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Using the Lyapunov direct method, the stability of discrete nonautonomous systems within the
frame of the Caputo fractional difference is studied. The conditions for uniform stability, uniform
asymptotic stability, and uniform global stability are discussed.

1. Introduction

The fractional calculus which is as old as the usual calculus deals with the generalization of
integration and differentiation of integer order to any order. Recently, there has been great
interest in this calculus as it turned out that it has many applications in many fields of science
and engineering [1–6].

The analogous theory for discrete fractional calculus was initiated by Miller and Ross
in [7]. Building this theory was continued in [8–12].

The stability of fractional-order linear and nonlinear dynamic systems was a subject
of many reports [13–19], while the stability of discrete dynamic systems was discussed in
many books and articles (see, e.g., [20] and the references therein). But the stability of discrete
fractional dynamic systems, to our knowledge, has not been reported.

The analysis of the dynamics of complex or hypercomplex systems requires new
methods and techniques to be developed. Particularly, the systems which have both
continuous evolution and discrete evolution represents a new direction in many fields of
science and engineering. For these type of systems the classical or the improved techniques
and methods (e.g., with or without nonlocal terms described usually by the fractional
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derivatives and integrals) are not enough to describe accurately their dynamics. In this line of
thought the combination of the fractional and discrete operators leads to a better description
of the systems mentioned above. However, these new hybrid methods are at the beginning of
their evolutions and new efforts are required to be developed and implemented in practical
applications.

In [19], to demonstrate the advantage of using fractional-order derivatives instead of
integer-order derivatives, the authors considered 2 systems. The system with integer-order
derivative turned to be unstable. But the second system, where the integer-order derivative
was replaced by fractional-order derivative, turned out to be stable. The same argument still
holds for integer difference and fractional difference systems. To illustrate this, we consider
the following two systems:

Δx(t) = μt(μ−1) 0 < μ < 1 x(0) = x0, (1.1)

CΔα
ax(t) = μt

(μ−1) 0 < α < 1, a = 1 − α x(a) = x0, t ∈ N0, (1.2)

where t(μ) = Γ(t + 1)/Γ(t + 1 − μ) and the operator CΔα
a is defined by (2.10). The solution of

(1.1) is x(t) = t(μ) + x0 which clearly tends to ∞ as t → ∞ for 0 < μ < 1 and thus is unstable.
The solution of (1.2) which is defined on Nα has the form

x(t) = x(a) + μΔ−α
0 t(μ−1), (1.3)

where the operatorΔ−α
0 is defined by (2.6). The value ofΔ−α

0 t(μ−1) at t = α+k ∈ Nα is computed
as follows:

(
Δ−α

0 t(μ−1)
)
(α + k) =

1
Γ(α)

k∑
s=0

(α + k − s − 1)(α−1)s(μ−1)

=
1

Γ(α)

k∑
s=1

Γ(α + k − s)
Γ(k − s + 1)

Γ(s + 1)
Γ
(
s − μ + 2

)

=
1

Γ(α)

[
Γ(α + k − 1)

Γ(k)
Γ(2)

Γ
(
3 − μ) +

Γ(α + k)
Γ(k + 2)

Γ(3)
Γ
(
3 − μ)

+ · · · + Γ(α)
Γ(1)

Γ(k + 1)
Γ
(
k + 2 − μ)

]
.

(1.4)

The quantity in (1.4)→ 0 as k → ∞, and thus the solution (1.3) of (1.2) → x0 for
0 < μ < 1 as t → ∞ and therefore is stable.

The purpose of this paper is to state the stability theorem for discrete nonlinear
dynamic systems in the sense of the Caputo fractional differences.
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The paper is organized as follows. In Section 2 basic definitions of fractional calculus
and discrete fractional calculus are mentioned. Section 3 presents our main results on the
stability of discrete fractional nonautonomous systems.

2. Preliminaries

For a function f defined on the interval [a, b], the left and right Riemann-Liouville integrals
of order α ∈ C, Re(α) > 0, are defined, respectively, by [1–3]

(
aI

αf
)
(t) =

1
Γ(α)

∫ t

a

f(s)

(t − s)1−α
ds,

(
Iαb f

)
(t) =

1
Γ(α)

∫b

t

f(s)

(s − t)1−α
ds,

(2.1)

while the left and right Riemann-Liouville derivatives of order α are defined, respectively, by
[1–3]

(
aD

αf
)
(t) =

(
d

dt

)n(
aI

n−αf
)
(t) =

(
d

dt

)n 1
Γ(n − α)

∫ t

a

f(s)

(t − s)1−n+α
ds,

(
Dα
bf

)
(t) =

(
− d
dt

)n(
In−αb f

)
(t) =

(
− d
dt

)n 1
Γ(n − α)

∫b

t

f(s)

(s − t)1−n+α
ds,

(2.2)

where n = [Re(α)] + 1 and Γ(·) is the Gamma function.
The left and right Caputo fractional derivatives of order α on the interval [a, b] are

defined, respectively, by

(
C
aD

α
f
)
(t) =

(
aI

n−αf (n)
)
(t) =

1
Γ(n − α)

∫ t

a

f (n)(s)

(t − s)1−α
ds,

(
C
D
α
bf

)
(t) =

(
In−αb f (n)

)
(t) =

1
Γ(n − α)

∫b

t

f (n)(s)

(s − t)1−α
ds.

(2.3)

Some properties of the Riemann-Liouville and Caputo fractional derivatives are stated
below [1–3].

Property 1. We have

(
C
aD

αf
)
(t) =

(
aD

αf
)
(t) −

n−1∑
k=0

f (k)(a)
Γ(k − α + 1)

(t − a)k−α,

(
CDα

bf
)
(t) =

(
Dα
bf

)
(t) −

n−1∑
k=0

(−1)kf (k)(b)
Γ(k − α + 1)

(b − t)k−α.

(2.4)
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Property 2. If f ∈ ACn[a, b] or Cn[a, b], then

(
aI

α C
aD

α
f
)
(t) = f(t) −

n−1∑
k=0

f (k)(a)
Γ(k − α + 1)

(t − a)k−α,

(
Iαb

C
D
α
bf

)
(t) = f(t) −

n−1∑
k=0

(−1)kf (k)(b)
Γ(k − α + 1)

(b − t)k−α.
(2.5)

Below we present basic definitions and properties of fractional sums and differences.
First we define the set Na = {a, a + 1, a + 2, . . .} and bN = b, b − 1, b − 2, . . .. The (left)

fractional sum of f , defined on Na, of order α is defined by [7–12]

Δ−α
a f(t) =

1
Γ(α)

t−α∑
s=a

(t − σ(s))(α−1)f(s), (2.6)

where α > 0, σ(s) = s + 1, and t(α) = Γ(t + 1)/Γ(t + 1 − α). The (right) fractional sum of f ,
defined on bN, of order α is defined by

∇−α
b f(t) =

1
Γ(α)

b∑
s=t+α

(
ρ(s) − t)(α−1)f(s), (2.7)

where ρ(s) = s− 1. Analogous of the case of fractional derivatives, the Riemann left and right
fractional differences of order α are defined, respectively, by

Δα
af(t) = ΔnΔ−(n−α)

a f(t) = Δn

[
1

Γ(n − α)
t−n+α∑
s=a

(t − σ(s))(n−α−1)f(s)
]
,

∇α
bf(t) = (−1)n∇n∇−(n−α)

b
f(t) = (−1)n∇n

[
1

Γ(n − α)
b∑

s=t+n−α

(
ρ(s) − t)(n−α−1)f(s)

]
,

(2.8)

where n = [α] + 1. It can be obviously noticed that Δ−α
a maps functions defined on Na to

functions defined on Na+α and Δα
a maps functions defined on Na to functions defined on

Na+n−α, while∇−α
b maps functions defined on bN to functions defined on b−αNa+α and∇α

b maps
functions defined on bN to functions defined on b−n+αN.

Similar to the case of fractional derivatives, the left and right Caputo fractional
differences of order α of a function defined on Na and bN are defined, respectively, by [12]

CΔα
af(t) = Δ−(n−α)

a Δnf(t) =
1

Γ(n − α)
t−n+α∑
s=a

(t − σ(s))(n−α−1)Δnf(s),

C∇α
bf(t) = (−1)n∇−(n−α)

b
∇nf(t) =

(−1)n
Γ(n − α)

b∑
s=t+n−α

(
ρ(s) − t)(n−α−1)∇nf(s),

(2.9)

where n = [α]+1. The following property gives the relation between the Riemann and Caputo
fractional differences [12].
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Property 3. For any α > 0, we have the following:

CΔα
af(t) = Δα

af(t) −
n−1∑
k=0

(t − a)(k−α)
Γ(k − α + 1)

Δkf(a), (2.10)

C∇α
bf(t) = ∇α

bf(t) −
n−1∑
k=0

(b − t)(k−α)
Γ(k − α + 1)

(−1)k∇kf(b). (2.11)

Particularly, when 0 < α < 1 we have

CΔα
af(t) = Δα

af(t) −
(t − a)(−α)
Γ(1 − α) f(a),

C∇α
bf(t) = ∇α

bf(t) −
(b − t)(−α)
Γ(1 − α) f(b).

(2.12)

Property 4. Let α > 0, and let f be a function defined on suitable subsets of Na and bN. Then,

Δ−α
a+n−α

CΔ
α
af(t) = f(t) −

n−1∑
k=0

(t − a)(k)
k!

Δkf(a),

∇−α
b−n+α

C∇α
bf(t) = f(t) −

n−1∑
k=0

(b − t)(k)
k!

(−1)k∇kf(b).

(2.13)

Particularly, when 0 < α ≤ 1 we have

Δ−α
a+1−α

CΔ
α
af(t) = f(t) − f(a), ∇−α

b−1+α
C∇α

bf(t) = f(t) − f(b). (2.14)

3. Lyapunov Stability Theorems for Nonautonomous Systems of
Some Fractional Difference Equations

The stability theory of dynamic systems has a crucial role within the system theory and
engineering. The stability of equilibrium points is usually done by utilizing the Lyapunov
stability. Hypercomplex systems, namely, systems with both discrete and continuous
behavior, need new methods and techniques to define their Lyapunov stability.

In this section we extend the method of the Lyapunov functions to study the stability
of solutions of the following system:

CΔα
t0
x(t) = g(t + α − 1, x(t + α − 1)) x(t0) = x0, (3.1)

where t0 = a + n0 ∈ Na(n0 ∈ N), t ∈ Nn0 , a = α − 1, g : Na × R
n → R

n is continuous, and
0 < α ≤ 1. We note that a Lyapunov function V for the system (3.1) must depend on t and x.
Now let g(t, 0) = 0, for all t ∈ Na so that the system (3.1) admits the trivial solution. Next we
list some definitions that will be used in studying the stability properties of (3.1).
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Definition 3.1. The trivial solution x(t) = 0 of (3.1) is said to be

(i) stable if, for each ε > 0 and t0 ∈ Na, there exists a δ = δ(ε, t0) > 0 such that for any
solution x(t) = x(t, t0, x0)with ‖x0‖ < δ one has ‖x(t)‖ < ε, for all t ∈ Nt0 ⊆ Na,

(ii) uniformly stable if it is stable and δ depends solely on ε,

(iii) asymptotically stable if it is stable and for all t0 ∈ Na there exists δ = δ(t0) > 0 if
‖x0‖ < δ implies that limt→∞x(t, t0, x0) = 0.

(iv) uniformly asymptotically stable if it is uniformly stable and, for each ε > 0, there
exists T = T(ε) ∈ N0 and δ0 > 0 such that ‖x0‖ < δ0 implies ‖x(t)‖ < ε for all t ∈ Nt0+T

and for all t0 ∈ Na,

(v) globally asymptotically stable if it is asymptotically stable for all x0 ∈ R
n,

(vi) globally uniformly asymptotically stable if it is uniformly asymptotically stable for
all x0 ∈ R

n.

Definition 3.2. A function φ(r) is said to belong to the class K if and only if φ ∈ C[[0, ρ),R+],
φ(0) = 0, and φ(r) is strictly monotonically increasing in r. If φ : R+ → R+, φ ∈ K, and
limr→∞φ(r) = ∞, then φ is said to belong to class KR.

Definition 3.3. A real valued function V (t, x) defined on Na × Sρ, where Sρ = {x ∈ R
n : ‖x‖ ≤

ρ}, is said to be positive definite if and only if V (t, 0) = 0 for all t ∈ Na and there exists
φ(r) ∈ K such that φ(r) ≤ V (t, x), ‖x‖ = r, (t, x) ∈ Na × Sρ.

Definition 3.4. A real valued function V (t, x) defined on Na × Sρ, where Sρ = {x ∈ R
n : ‖x‖ ≤

ρ}, is said to be decrescent if and only if V (t, 0) = 0 for all t ∈ Na and there exists ϕ(r) ∈ K
such that V (t, x) ≤ ϕ(r), ‖x‖ = r, (t, x) ∈ Na × Sρ.

Now, we can state the theorems regarding the stability of solutions of the system (3.1).

Theorem 3.5. If there exists a positive definite and decrescent scalar function V (t, x) ∈ C[Na ×
Sρ,R+] such that CΔα

t0
V (t, x(t)) ≤ 0 for all t0 ∈ Na and (t, x) ∈ N0 ×Sρ, then the trivial solution of

(3.1) is uniformly stable.

Proof. Let x(t) = x(t, t0, x0) be a solution of system (3.1). Since V (t, x) is positive definite and
decrescent, there exist φ, ϕ ∈ K such that φ(‖x‖) ≤ V (t, x) ≤ ϕ(‖x‖) for all (t, x) ∈ Na × Sρ.
For each ε > 0, 0 < ε < ρ, we choose a δ = δ(ε) such that ϕ(δ) < φ(ε). For any solution x(t) of
(3.1) we have φ(‖x(t)‖) ≤ V (t, x(t)) with ‖x0‖ < δ(ε). Since Δα

t0
V (t, x(t)) ≤ 0, by using (2.14)

in Property 4 we have V (t, x(t)) ≤ V (t0, x0) for all t ∈ Nt0 . Consequently,

φ(‖x(t)‖) ≤ V (t, x(t)) ≤ V (t0, x0) ≤ ϕ(‖x0‖) < ϕ(δ) < φ(ε), (3.2)

and thus ‖x(t)‖ < ε for all t ∈ Nt0 .

Theorem 3.6. If there exists a positive definite and decrescent scalar function V (t, x) ∈ C[Na ×
Sρ,R+] such that

CΔα
t0
V (t, x(t)) ≤ −ψ(‖x(t + α − 1)‖), ∀t0 ∈ Na, (t, x) ∈ N0 × Sρ, (3.3)

where ψ ∈ K, then the trivial solution of (3.1) is uniformly asymptotically stable.
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Proof. Since all the conditions of Theorem 3.5 are satisfied, the trivial solution of the system
(3.1) is uniformly stable. Let 0 < ε < ρ and δ = δ(ε) correspond to uniform stability. Choose
a fixed ε0 ≤ ρ and δ0 = δ(ε0) > 0. Now, choose ‖x0‖ < δ0 and T(ε) large enough such
that (T + a)(α) ≥ (φ(δ0)/ψ(δ(ε)))Γ(α + 1). Such a large T can be chosen since limT→∞(Γ(T +
α)/Γ(T)) = ∞. Now, we claim that ‖x(t, t0, x0)‖ < δ(ε) for all t ∈ [t0, t0 + T]

⋂
Nt0 . If this is not

true, due to (3.3) and Property 4, we get

V (t, x(t, t0, x0)) ≤ V (t0, x0) − 1
Γ(α)

t−α∑
s=t0+1−α

(t − σ(s))(α−1)ψ(‖x(s + α − 1)‖)

≤ φ(‖x0‖) −
ψ(δ)
Γ(α)

t−α∑
s=n0

(t − σ(s))(α−1)

≤ φ(δ0) −
ψ(δ)

Γ(α + 1)
(t − n0)(α).

(3.4)

Substituting t = t0 + T , we get

0 < ϕ(δ(ε)) ≤ V (t0 + T, x(t0 + T, t0, x0)) ≤ φ(δ0) −
ψ(δ)

Γ(α + 1)
(T + t0 − n0)(α) ≤ 0, (3.5)

which is a contradiction. Thus, there exists a t ∈ [t0, t0 + T] such that ‖x(t)‖ < δ(ε). But in this
case, since the trivial solution is uniformly stable and t is arbitrary, ‖x(t)‖ < ε for all t ≥ t0 + T
whenever ‖x0‖ < δ0.

Theorem 3.7. If there exists a function V (t, x) ∈ C[Na × R
n,R+] such that

φ(‖x(t)‖) ≤ V (t, x) ≤ ϕ(‖x(t)‖) ∀(t, x) ∈ Na × R
n,

CΔα
t0
V (t, x(t)) ≤ −ψ(‖x(t + α − 1)‖) ∀t0 ∈ Na, (t, x) ∈ N0 × R

n,

(3.6)

where φ, ϕ, and ψ ∈ KR hold for all (t, x) ∈ Na × R
n, then the trivial solution of (3.1) is globally

uniformly asymptotically stable.

Proof. Since the conditions of Theorem 3.6 are satisfied, the trivial solution of (3.1) is
uniformly asymptotically stable. It remains to show that the domain of attraction of x = 0
is all of R

n. Since limr→∞φ(r) = ∞, δ0 in the proof of Theorem 3.6 may be chosen arbitrary
large and ε can be chosen such that it satisfies ϕ(δ0) < φ(ε). Thus, the globally uniformly
asymptotic stability of x = 0 is concluded.

Lemma 3.8. If V (t0, x(t0)) ≥ 0, then, for 0 < α ≤ 1, one has

CΔ
α
t0V (t, x(t)) ≤ Δα

t0
V (t, x(t)). (3.7)
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Proof. From Property 3, we have

CΔ
α
t0V (t, x(t)) = Δα

t0
V (t, x(t)) − (t − t0)(−α)

Γ(1 − α) V (t0, x(t0)) ∀t ∈ Nt0 . (3.8)

Since V (t0, x(t0)) ≥ 0 and (t − t0)(−α)/Γ(1 − α) ≥ 0, we obtain

CΔ
α
t0V (t, x(t)) ≤ Δα

t0
V (t, x(t)). (3.9)

Theorem 3.9. (i) If the assumptions in Theorem 3.5 are satisfied except replacing CΔ
α
t0 by Δα

t0
, then

the trivial solution of (3.1) is uniformly stable.
(ii) If the assumptions in Theorem 3.6 are satisfied except replacing CΔ

α
t0 by Δα

t0
, then the

trivial solution of (3.1) is uniformly asymptotically stable.
(iii) If the assumptions in Theorem 3.7 are satisfied except replacing CΔ

α
t0 by Δα

t0
, then the

trivial solution of (3.1) is globally uniformly asymptotically stable.

Proof. The proof is done by using Lemma 3.8 and following the same arguments as in the
proofs of Theorem 3.5, Theorem 3.6, and Theorem 3.7.

4. Conclusion

In this paper using the Lyapunov direct method, we studied the stability of discrete
nonautonomous systems in the sense of the Caputo fractional difference. We listed the
conditions for uniform stability, uniformly asymptotic stability, and globally uniformly
asymptotic stability for such systems. We will consider the Mittag-Leffler stability for such
systems in future works.
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