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We propose a convergence analysis of a new decomposition method to solve structured optimiza-
tion problems. The proposed scheme is based on a class of modified Lagrangians combined with
the allocation of resources decomposition algorithm. Under mild assumptions, we show that the
method generates convergent primal-dual sequences.

1. Introduction

The interest for large-scale optimization problems [1] has grown over the past twenty years
and it is likely to continue to increase during the upcoming decades; while on the one
hand, the systemic approach to modeling real systems results in more and more compli-
cated models, the increasing computing power of the microprocessors, along with the
recent advancements in parallel architectures on the other hand, seems to push back the
limits of practical treatment of these models. Decomposition methods (including splitting,
partitioning, and parallel methods) are practical candidates to solve large problems where an
internal structure allows to identify the “weakly coupled subsystems.” It should be clear that
the reduction of the dimension of the original problem is not the only motivation for decom-
posing it into subproblems. Other important motivations are as follows:

(i) partitioning heterogeneous models when it is the juxtaposition of various parts of
the model which turns its numerical treatment difficult (as in mixed models with
continuous and discrete variables) [2];
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(ii) decentralizing the decision-making such that the decomposition procedure could
lead to autonomous subsystems, which are capable of computing their own part of
the global solution independently without the need of a centralized decision level
[2, 3];

(iii) parallelizing the computation among different processors [1, 2].

Our objective in this paper is to present a family of decomposition algorithms based on
proximal-like techniques, which are suitable for decentralized and parallelized computations.
The algorithm can be seen as a separable version of the nonlinear rescaling principle method
[4] and is closely related to three known techniques: the Partial Inverse method, proposed by
Spingarn in 1985 [5, 6], the Alternate Direction Multiplier method [7, 8], proposed originally
by Gabay and Mercier [9] for the splitting of variational inequalities, and the Separable
Augmented Lagrangian Algorithm (SALA) developed by Hamdi [10–12].

We will use a simplified framework to present the algorithm called the ϕ-SALA. It is
tailored towards minimizing a convex separable function with separable constraints. A nice
feature of the ϕ-SALA is that it preserves separability, as each iteration splits into a proximal
step on the dual function and a projection step on the subspace. On the other hand, it yields
the proximal decomposition on the graph of a maximal operator that has been introduced by
Mahey et al. [13] for quadratic choice of the auxiliary functions ϕ.

The first drawback associated with the classical quadratic multiplier method
(augmented lagrangian [14, 15]) and/or the nonlinear rescaling principle algorithm is that
the augmented Lagrangian function and also the rescaled Lagrangian function are no long
separable even when the original problem is separable. In other words, when applied to
separable constraints like g(x) =

∑p

i=1 gi(xi), the terms ‖∑p

i=1 gi(xi)‖ or (1/k)ϕ(k
∑p

i=1 gi(xi))
are no long separable. However, some careful reformulation of the problem (e.g., by
introducing additional variables) may preserve some of the given separable structure, thus
giving a chance to the augmented Lagrangian framework, to play again an important role in
the development of efficient decomposition schemes.

The second drawback associated with the multiplier methods is the fact that it is only
differentiable once even when the problem’s data allow for higher differentiability, disabling
the application of efficient Newton type methods. In fact such a lack of continuity in the
second derivative can significantly slow down the rate of convergence of these methods and
thus causing algorithmic failure. One way of coping with this difficulty is to use the recently
developed nonquadratic multiplier methods based on entropy-like proximal methods (see
[3, 16–20]), and thereby leading to multiplier methods of which are twice continuously
differentiable as opposed to the classical quadratic multiplier (if the original problem is also
C2). This is an important advantage since Newton type methods can then be applied.

With respect to the first drawback, in [10, 11], Hamdi has proposed a separable
augmented Lagrangian algorithm (SALA) which can be derived from the resource directive
subproblems associated with the coupling constraints ((SALA) was developed for non-
convex and convex separable problems.). And in this paper, we alleviate the second
drawback by using the Nonlinear Re-scaling NR method, so as to get a separable augmented
Lagrangian function, which is at least twice continuously differentiable.

It is worth citing here some recent works where decomposition methods related to our
subject were developed (to the best of our knowledge). The most recent one is a modification
of the original algorithm (SALA) [10–12] where Guèye et al. [21] replaced the scalar penalty
parameter in [10] by a diagonal positive definite matrix of scaling factors. Their convergence
analysis was done for only affine constraints. Auslender and Teboulle [22] proposed the



Abstract and Applied Analysis 3

entropic proximal decompositionmethod inducingC∞-lagrangians for solving the structured
convex minimization problems and variational inequalities based on the combination of
their recent logarithmic-quadratic proximal point theory [23, 24] with the Chen-Teboulle
decomposition scheme [25]. Kyono and Fukushima [26] proposed an extension of the
Chen-Teboulle decomposition scheme [25] combined with the Bregman-based proximal
point algorithm. Kyona and Fukushima their method was developed for solving large-scale
Variational Inequalities (VIPs) (see [26] and for more developments on VIPs see [27–29] and
references therein.). Hamdi and Mahey [11] proposed a stabilized version of the original
(SALA) by using a primal proximal regularization that yields to better numerical stability,
specially for nonconvex minimization problems. For other references on decomposition
methods, onemay refer to [5, 7, 11, 12, 25, 26, 30–34] and toHamdi’s survey on decomposition
methods based on augmented lagrangian functions [35] and references therein.

The remainder of this paper is organized as follows. In Section 2, we present the
nonlinear rescaling principle of Polyak. In Section 3, we describe the application of the non-
linear rescaling method in conjunction with (SALA) to a general structured convex program
in order to yield to the decomposition method presented in [30], which can be seen as
separable augmented lagrangian method. Section 4 is dedicated to the extended convergence
analysis of the proposed algorithm.

2. Nonlinear Rescaling Principle

Let f be a convex real-valued function and let (g1(x), . . . , gp(x))
T be finite concave real-valued

functions on Rn, and consider the convex programming problem:

min
x∈Rn

{
f(x) : gi(x) ≥ 0, i = 1, m

}
. (C)

Recently nonquadratic augmented lagrangian have received much attention in the literature;
see, for example, ([3, 4, 16–20, 36] and references therein.). These methods basically rely on
applying new class of proximal-like maps on the dual of (C), see [20], and in turns are in fact
equivalent to using the nonlinear re-scalingmethod, as shown in [37]. In this paperwe use the
nonlinear re-scaling principle to construct smooth lagrangian decomposition methods. Thus,
we begin by summarizing this approach; for details see [4, 18, 37] and references therein.

The main idea of the nonlinear re-scaling principle (called here the NR method) is
considering a class of strictly concave and smooth enough scalar function with particular
properties, and using it to transform the constraints terms of the classical lagrangian. The NR
method alternates at each step the unconstrained minimization of the classical lagrangian for
the equivalent problem with the lagrange multiplier update. It allows for generating a wide
class of augmented lagrangian methods (for instance, the exponential multiplier method, the
modified log-barrier method, and the Log-sigmoid multiplier method [18], etc.).

Let us consider the following class of C2 functions ϕ defined of R and satisfying the
following properties:

(P1) ϕ′(t) > 0, for all t ∈ R;

(P2) ϕ′′(t) < 0, for all t ∈ R;

(P3) ϕ(0) = 0;

(P4) ϕ′(0) = 1;
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(P5) m−1 ≤ ϕ′′(t) < 0, for all t ∈ R and ϕ′′(t) ≤ −M−1, for all t < 0, whereM,m > 0;

(P6) (−ϕ)∞(−1) ≥ 0;

(P7) (−ϕ)∞(1) = 0.

Note that from (P2) and (P3) the functions ϕ and ϕ′ are one-to-one and ϕ is strictly concave.
Let ϕ ∈ Φ, then we have for any k > 0,

t ≥ 0
1
k
ϕ(tk) ≥ 0. (2.1)

The nonlinear re-scaling principle is based on the idea of transforming the original problem
(C) to an equivalent problem, namely, to one which has the same set of optimal solutions
as (C). To this end, let us consider here a parameterized transformed problems written as
follows:

min
x∈Rn

{
f(x) : k−1ϕ

(
kgi(x)

) ≥ 0, i = 1, m
}
. (

[
Ck, ϕ

]
)

Clearly, problem (
[
Ck, ϕ

]
) is also convex and has the same feasible set as (C). The nonlinear

re-scaling iterations are based on the classical lagrangian function denoted here by Pk(x, u)
associated to the problem (

[
Ck, ϕ

]
); that is,

Pk(x, u) = f(x) −
m∑

i=1

k−1uiϕ
(
kgi(x)

)
(2.2)

and can be resumed as follows.

Algorithm 2.1. Given ϕ ∈ Φ, u0 > 0, k > 0, generate the sequence {xk, uk}:
Find xk+1 ∈ argminx∈RnPk(x, uk) = f(x) −

∑m
i=1 k

−1uki ϕ(kgi(x)).

Updateuk+1i = uki ϕ
′(kgi(xk+1)), i = 1, . . . , m.

Remark 2.2. Note that the multipliers are nonnegative for all k by (P1). Also, it is worth to
mention the possibility to change the penalty parameter k at each iteration s. In [37], the
authors propose a dynamic scaling parameters update as follows: kk+1i = k/uk+1i . This update
will be used in our decomposition scheme in the next section.

The NR algorithm allows a generation of a wide class of augmented lagrangian.
Typical examples include the choices ϕ(t) = et − 1 to get the exponential multiplier method,
or ϕ(t) = − log(1 − t) to get the modified log-barrier function method. Convergence analysis
of Algorithm 2.1 is given in [4, 18, 37, 38].

3. Separable Modified Lagrangian Algorithm

In this section, we recall the generalization of the separable augmented lagrangian algorithm
(SALA) algorithm (see [10, 11]) called (ϕ SALA) proposed in [30], to solve large-scale convex
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inequality constrained programs with separable structure. We are concerned here with block
separable nonlinear constrained optimization problems:

min
x∈Rn

{

F(x) =
p∑

i=1

fi(xi) : x ∈ Ω

}

, (SP)

where fi : R
ni → R are all convex functions, and

Ω =

{

x ∈ R
n :

p∑

i=1

gij(xi) ≥ 0, j = 1, m

}

(3.1)

is the convex set where gij are defined from R
ni → R for j = 1, m, i = 1, p,

∑p

i=1 ni = n. Along
this work, all the functions fi, gij are C2 and we assume the following.

(A1) The optimal set X∗ of (SP) is nonempty and bounded.

(A2) The Slater’s condition holds, that is,

∃x ∈ R
n :

p∑

i=1

gij(xi) > 0, j = 1, m. (3.2)

Now, to construct our decomposition algorithm, we use the m allocation vectors yj ∈
A = {z ∈ R

p | ∑p

i=1 zi = 0} to get the equivalent problem (If (x∗, y∗) is an optimal solution to
(SPy) then x∗ is an optimal solution to (SP).),

min
p∑

i=1

fi(xi)

such that gij(xi) + yij ≥ 0, j = 1, m, i = 1, p,

p∑

i=1

yij = 0 j = 1, m,

xi ∈ R
ni , i = 1, p,

(SPy)

to whichwe propose to apply the nonlinear re-scaling principle with partial elimination of the
constraints. We mean that only the constraints gij(xi) + yij ≥ 0 are replaced by the equivalent
ones (1/λ)ϕ(λ(gij(xi) + yij)) ≥ 0. Then for any λ > 0, the following minimization problem:

min
x

p∑

i=1

fi(xi)

s.t
1
λ
ϕ
[
λ
(
gij(xi) + yij

)] ≥ 0 j = 1, m, i = 1, p

p∑

i=1

yij = 0 j = 1, m

(
[
SP
(
y, ϕ
)]
)
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is equivalent to the (SPy) and according to Algorithm 2.1, for all u0 ∈ R
pm
++ , λ0 = (λ011, . . . , λ

0
pm)

where λ0ij = λ(u
0
ij)

−1, we have the following iterative scheme:

(
xk+1, yk+1

)
−→ min

∑p

i=1 yij=0, j=1,m
Θλk

(
x, y, uk

)
, (3.3)

uk+1ij = ukijϕ
′
(
λkij

(
gij
(
xk+1i

)
+ yk+1ij

))
, (3.4)

λk+1ij = λ
(
uk+1ij

)−1
, ∀i, j, (3.5)

where Θλ(x, y, u) denotes the classical lagrangian for (
[
SP
(
y, ϕ
)]
) given by

Θλ

(
x, y, u

)
=

p∑

i=1

fi(xi) − 1
λ

p∑

i=1

m∑

j=1

uijϕ
[
λ
(
gij(xi) + yij

)]
, (3.6)

where u = (u11, u21, . . . , up1, u12, . . . , up2, . . . , u1m, . . . , upm) ∈ R
pm
++ .

The minimization in (3.3) is done by alternating the minimization with respect to x,
then followed by the one w.r.t. the allocation variable y; that is, we fix y = yk and find

xk+1 ∈ Argmin
x

Θλk

(
x, yk, uk

)
= Argmin

x

p∑

i=1

⎧
⎨

⎩
fi(xi) −

m∑

j=1

1

λkij
ukijϕ
[
λ
(
gij(xi) + ykij

)]
⎫
⎬

⎭
.

(3.7)

Then we can split the above minimization into p independent sub-problems with low dimen-
sion. That is,

xk+1i ∈ Argmin
xi

⎧
⎨

⎩
fi(xi) −

m∑

j=1

1

λkij
ukijϕ
[
λkij

(
gij(xi) + ykij

)]
⎫
⎬

⎭
. (3.8)

And now we fix x = xk+1 to solve for yk+1

yk+1 ∈ Argmin

⎧
⎨

⎩

p∑

i=1

m∑

j=1

− 1

λkij
ukijϕ
[
λkij

(
gij
(
xk+1i

)
+ yij
)]

:
p∑

i=1

yij = 0

⎫
⎬

⎭
. (3.9)

The following lemma gives an important link between the allocation variable and the la-
grange dual variable.

Lemma 3.1. According to (3.9), uk+1 and yk+1 are orthogonal and satisfy

yk+1ij = −gij
(
xk+1i

)
+ δk+1j , i = 1, p, j = 1, m, (3.10)

uk+1j = ukj ϕ
′(λkj δ

k+1
j ), j = 1, m, (3.11)

where δk+1j = p−1
∑p

i=1 gij(x
k+1
i ).
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Proof. For any j = 1, m, by writing the classical lagrangian to (3.9)

Lk
(
zj , tj
)
=

p∑

i=1

− 1

λkij
ukijϕ
[
λkij

(
gij
(
xk+1i

)
+ yij
)]

+
p∑

i=1

yij tj , (3.12)

where tj ∈ R, j = 1, m, and using the optimality, with (3.4), we show that

tj = uk+1ij = ukijϕ
′
[
λkij

(
gij
(
xk+1i

)
+ yk+1ij

)]
, (3.13)

which means that uk+1 does not depend on i; that is, uk+1ij = uk+1lj , for all i, l = 1, p, and uij can

be replaced by uj for all i = 1, p.
Now, according to (P1) and after straightforward calculations, we reach (3.10). Equa-

tion (3.11) is obtained directly using (3.4) and (3.10). The orthogonality of the vectors uk+1

and yk+1 is direct.

〈
u, y
〉
=

m∑

j=1

p∑

i=1

uijyij =
m∑

j=1

uj

p∑

i=1

yij = 0. (3.14)

One can observe that also the penalty parameters (λ1j , λ2j , . . . , λpj) belong to the set
V = {(a1, . . . , ap) : a1 = · · · = ap}, and finally our algorithm (ϕSALA) can be stated as follows.

Algorithm 3.2. We have the following steps.

Step 1. Select ϕ ∈ Φ, u0 ∈ R
mp
++ where uj ∈ V , j = 1, m, λ > 0, y0 = (y1, . . . , ym), where yj ∈ A,

j = 1, m and λ0 = (λ11, . . . , λpm)where λ0j = λ(u
0
j )

−1, ε1 > 0, ε2 > 0, ε3 > 0.

Step 2. Determine: for any i = 1, p

xk+1i := arg min
xi∈R

ni

⎧
⎨

⎩
fi(xi) −

m∑

j=1

1

λkj
ukj ϕ
(
λkj

(
gij(xi) + ykij

))
⎫
⎬

⎭
. (3.15)

Step 3. If v1 ≤ ε1, v2 ≤ ε2, v3 ≤ ε3 where

v1 =
m∑

j=1

p∑

i=1

∣
∣
∣ukj

(
gij
(
xk+1i

)
+ ykij
)∣
∣
∣, v2 = max

1≤j≤m

{(
−δk+1j

)}
,

v3 =
∣
∣
∣F
(
xk
)
− F
(
xk+1
)∣
∣
∣.

(3.16)

Stop.

Else: go to Step 4.
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Step 4. Update and go back to Step 2:

yk+1ij = −gij
(
xk+1i

)
+ δk+1j i = 1, p, j = 1, m

uk+1j = ukj ϕ
′
(
λkj δ

k+1
j

)
, λk+1j = λ

(
uk+1j

)−1
.

(3.17)

The following proposition gives us some properties of Θλ.

Proposition 3.3. (1) Θλ(x, y, u) is strictly convex in x ∈ R
n for any u ∈ R

mp
++ , y ∈ R

mp, λ > 0.
(2) For any K.K.T point (x∗, y∗, u∗) of (SPy) One has

(i) Θλ(x∗, y∗, u∗) = L(x∗, y∗, u∗) =
∑p

i=1 fi(x
∗
i ),

(ii) ∇xΘλ(x∗, y∗, u∗) = ∇xL(x∗, y∗, u∗) = 0,

(iii) ∇2
xΘλ(x∗, y∗, u∗) = ∇2

xL(x
∗, y∗, u∗) − ϕ′′(0)∇G(x∗)Λ∇G(x∗)′, where Λ =

diag (u∗ij)
(p,m)
(i,j)=(1,1)

and G(x) = (λ11g11(x1), . . . , λmpgmp(xp)).

Proof. (1) Θλ(x, y, u) =
∑p

i=1 fi(xi) −
∑m

j=1(1/λij)uijϕ(λij(gij(xi) + yij)). Since gij , ϕ, i = 1, p,

j = 1, m are concave, strictly concave (resp.) and ϕ is increasing. Then Θ is strictly convex in
x ∈ R

n for any u ∈ R
mp
++ , y ∈ R

mp, λ > 0.
(2) Let (x∗, y∗, u∗) be any K.K.T point of (SPy) then

(i) we have

Θλ

(
x∗, y∗, u∗

)
=

p∑

i=1

⎡

⎣fi
(
x∗
i

) −
m∑

j=1

1
λij
u∗ijϕ
(
λij
(
gij
(
x∗
i

)
+ y∗

ij

))
⎤

⎦,

L
(
x∗, y∗, u∗

)
=

p∑

i=1

⎡

⎣fi
(
x∗
i

) −
m∑

j=1

u∗ij
(
gij
(
x∗
i

)
+ y∗

ij

)
⎤

⎦ =
p∑

i=1

fi
(
x∗
i

)

(3.18)

from the complementary condition.

=⇒ ϕ
(
λij
(
gij
(
x∗
i

)
+ y∗

ij

))
= 0

=⇒ u∗ijϕ
(
λij
(
gij
(
x∗
i

)
+ y∗

ij

))
= 0,

(3.19)

then we get

Θλ

(
x∗, y∗, u∗

)
=

p∑

i=1

fi
(
x∗
i

)
. (3.20)
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(ii) We have

∇xΘλ

(
x∗, y∗, u∗

)
=

p∑

i=1

⎧
⎨

⎩
∇xfi
(
x∗
i

) −
m∑

j=1

u∗ijϕ
′
(
λij
(
gij
(
x∗
i

)
+ y∗

ij

))
∇xgij

(
x∗
i

)

⎫
⎬

⎭
. (3.21)

Similarly, if u∗ij /= 0 then gij(x∗)+y∗
ij = 0 therefore ϕ′(λij(gij(x∗

i )+y
∗
ij)) = 1. This means

that

∇xΘλ

(
x∗, y∗, u∗

)
=

p∑

i=1

⎛

⎝∇xfi
(
x∗
i

) −
m∑

j=1

u∗ij∇xgij
(
x∗
i

)
⎞

⎠ = ∇xL
(
x∗, y∗, u∗

)
= 0. (3.22)

(iii) From (ii) we can calculate ∇2
xΘλ(x∗, y∗, u∗),

∇2
xΘλ

(
x, y, u

)
=

p∑

i=1

⎡

⎣∇2
xfi(xi) −

m∑

j=1

λijuijϕ
′′(λij
(
gij(xi) + yij

))(∇xgij(xi)
)(∇xgij(xi)

)′

−
m∑

j=1

uijϕ
′(λij
(
gij(xi) + yij

))∇2
xgij(xi)

⎤

⎦.

(3.23)

At (x∗, y∗, u∗), we have

∇2
xΘλ

(
x∗, y∗, u∗

)
=

p∑

i=1

⎛

⎝∇2
xfi
(
x∗
i

) −
m∑

j=1

[
λiju

∗
ijϕ

′′
(
λij
(
gij
(
x∗
i

)
+ y∗

ij

))(∇xgij
(
x∗
i

))(∇xgij
(
x∗
i

))′

+u∗ijϕ
′
(
λij
(
gij
(
x∗
i

)
+ y∗

ij

))
∇2
xgij
(
x∗
i

)]
⎞

⎠

=
p∑

i=1

⎧
⎨

⎩
∇2
xfi
(
x∗
i

) −
m∑

j=1

u∗ij∇2
xgij
(
x∗
i

)

⎫
⎬

⎭

−
p∑

i=1

m∑

j=1

λiju
∗
ijϕ

′′
(
λij
(
gij
(
x∗
i

)
+ y∗

ij

))(∇xgij
(
x∗
i

))(∇xgij
(
x∗
i

))′

= ∇2
xL
(
x∗, y∗, u∗

) −
p∑

i=1

m∑

j=1

λiju
∗
ijϕ

′′
(
λij
(
gij
(
x∗
i

)
+ y∗

ij

))(∇xgij
(
x∗
i

))

× (∇xgij
(
x∗
i

))′

= ∇2
xL
(
x∗, y∗, u∗

) − ϕ′′(0)
p∑

i=1

m∑

j=1

λiju
∗
ij

(∇xgij
(
x∗
i

))(∇xgij
(
x∗
i

))′
.

(3.24)
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Let

G(x) =
(
λ11g11(x1), . . . , λp1gp1

(
xp
)
, λ12g12(x1), . . . , λmpgmp

(
xp
))

(3.25)

then

∇G(x) = (λ11∇g11(x1) λ21∇g21(x2) · · · ∇λmpgmp
(
xp
))

n×pm. (3.26)

That is, the first column is the gradient∇g11(x1) and so on. LetΛ = diag (u∗ij)
(p,m)
(i,j)=(1,1)

that is, the diagonal is
(
u∗11, u

∗
21, . . . , u

∗
p1, u

∗
12, . . . , u

∗
mp

)
. (3.27)

Then,

∇G(x∗)Λ =
(
∇g11
(
x∗
1

)
u∗11λ11 ∇g21

(
x∗
2

)
u∗21λ21 · · · ∇gmp

(
x∗
p

)
u∗mpλmp

)

n×pm
,

∇G(x∗)Λ(∇G(x∗))′ =
(
λ11∇g11

(
x∗
1

)
u∗11 · · · λpm∇gmp

(
x∗
p

)
u∗mp
)

⎛

⎜
⎜
⎜
⎝

(∇g11
(
x∗
1

))′

· · ·
(
∇gmp

(
x∗
p

))′

⎞

⎟
⎟
⎟
⎠

=
p∑

i=1

m∑

j=1

λiju
∗
ij

(∇gij
(
x∗
i

))(∇gij
(
x∗
i

))′
.

(3.28)

Then

∇2
xΘλ

(
x∗, y∗, u∗

)
= ∇2

xL
(
x∗, y∗, u∗

) − ϕ′′(0)∇G(x∗)Λ(∇G(x∗))′. (3.29)

Remark 3.4. The analysis presented in this paper differs from the short one presented in [30].
In this paper, our analysis is made possible by the strong tool of recession functions.

Assumption (A1) can be written in terms of recession functions (f∞(d)= limt→∞( f(x+
td) − f(x))/t, for all x ∈ dom f for convex proper and lower semicontinuous functions. In
our case the functions are convex proper and continuous.)

F∞(d) ≤ 0,

(

−
p∑

i=1

gij

)

∞
(d) ≤ 0, ∀j = 1, m =⇒ d = 0. (3.30)

Further, since
∑p

i=1 gij is not identically +∞, [39, Theorem 9.3, page 77], allows us to reformu-
late (A1) as follows:

F∞(d) > 0,
p∑

i=1

(−gij
)
∞(di) > 0, ∀j = 1, m, ∀d /= 0. (3.31)

The next proposition shows that the minimization subproblems are solvable.
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Proposition 3.5. If X∗ is nonempty and bounded, then for any u ∈ R
mp
++ , y ∈ R

pm and λ > 0

Argmin
{
Θλ

(
x, y, u

)
: x ∈ R

n}
/= ∅ and bounded. (3.32)

Proof. To this goal, we need to show that (Θλ)∞(d) > 0 for any d ∈ R
n, d /= 0. According to

Proposition 2.1 in [40] and Proposition 2.6.1 in [41], we can express the recession function of
Θλ as follows

(Θλ)∞(d) = F∞(d) +
m∑

j=1

p∑

i=1

⎛

⎝
ukj

λj
ψ
(
λj
(
gij(xi) + yij

))
⎞

⎠

∞

(di), (3.33)

where ψ(t) = −ϕ(−t).
If, we denote I+ = {(i, j) : (−gij)∞(di) > 0}, I− = {(i, j) : (−gij)∞(di) ≤ 0}, then

(Θλ)∞(d) = F∞(d) +
m∑

(i,j)∈I+

ukj

λj
ψ∞
(
λj
(−gij

)
∞(di)

)
+

m∑

(i,j)∈I−

ukj

λj
ψ∞
(
λj
(−gij

)
∞(di)

)
(3.34)

and by using

ψ∞(s) =

⎧
⎨

⎩

sψ∞(1) if s > 0,

−sψ∞(−1) if s ≤ 0,
(3.35)

we have

(Θλ)∞(d) = F∞(d) + ψ∞(1)
∑

(i,j)∈I+
ukj
(−gij

)
∞(di) − ψ∞(−1)

∑

(i,j)∈I−
ukj
(−gij

)
∞(di). (3.36)

Now, since ψ∞(−1) = (−ϕ)∞(1) = 0, the above relation becomes

(Θλ)∞(d) = F∞(d) + ψ∞(1)
∑

(i,j)∈I+
ukj
(−gij

)
∞(di), (3.37)

and finally, using (3.31) and (P6) the proof is complete.

4. Convergence Analysis

In this section, we present the convergence analysis of the sequence (xk, yk, uk) for a wide
class of constraint transformations ϕ ∈ Φ under some assumptions on the input data. To this
goal, we give the following main two propositions.

Proposition 4.1. Under A1 and A2, the dual sequence {uk} is bounded.
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Proof. Let Dλ(u′) = minx,y{Θλ(x, y, u′) :
∑

i yij = 0.} and let the vector π such that πij ≤
gij(xi) + yij , for all i = 1, p, j = 1, m. Then, it is easy to see that

Dλ

(
u′
)
= min

π

⎧
⎨

⎩
P̃(π) −

m∑

j=1

1
λj

p∑

i=1

u′ijϕ
(
λπij
)

⎫
⎬

⎭
, (4.1)

where P̃ denotes the perturbation function associated to (
[
SP
(
y, ϕ
)]
) and defined by

P̃(π) = min
x,y

{
F(x) : gij(xi) + yij ≥ πij , y ∈ A}. (4.2)

So, by adding and subtracting the term
∑m

j=1(1/λj)w
′
ijϕ[λπij], for w

′ with the same structure
as u′, and if we set B = {(x, y) : gij(xi) + yij ≥ πij , y ∈ A}, we obtain

Dλ

(
u′
)
= min

π

⎧
⎨

⎩
min

(x,y)∈B
F(x) −

∑

i,j

1
λj
w′
ijϕ
(
λπij
)
+
∑

i,j

1
λj
w′
ijϕ
(
λπij
) −
∑

i,j

1
λj
u′ijϕ
(
λπij
)

⎫
⎬

⎭
.

(4.3)

That is,

Dλ

(
u′
)
= min

π,(x,y)∈B

⎧
⎨

⎩
F(x) −

m∑

j=1

1
λj

p∑

i=1

w′
ijϕ
(
λπij
)
+

m∑

j=1

1
λj

p∑

i=1

[
w′
ij − u′ij

]
ϕ
(
λπij
)

⎫
⎬

⎭
(4.4)

which can be rewritten also as follows:

Dλ

(
u′
)
= min

π

⎧
⎨

⎩
P̃(π) −

m∑

j=1

1
λj

p∑

i=1

w′
ijϕ
(
λπij
)
+

m∑

j=1

1
λj

p∑

i=1

(
w′
ij − u′ij

)
ϕ
(
λπij
)

⎫
⎬

⎭
(4.5)

and then we have

Dλ

(
u′
) ≥ Dλ

(
w′) +min

π

m∑

j=1

1
λj

p∑

i=1

(
w′
ij − u′ij

)
ϕ
(
λπij
)
. (4.6)

Using (P1), (P3), and (P4) and if we take w′ = uk, u′ = uk+1, we can show that when xk+1 is
not feasible, uk+1 ≥ uk and it is easy to see that the minimum in this case equals zero and we
have Dλ(uk+1) ≥ Dλ(uk) ≥ · · · ≥ Dλ(u0), for all k ≥ 0. Thus, using the fact that Dλ is concave,
L∗ is bounded, and uk+1 is in the dual level set, the sequence {uk} is bounded.

Proposition 4.2. Under A1, A2, the primal sequence {xk} is bounded.
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Proof. Let (xk+1, yk+1) ∈ Argminx{Θλk(x, y, u
k) :

∑
i yij = 0} and fix x ∈ X∗ and yij =

−gij(xi) + p−1
∑
gij(xi). It is clear that

F
(
xk+1
)
−
∑

j

∑

i

ukj

λkj
ϕ
[
λkj

(
gij
(
xk+1i

)
+ yk+1ij

)]
≤ Θλk(x,y,uk), (4.7)

and using the feasibility of x, we obtain directly

F
(
xk+1
)
−
∑

j

∑

i

ukj

λkj
ϕ
[
λkj

(
gij
(
xk+1i

)
+ yk+1ij

)]
≤ F(x). (4.8)

Now, let us assume that the primal sequence is unbounded, then the sequencewk = xk/‖xk‖
is bounded and limk→∞wk = d /= 0.

Let ε1 and ε2 such that

F∞(d) > ε1,

(
∑

i

−gij
)

∞
(d) > ε2, (4.9)

and take k0 such that

F
(
xk+1
)
≥ ε1
∥
∥
∥xk
∥
∥
∥, ∀k ≥ k0, (4.10)

∑

i

(−gij
)(
xk+1i

)
> ε2
∥
∥
∥xk+1

∥
∥
∥, ∀k ≥ k0. (4.11)

By dividing both sides in (4.8) by ‖xk+1‖, we get

F
(
xk+1
)

∥
∥xk+1

∥
∥

−
∑

i,j

ukj

λkj

ϕ
[
λkj

(
gij
(
xk+1i

)
+ yk+1ij

)]

∥
∥xk+1

∥
∥

≤ F(x)
∥
∥xk+1

∥
∥
, (4.12)

and according to (4.11) and the monotonicity of ϕ, and by denoting νk = λkj ‖xk+1‖/p, (4.12)
becomes

F
(
xk+1
)

∥
∥xk+1

∥
∥

−
∑

i,j

ukj

λkj
∥
∥xk+1

∥
∥
ϕ[−ε2νk] ≤ F(x)

∥
∥xk+1

∥
∥
. (4.13)

Since the dual sequence is bounded, at the limit we have

ε1 −
∑

i,j

uj

p
lim
k→∞

ϕ(−ε2νk)
νk

≤ 0. (4.14)
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Since limk→∞ νk = +∞ and using ϕ(t) = −ψ(−t), we can rewrite (4.14) as follows:

ε1 +
∑

i,j

uj

p
lim
k→∞

ψ(ε2νk)
νk

≤ 0. (4.15)

Since

lim
k→∞

ψ(ε2νk)
νk

= lim
t→∞

ψ(ε2t)
t

= ψ∞(ε2), (4.16)

and (4.15) is equivalent to

ε1 +
∑

j

ujψ∞(ε2) ≤ 0. (4.17)

If ε2 ≤ 0 then ψ∞(ε2) = −ε2ψ∞(−1) = 0 and then ε1 ≤ 0.
If ε2 > 0 then ψ∞(ε2) = ε2ψ∞(1).
Now by letting ε1 → F∞(d) and ε2 → (

∑
i (−gij)∞(d)), we deduct that

F∞(d) ≤ 0,
∑

i

(−gij
)
∞(d) ≤ 0, (4.18)

and since X∗ is not empty and is bounded, then d = 0 which contradicts the fact that d /= 0.
Thus, what we assumed is false, and the primal sequence {xk}k is bounded.

Proposition 4.3. Let the sequences {xk, yk, uk} generated byΨSALA and assume that there exist x∗

a primal solution to the original problem (SP). Then the following inequality holds:

p∑

i=1

fi
(
xk+1i

)
≤

p∑

i=1

fi
(
x∗
i

)
+

p∑

i=1

uk+1θk+1i

(
gi
(
x∗
i

) − gi
(
xk+1i

))
, (4.19)

where

θk+1i = Ψ′
[
λ
(
gi
(
xk+1i

)
+ yki
)]

| Ψ′
[
λ
(
gi
(
xk+1i

)
+ yk+1i

)]
. (4.20)

Proof. See [30].

Proposition 4.4. Let the sequences {xk, yk, uk}generated by ΨSALA and assume that there exists a
saddle point (x∗, y∗, u∗) of the Lagrangian l(x, y, u) associated to problem (SP). Then the following
inequality holds:

p∑

i=1

fi
(
x∗
i

) ≤
p∑

i=1

fi
(
xk+1i

)
+
〈
u∗, δk+1

〉
. (4.21)

Proof. See [30].
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Proposition 4.5. All the three sequences {xk}, {uk}, and {yk} generated in Algorithm 2.1 are
bounded.

Theorem 4.6. Let y and u, the respective limit point of the bounded sequences {yk} and {uk}
generated by ΨSALA. Then one has the following properties:

(i) lim supk→∞
∑p

i=1 gi(x
k+1
i ) ≥ 0;

(ii) lim supk→∞(gi(x
k+1
i ) + yk+1i ) ≥ 0;

(iii) limk→∞ 〈uk+1, gi(xk+1i ) + yk+1i 〉 = 0.

Proof. See [30].

Theorem 4.7. If the assumptionsA1, A2, and A3 are satisfied, then one has the following.

(1) Any limit point (x, u) of the sequence {(xk, uk)} is in the set X∗ × L∗.

(2) The sequences f(xk) and d(uk) are convergent and

lim
s→∞

f
(
xk
)
= f(x∗), lim

s→∞
d
(
uk
)
= d(u∗). (4.22)

Proof. Let u be any limit point of the sequence {uk}, then there exists a subsequence
converging to u. Without restricting the generality, we can assume uk → u. For j such that
uij > 0, then

lim
s→∞

uk+1ij

ukij
= 1, (4.23)

and since uk+1ij = ukijϕ
′((λkij/p)

∑p

i=1 gij(x
k
i )), i = 1, p, j = 1, m, then

lim
s→∞

ϕ′

⎛

⎝
λkij

p

p∑

i=1

gij
(
xki

)
⎞

⎠ = 1. (4.24)

Since lims→∞ ukij = uij > 0, we have λkiju
k
ij = λ > 0. Therefore, λkij = (λ/ukij) > 0. Then,

lim
s→∞

λij ≥ λ

uij
> 0 (4.25)

and then,

lim
s→∞

p∑

i=1

gij
(
xki

)
= 0; (4.26)
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therefore,

lim
s→∞

(

uk+1ij

p∑

i=1

gij
(
xk+1i

)
)

= 0. (4.27)

Now, we will prove that the set {∑p

i=1 gij(x
k
i ) | j = 1, m, s ∈ N} is bounded. Since {xk}

is bounded, there exists δ ∈ R such that ‖xk‖ ≤ δ. Let B(0, δ) ⊆ R
n be the closed ball of center

zero and radius δ then

xk ∈ B(0, δ), ∀k ∈ N. (4.28)

Since Cj(x) =
∑p

i=1 gij(xi) is continuous for all j = 1, m, then, Cj(B(0, δ)) is closed and bound-
ed for all j = 1, m. Then there existsMj ≥ 0 such that

∣
∣
∣
∣
∣

p∑

i=1

gij(xi)

∣
∣
∣
∣
∣
≤Mj, ∀x ∈ B(0, δ), ∀j = 1, m. (4.29)

Let ρ = max{Mj : j = 1, m}, then

∣
∣
∣
∣
∣

p∑

i=1

gij(xi)

∣
∣
∣
∣
∣
≤ ρ, ∀x ∈ B(0, δ), ∀j = 1, m. (4.30)

Therefore, |∑p

i=1 gij(x
k
i )| ≤ ρ, for all j = 1, m, for all k ∈ N, which means {∑p

i=1 gij(x
k
i ) | j =

1, m, s ∈ N} is a bounded set.
Thus, for j such that uij = 0, and the above result, we get

lim
s→∞

(

uk+1ij

p∑

i=1

gij
(
xk+1i

)
)

= 0. (4.31)

That is,

lim
s→∞

(

uk+1ij

p∑

i=1

gij
(
xk+1i

)
)

= 0 ∀j = 1, m. (4.32)

Also, if x is a limit point of {xk}, keeping in mind that (see the proof given by Polyak in [38])
max{−gij(xki } → 0, then

lim
s→∞

p∑

i=1

gij
(
xk+1i

)
≥ 0 ∀j = 1, m. (4.33)
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On another hand, from (4.32)we get

∇xL(x, u) = 0

=⇒ ∇F(x) −
m∑

j=1

p∑

i=1

uij∇gij(xi) = 0,
(4.34)

uij ≥ 0, j = 1, m,

uij

p∑

i=1

gij(xi) = 0, from (4.32),

p∑

i=1

gij(xi) ≥ 0, from (4.33).

(4.35)

Since the Lagrange of problem (SP) is

L(x, u) = F(x) −
m∑

j=1

p∑

i=1

uijgij(xi) (4.36)

and it is convex, then from (4.34)

x ∈ Argmin
x∈Rn

L(x, u) (4.37)

and then

F(x) = F(x) −
m∑

j=1

uij

(
p∑

i=1

gij(xi)

)

= L(x, u) ≤ L(x, u), ∀x ∈ R
n. (4.38)

Also, we know that
∑p

i=1 gij(xi) ≥ 0, for all j = 1, m, and for any uij ≥ 0 :
−∑m

j=1
∑p

i=1 uijgij(xi) ≤ 0 which implies

=⇒ L(x, u) = F(x) −
m∑

j=1

p∑

i=1

uijgij(xi) ≤ F(x) = L(x, u) (4.39)

and then

L(x, u) ≤ L(x, u) ≤ L(x, u) (4.40)

for all x ∈ R
n, for all u ≥ 0, and by the saddle point theorem we have

(x, u) ∈ X∗ × L∗. (4.41)
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Since {d(uk)} is an increasing sequence bounded above by d(u∗) then it is convergent. Let
{(xkl , ukl)} be any convergent subsequence of {(xk, uk)}. Then from (3.4)

lim
l→∞

L
(
xkl , ukl

)
= F(x∗) = d(u∗). (4.42)

Since ∇xL(xk, uk) = 0

=⇒ min
x∈Rn

L
(
x, uk
)
= L
(
xk, uk

)

=⇒ d
(
uk
)
= L
(
xk, uk

)

=⇒ lim
l→∞

L
(
xkl , ukl

)
= lim

l→∞
d
(
ukl
)
= d(u∗).

(4.43)

Then {d(uk)} converges to d(u∗). The remaining proof is similar to the one given in [30].

In the previous theorem, we proved the boundedness of the primal and dual seq-
uences, but for the sequence of allocation vectors {yk}we can get the boundedness directly by
proving that the set

{
gij
(
xki

)
| j = 1, m, i = 1, p, k ∈ N

}
(4.44)

is bounded. (The same way as we proved that the set {∑p

i=1 gij(x
k
i ) | j = 1, m, k ∈ N} is

bounded.).
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