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We obtain the classification of exact solutions, including soliton, rational, and elliptic solutions,
to the one-dimensional general improved Camassa Holm KP equation and KdV equation by the
complete discrimination system for polynomial method. In discussion, we propose a more general
trial equation method for nonlinear partial differential equations with generalized evolution.

1. Introduction

To construct exact solutions to nonlinear partial differential equations, some important
methods have been defined such as Hirota method, tanh-coth method, the exponential
function method, (G'/G)-expansion method, the trial equation method, [1-15]. There are
a lot of nonlinear evolution equations that are integrated using the various mathematical
methods. Soliton solutions, compactons, singular solitons, and other solutions have been
found by using these approaches. These types of solutions are very important and appear
in various areas of applied mathematics.

In Section 2, we give a new trial equation method for nonlinear evolution equations
with higher-order nonlinearity. In Section 3, as applications, we obtain some exact solutions
to two nonlinear partial diffeential equations such as the one-dimensional general improved
Camassa Holm KP equation [16]:

(s + 2Ky — Uy + au™ (u") ) +uyy =0, (1.1)
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the dimensionless form of the generalized KdV equation [17]:

U + au™ iy + buP My + Stlyyy = 0. (1.2)
In discussion, we propose a more general trial equation method.

2. The Extended Trial Equation Method

Step 1. For a given nonlinear partial differential equation,
P(u, us, y, Uyy,...) =0, (2.1)

take the general wave transformation:

N
u(xi, x2,...,xn,t) = u(n), n=2A <Zx]- - ct), (2.2)

=1

where 1 #0 and c#0. Substituting (2.2) into (2.1) yields a nonlinear ordinary differential
equation:

N(u,u',u",...) =0. (2.3)

Step 2. Take the finite series and trial equation as follows:
6 .
U= ZTiFl, (2.4)
i=0

where

OI) _ &l +-+ &l +&

N2 _ _
) =AD = 55 = v arv o (2.5)
Using (2.4) and (2.5), we can write
o) /& ?
n2 _ - -1
(u') = m<§zﬂf > ,
(2.6)

/ / [} [}
w - YOO ;((f)(r)w () < Zmri_1> N % < Siti- 1)Tiri_z>,

i=0 i=0
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where ®(I') and ¥(I') are polynomials. Substituting these relations into (2.3) yields an
equation of polynomial Q(I') of I':

Q) =0+ +01 '+ =0. (2.7)

According to the balance principle, we can find a relation of 0, €, and 6. We can compute
some values of 0, ¢, and 6.

Step 3. Let the coefficients of Q(I') all be zero will yield an algebraic equations system:
¢i=0, i=0,...,s. (2.8)

Solving this system, we will determine the values of ¢, ..., &, o, ..., ¢, and 7, ..., Ts.

Step 4. Reduce (2.5) to the elementary integral form:

(o4t (e
i(n—no)—fm— o0 (2.9)

Using a complete discrimination system for polynomial to classify the roots of ®(I'), we solve
(2.9) and obtain the exact solutions to (2.3). Furthermore, we can write the exact traveling
wave solutions to (2.1), respectively.

3. Applications

Example 3.1 (Application to the Camassa Holm KP equation). In order to look for travelling
wave solutions of (1.1), we make the transformation u(x, y, t) = u(y), 1 = m(x+y—ct), where
m and c are arbitrary constants. Then, integrating this equation with respect to 7 twice and
setting the integration constant to zero, we obtain

Rk+1-c)u+ guZ” +m*cu” = 0. (3.1)

We use the following transformation:
u =0, (3.2)

Equation (3.1) turns into the equation

m*c(2n - D)oo + 2mPc(1 - n)v'* + 2k + 1 - c)(2n - 1)%0* + g(Zn -1)%0° = 0. (3.3)
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Substituting (2.6) into (3.3) and using balance principle yield

O=€e+06+2. (3.4)

After this solution procedure, we obtain the results as follows.

Case 1. If wetakee =0,6 =1, and 6 = 3, then

_ (11)* (&% + &I + &T + &)

() , (3.5)
%o
where &3 #0, § # 0. Respectively, solving the algebraic equation system (2.8) yields
_—a(l-2n)*¢ory + m*éTE(2 + 4k + 4n + 8kn + 3ar)
1 m?7o71(q + at) !
~2a(1 - 2n)*¢ot + m?72(q + 3aty)
§2 = P ’
m2t5 (g + at)
(3.6)
ar <—(1 - 2n)2§OT§ + m2§07'12>
& = 53 , 60=2¢0, Go=0Co, To="To, T1 =T,
m2t5(q + aty)
(1-2n)%¢72(q + am)
(1+2n) <(1 - 2n)2§07§ - mém‘f)
where g = (1 + 2k)(1 + 2n). Substituting these results into (2.5) and (2.9), we have
+ (11-10)
r
| a ,
~2a(1-2n)*¢os +m?72(q + 3ary) 24 dT4 m*&t2(q + ato)
arn <—(1 - 2n)2§07'§ + m2§0T12> ar (—(1—2n)2§0T§ + m2§07'12>

(3.7)
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where ¢4 denotes by ((-a(1 - 2n)* Qﬂ'o +m2§07'07'1 (2+4k+4n+8kn+3a7‘0))/a7'12( (1-2n)* §0T0
m&yr2))), and A = {72(q + amo)/ati(~(1 - 2n)*gote + m*&T?). Integrating (3.7), we obtain
the solutions to the (1.1) as follows:

+(n-m0) = (3.8)
+(n-10) = Zm‘v arctan i L (3.9)
+(1-10) =m Lmm-vm-a) o, (3.10)

+(n-10) = Zm\/a F(<p,l) > ap > as, (3.11)
1~

where

ot (g + aro)
A= . F(pl) = f (3.12)
ary <—(1 - 2”) @07'0 + m2§0T12> \/1 - I2sin? qr
Q= arcsin I'-as , 12 = u (313)
a —as a; —as

Also ay, ay, and a3 are the roots of the polynomial equation

L, o, S0
+2 +é31"+§3 0. (3.14)

Substituting the solutions (3.8)—(3.10) into (2.4) and (3.2), we have

1/(2n-1
AT A ] @D

u(x,y,t) = |1+ na1 +
(ey:t) [ (x+y—73t—710/m)2

1/(2n-1)
u(x,y,t) = [T() +Tay + 11 (g — Lch)tanh2 <% aal ;\(xz <x +y—DBt+ %>>] , (3.15)

1/(@n-1)
1 —
u(x,y,t) = I:T0+T1061 +71(aq —az)cosech2<§ alAaz (x+y—73t)>] ,

where B denote by ((1 - 21)*¢o72(q + ato) /(1 +2n) (1 - 2n)*$oT2 — m&T2)).
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If we take 79 = —mja; and 79 = 0, then the solutions (3.15) can reduce to rational
function solution:

_ 2/(2n-1)
2VA
u(x,y,t) = > . ,
X+y-— <(1 -2n)°ai(q - ariar) /(1 +2n) <(1 —2n)"Goa; - m§0>>t
(3.16)
1-soliton solution:
Ay
u(x,y,t) = p 3.17
oy ) cosh® @ V[B(x + y - vt)] (3-17)
and singular soliton solution:
A
u(x,y,t) = 2 (3.18)

sinh® @V [B(x + y - vt)]

where A = A7y, Ay = (1i(az = 1))/, Ay = (n1(ay ~ 20))V @Y, B = (1/2)/ (a1 - m) /4,
and v = (1 - 2n)*4a’(q - ariar)/(1 + 2n)((1 - 2n)’¢pa® — mg). Here, A; and A, are the
amplitudes of the solitons, while v is the velocity and B is the inverse width of the solitons.
Thus, we can say that the solitons exist for 7; > 0.

Case 2. If wetakee =0, 6 =2 and 0 =4, then

()= Tt 2m,1)* (8l + ?P ralral+d) (3.19)
0

where &4 #0, §o # 0. Respectively, solving the algebraic equation system (2.8) yields as follows.
Subcase 2.1. It holds that

LT 4dT 5672 4¢oT? 28T
o = o, §1:—31+ % 2/ &= 21 22/ &= b 1, =% =T, L="T,
4T, T 4t; T3 (5
o = _1112(—1611§07'£1 + 812 (at? +419)) o T_lz
’ a(l - 2n)*r272 ’ °T 4y’

a(&t! —168077)

c=1+2k+ ,
4(1 + 2n)§4T127'2

(3.20)
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where g = (1 + 2k)(1 + 2n). Substituting these results into (2.5) and (2.9), we get

+ (1 -10)

_ mJ (16agot; — éuti (at? + 497m))

a(l- 2n)2§47'127'22

dar
xf .
\/F4 + 21 /1)I3 + ((57'12/4722) + (4§0722/7'12))F2 + ((Tf’ /47'5’) + (4802 /T1))T + (&0/¢4)
(3.21)
Integrating (3.21), we obtain the solutions to (1.1) as follows:
mB
+(1-10) = Toa (3.22)

2mB I'—ap
_ - -2 3.23
=(n-m) = = A v (3.23)

B I -
x(n-10) = alm_ o ln‘r_z; , (3.24)
mB In V(I - a) (a1 — az) = /(T — az) (a1 — ap)

+ (11— 10) =7

(@ —a) (@ —az) | VT -a)(ar—as) +/T-as)(a - ) | (3.25)
a1 > ay > as,
2mB

£(n-1mno) = N CEAICETN) F(p,1), a1 >ar>az>ay, (3.26)

where

16a¢ots — &4t (at? + 4 ¢ d
B = ( a‘;OTz §47'1 gale - qTZ)) ) F(‘Pr l) _ J‘ . , (3.27)
a(l-2n)"1)Ts 0 \/m

(T =ay)(ay — ag) s (a—az)(a —ay)
= arcsin / r= : (3.28)

¢ \/(F —ay) () — ag) (o1 —az)(az — ag)

Also a1, as, a3, and ay are the roots of the polynomial equation:

g Sps S Slp S0 (3.29)

T
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Substituting the solutions (3.22)—(3.25) into (2.4) and (3.2), we have

> 1/(2n-1)
u(x,y,t) = | +ma B o (me—P
'Y, 0 101 C—(rlo/m) 2 1 C—(Tlo/m) ’

4B2(a2 - al)Tl

432 - [(tll - 0!2) (C - 1]0)]2

2 1/(2n-1)
< 482(112 - LX1) >
+T| a; + 2 ’
4B - [(a1 - a2) (C - )]
(a2 —a1)7

exp[((a1 - a2)/B)(C —1o)] -1

( ) 2 1/@n-1)
ay — (X
+T2<0l2+ exp[((a1 — a2)/B)(C —19)] _1> } ,

(1 —ap)m
exp[((a1 — a2)/B)(C—1p)] -1

( ) 2y 1/(2n-1)
ap —ap
+T2<£X1 + exp[((al—az)/B)(C—rlo)] _1> } ’

2(a1 —ap) (a1 —a3)1
200 — ay — a3 + (a3 — ay) Cosh[<\/(vc1 —a)(ag — a3)/B> (C)]

u(x,y,t) = {Tg + T +

u(x,y,t) = {T() + T +

u(x,y,t) = {To + T+

u(x,y,t) :{ 0+ Ty —

2y 1/(2n-1)
Py 2(a1 — ) (1 — a3)
201 -y —az+ (az—ay) COSh[(\/(le—0(2)(6!1—(13)/3) (C)]
(3.30)

where C denotes by x +y — (1 + 2k + (a(&1] — 16&07y) /4(1 + 2n)ésTiT2) )t
For simplicity, we can write the solutions (3.30) as follows:

1/(2n-1)

u(x,y,t) = [IZ;:T" <a1 * #L/”ﬂy] ,
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) 5 i1/ @2n-1)
u(x,y,t) = ZTi <a1 + 4B (a; — m) 2> ,
i=0 4B? - (a1 — a2) (C - 10)]
F 1 1/@n-1)
(a2 — )
u(x,y,t) = Ti| ar + ,
P < > exp[((ar —a2)/B)(C-1m0)] ~ 1
B 71/ @n-1)
(a1 —az)
u(x,y,t) = Ti| g + ’
R e T
i 1/(2n-1)
2 —_— f—
u(r,y, )= | S ar- 2(x — az) (a1 — a3)
i=0 201 —ax—az+(az—a) cosh[( (al—az)(al—ag)/B>(C)]
(3.31)
Subcase 2.2. 1t holds that
do=%, 61=86=0, &H=2\/68s, =& T=0, =1,
3.32
4(qmPes + am~/Bodas) 5o wan 0P
Go=— 5 , Ty = , c=1+2k+ ———"—,
a(l-2n)’n Vi (1+2n)\/&
where g = (1 + 2k) (1 + 2n). Substituting these results into (2.5) and (2.9), we get
—4qés — a\/§oéa> dr
(1= 10) = m\J 2l —2n)7t f - (333)
T T (VEE /) + /)
Integrating (3.33), we obtain the solutions to the (1.1) as follows.
If we denote
F(I)=T*+ 2Veodira 90 _ g, diR + dy, (3.34)

¢4 o4

where I'? = R, F(I') = G(R), then we can write complete discrimination system of G(R) as
follows:

A = d? - 4d,. (3.35)

Correspondingly, there are the following two cases to be discussed.
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(1) If A > 0,thenwe have F(I') = (I'-/a1) (I'+/a1) (I'=+/a2) T'++/az), a1 # a». Therefore,
the solution is given by

+(n—10) = mCy/aiF(p,1), (3.36)
where
—44¢4 — a\/ 50T v dgs
c- . Flgl) = f v (337)
\J a(1 - 2n)&m, o 1= ity
= arcsin(\/%), = %, a > ay. (3.38)
1 2

(2) If A = 0, then we have F(I') = (T — y/a1)* (I’ + y/a7)*. From here, the solutions can be

found as
+(1n—10) = 11/1—0% arctanh(\/%) (3.39)
u(x,y,t) = {To + T1\/071tanh|::i:g <x +y- <1 +2k + —(112510)7;2/@74>t - %):I
1/(2n-1)
e S )
(3.40)

For simplicity, we can write (3.40) as follows:

u(x,y,t)

& Jart nleY® (- 1+2k+M m i /@D (34
= %Tl ar tanh | &= ( x +y o d '

Example 3.2 (Application to the generalized KdV equation). Using a complex variation 7
defined as 7 = kx + wt, we can convert (1.2) into ordinary different equation, which reads

wu' + aku™u' + bku*"u' + 6k3u" =0, (3.42)

where the prime denotes the derivative with respect to 7. Integrating (3.42), and setting the
constant of integration to be zero, we obtain

ak ., bk

2n+1 3 "n_ ) 3.43
A L +6k°u" =0 (3.43)

wu +



Abstract and Applied Analysis 11

By the using of the transformation u = v'/", (3.43) reduces to

8k°n(n+1)2n + 1)vo" + 6k° <1 - n2> 2n+1) (v')2 +bkn*(n + 1)v* + akn*(2n + 1)v°

(3.44)
+n?(n+1)2n + )wov* = 0.
Substituting (2.6) into (3.44) and using balance principle yield
0=€e+26+2. (3.45)
If wetake 0 =4,e =0,and 6 = 1, then
(v’)2 _ 77 (8l + &% + HT% + 81T + &) (3.46)

) ’

where &4 #0, §o # 0. Respectively, solving the algebraic equation system (2.8) yields

_2 _¥
b= 27; ’ b T13/
_ _ _ b(2 + n)é4T R +n)Q2+n)(1+2n)6é
wTe bh s 2(a+2an+2b(2 +n)m)’ b= " 2n2(a+2an +2b(n+2)70)11

_ —2k[3&7o(a+2an+b(2+n)1y) — &Ti(a+2an+b(2 +n)1)]
B &2+ 7n + 7n2 + 2nd) '
(3.47)

To=T, T1=T, W

where @ denotes by Tg(—(gm (4a(1+2n) +5b(2 +n)1p)/(a+2an +2b(2 + n)7y)) + 2é,71) and
§ denote by 75(—(&370(3a(1l +2n) +4b(2 + n) 1) / (a + 2an + 2b(2 + n) 1)) + 2¢,71). Substituting
these results into (2.5) and (2.9), we can write

k,[-(1L+n)(1+2n)5
i(’l—’ZO):T—l\/ ( +Z),fzb+ i

dar (3.48)

: f 7 ) FN) )
\/r4 T2+ P 2b(2 + n)ém e 2b(2 + n)gﬂfr ! 4b(2 + n)g&s T
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where A denotes by a + 2an + b(2 + n) 7. Integrating (3.48), we obtain the solutions to (1.2)

as follows:
kB
(1 -10) =~
2kB I'-a
+(1 - 10) = P Vl"—aj' a > ay,
kB - 241
£(1 - 1) = pR— 1n|r_Lt2 ,
+(n-10) = kB In VI —az) (a1 — az) — /(T — a3) (a1 — a3)
\/(‘xl —az)(a1 — a3) \/(r —ap) (g —az) + \/(1" —a3) (a1 — ap) !
2kB
£ —10) = F(p,), ai1>a>az>ay,
(n-10) Vo —m) (@ - (o, 1) 1 2 3 4
where

71

1, /-1 +n)(1+2n)6 (7
B‘_\/ nh F(""’l)‘L

dy
\/1 - Psin’

¢ = arcsin \/(F — o) (@ - au) 2o (@ —as) (e —ay)

(T —az) (a1 —ag)’ S (m—az)(ax—ay)’

Also a1, az, a3, and ay are the roots of the polynomial equation:

s b b b b
1"+§41"+§41" 2 &

Substituting the solutions (3.49)—(3.52) into (2.4) and (3.2), we find

1/n
TlB
M- (ﬂo/k)] ’

u(x,t) = [To + Ty +

(3.49)

(3.50)

(3.51)

ay > ay > as,

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)
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{ 432(6[2 - tXl)Tl }1/7!
u(x,t) = {1 +ma + 2
4B? - [(a — a2) (M — (10/k))]
u(x,t) = {TO + Ti0p + (@2 — )7 }1/"
' exp[((a1 - a2)/B) (M~ (no/k))] -1]
u(x,t) = {To + T + (1~ a2)7 }1/"
’ exp (a1 —a2)/B) (M~ (0/k))] -1]
1/n
w(x,b) = {To P 2(a1 — ) (a1 —a3)m } ,
2a1 —apy — a3 + (a3 — ay) Cosh[<\/(a1 —ap)(ay - a3)/B>./’l]
(3.57)

where M denotes by x + ((-2[3é&310(a +2an + b2 +n)1y) — &Ti(a+2an+ b2 +n)1)]) /&2 +
7n + 7n* + 2n°))t.

If we take 70 = —Tja; and 79 = 0, then the solutions (3.57) can reduce to rational
function solutions:

~ 1/n
B
ulxf) = [ix T @2ri(a+2an— b2+ m)Tian) (B&m + &) /& (2 + 7n + TnE + 2n3))t] ’

u(x,t) =

4§2(IX2 - al) v
T1 [4132— (a1 —at2) e+ (271 (a+2an—b(2+n)Tia1) (Bt +&2) /& (2+7n+7n? +2n3))t))2] '
(3.58)

traveling wave solutions:

[ (az—a1)71 (a1 — ap) 27 (a+2an-b(2+n)Tia1) (3&a1 + &) 1/n
”(x’t)‘{T{ljFCOth[ 2B <x+ (24 7n + 72 + 2n%) t)]}} '

(3.59)

and soliton solution:

Az
(D + cosh[B; (x — vt) )"

u(x,t) = (3.60)

where B = By, A; = (2(a1 — a2)(a1 — a3)71 /(a3 — a2))"'", B1 = \/(a1 — az) (a1 —a3)/B, D =
(Ra;—ar—a3)/(a3—az),and v = 271 (a+2an—b(2+n)Tia1) (3&za1 + &) /&3 (2+7n+7n +2n°).
Here, A3 is the amplitude of the soliton, while v is the velocity and B is the inverse width of
the soliton. Thus, we can say that the solitons exist for 73 < 0.
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4. Discussion

Thus we give a more general extended trial equation method for nonlinear partial differential
equations as follows.

Step 1. The extended trial equation (2.4) can be reduced to the following more general form:

LA Xy
BOD) ~ 3wy’

(4.1)

where

OI) oI+ + 4T + &
WI)  gle+-+4T+g

(I')* = A() = (4.2)

Here, 7; (i = 0,...,6), wj (j =0,...,u4), ¢ (¢ =0,...,0),and ¢; (0 = 0,...,¢€) are the
constants to be determined.

Step 2. Taking trial equations (4.1) and (4.2), we derive the following equations:

_ O() (A(I)B(T) - A(T)B'(I)°

"2
()" = ¥ (D) BY(T) ’
S = (A'(I')B(I") = A(I)B'(I) {(®"(I')¥(I") - () ¥'(T")) B(T') — 4®(I)¥(T')B'(I') } (4.3)
2B3(T)¥2(T)
. 20(I)¥(I')B(I') (A"(I') B(T') - A(T)B"(T))
2B3(T)¥2(T) '

and other derivation terms such as ", and so on.

Step 3. Substituting v/, 11" and other derivation terms into (2.3) yields the following equation:
Q) =0 +---+01l'+00=0. (44)

According to the balance principle, we can determine a relation of 0, €, 6 and p.

Step 4. Letting the coefficients of Q(I') all be zero will yield an algebraic equations system
0i =0 (i =0,...,s). Solving this equations system, we will determine the values T, ... Ts;
wo, -+, Wy; &0 - -+, &0, and Go, ..., Ge-

Step 5. Substituting the results obtained in Step 4 into (4.2) and integrating equation (4.2), we
can find the exact solutions of (2.1).

5. Conclusions and Remarks

In this study, we proposed a new trial equation method and used it to obtain some soliton and
elliptic function solutions to the Camassa Holm KP equation and the one-dimensional general
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improved KdV equation. Otherwise, we discussed a more general trial equation method. We
think that the proposed method can also be applied to other nonlinear differential equations

with nonlinear evolution.
Also, the convergence analysis of obtained elliptic solutions is given as follows:

!
Foh =] v (5.1)

where

sin¢ = ;%‘;33 1=4 /8275 (5.2)
Especially, ¢ = /2, we have
/2 d e -
i 1>: —¢:¢+1kzvz+ Mkh ,
0 2 1. (2n) (5.3)
1/ (1 -2 sinqu)

where v,, = jg’ sin2"<;b d¢. Taking the value ¢ = x/2, we have vy, = ((1.3---(2n -
1))/(24---(2n)))(ar/2). Therefore, if we take I'(t) = a in (3.13), I'(t) = a4 in (3.28) and (3.55),
I'(t) = /a7 in (3.38), for each ¢, then we have

(2n)!
(_' > ZZ<22n(1;l,l|) > ) (54)

By the using radius of convergence of power series:

1

" Tim (@1 /an)’ (5.5)

where a, = ((2n)!/ 22"(n!)2)2. We have the radius of convergence of power series R = 1. We
can say that power series converges for each 0 < I < 1, diverges for each I > 1. Consequently,
the inequalities in (3.11), (3.26)—(3.53), and (3.38) are obtained by using 0 < I < 1, respectively.

Acknowledgment

The research has been supported by the Scientific and Technological Research Council of
Turkey (TUBITAK) and Yozgat University Foundation.



16 Abstract and Applied Analysis

References

[1] R. Hirota, “Exact solution of the korteweg-de vries equation for multiple Collisions of solitons,”
Physical Review Letters, vol. 27, no. 18, pp. 1192-1194, 1971.
[2] W. Malfliet and W. Hereman, “The tanh method. I. Exact solutions of nonlinear evolution and wave
equations,” Physica Scripta, vol. 54, no. 6, pp. 563-568, 1996.
[3] H. X. Wu and J. H. He, “Exp-function method and its application to nonlinear equations,” Chaos,
Solitons and Fractals, vol. 30, pp. 700-708, 2006.
[4] E. Misirli and Y. Gurefe, “Exp-function method for solving nonlinear evolution equations,”
Mathematical & Computational Applications, vol. 16, no. 1, pp. 258-266, 2011.
[5] Y. Gurefe and E. Misirli, “Exp-function method for solving nonlinear evolution equations with higher
order nonlinearity,” Computers & Mathematics with Applications, vol. 61, no. 8, pp. 2025-2030, 2011.
[6] M. Wang, X. Li, and J. Zhang, “The (G'/G)-expansion method and travelling wave solutions of
nonlinear evolution equations in mathematical physics,” Physics Letters. A, vol. 372, no. 4, pp. 417-
423, 2008.
[7] Y. Gurefe and E. Misirli, “New variable separation solutions of two-dimensional Burgers system,”
Applied Mathematics and Computation, vol. 217, no. 22, pp. 9189-9197, 2011.
[8] Y. Gurefe, A. Sonmezoglu, and E. Misirli, “Application of the trial equation method for solving some
nonlinear evolution equations arising in mathematical physics,” Pramana, vol. 77, pp. 1023-1029, 2011.
[9] Y. Gurefe, A. Sonmezoglu, and E. Misirli, “Application of an irrational trial equation method to high-
dimensional nonlinear evolution equations,” Journal of Advanced Mathematical Studies, vol. 5, pp. 41—
47,2012.
[10] C.S. Liu, “Trial equation method and its applications to nonlinear evolution equations,” Acta Physica
Sinica, vol. 54, no. 6, pp. 2505-2509, 2005.
[11] C. S. Liu, “Trial equation method for nonlinear evolution equations with rank inhomogeneous:
mathematical discussions and applications,” Communications in Theoretical Physics, vol. 45, pp. 219-
223, 2006.
[12] C.S. Liu, “A new trial equation method and its applications,” Communications in Theoretical Physics,
vol. 45, pp. 395-397, 2006.
[13] C. Y. Jun, “Classification of traveling wave solutions to the Vakhnenko equations,” Computers &
Mathematics with Applications, vol. 62, no. 10, pp. 3987-3996, 2011.
[14] C.Y. Jun, “Classification of traveling wave solutions to the modified form of the Degasperis-Procesi
equation,” Mathematical and Computer Modelling, vol. 56, pp. 43-48, 2012.
[15] C.-S. Liu, “Applications of complete discrimination system for polynomial for classifications of
traveling wave solutions to nonlinear differential equations,” Computer Physics Communications, vol.
181, no. 2, pp. 317-324, 2010.
[16] M. M. Kabir, “Analytic solutions for a nonlinear variant of the (2+1) dimensional Camassa Holm KP
equation,” Australian Journal of Basic and Applied Sciences, vol. 5, no. 12, pp. 15661577, 2011.
[17] W. Zhang, Q. Chang, and B. Jiang, “Explicit exact solitary-wave solutions for compound KdV-type
and compound KdV-Burgers-type equations with nonlinear terms of any order,” Chaos, Solitons and
Fractals, vol. 13, no. 2, pp. 311-319, 2002.



