0399773 −0.0590208 −0.0731539 −0.0828101 −0.0884511
α2(t) −0.0625000 −0.0871172 −0.1048556 −0.1164338 −0.1225992 −0.1243204
α1(t) −0.2500000 −0.2427252 −0.2336358 −0.2230384 −0.2111877 −0.1982954
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