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This paper discusses dissipativity problem for system of linear state/input delay equations.
Motivated by dissipativity theory of control systems, we choose a new quadratic supply rate. Using
the concept of dissipativity, necessary and sufficient conditions for the linear state/input delay
systems to be dissipative and exponentially dissipative are derived. The connection of dissipativity
with stability is also considered. Finally, passivity and finite gain are explored, correspondingly.
The positive-real and bounded-real lemmas are derived.

1. Introduction

Dissipativity theory is one of major issues in control system theory. It was developed by
Willems [1] and further extended by Hill and Moylan [2–4]. And it has become one of the
major approaches to study complex systems [1, 5, 6]. In some particular systems with certain
physical meaning, for example, electrical network systems, physical system, and so forth,
dissipativity, just as the name implies, shows that the energy stored inside the system is no
more than energy supplied from outside the system. In the area of dynamical system theory,
storage function and supply rate are introduced to express the generalized abstract energy,
correspondingly.

For dissipative systems, the storage functions usually provide natural candidates for
Lyapunov functions [6]. Therefore, in many cases, stability and stabilization problems can
be solved once the dissipativity property is assured [7–14]. Dissipativity theory is applied
to impulsive hybrid dynamical systems [8], discontinuous dynamical systems [9], and
switched systems [10]. Also, dissipativity theory is an efficient tool for the analysis and
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design of composite systems. Especially, it is used to deal with some problems of stability and
stabilization for interconnected systems [5, 6, 15]. Passivity and finite gain are two special
cases of dissipativity which are important in the stability analysis of dynamical systems.
The fact that system is passive is equivalent to that system satisfies positive-real or Kalman-
Yakubovich-Popov (KYP) condition [12]. Many versions of positive-real lemmas are given
for nonlinear [16, 17] and linear systems [18, 19]. The results about L2-gain are summarized
in recent references [15, 20, 21]. In papers [22, 23], bounded real lemmas are presented and
are applied toH∞ control.

On the other hand, time delay is often encountered in various practical systems [24].
The existence of delays is often one main reason of instability and poor performance of
systems. A great number of results on the stability and stabilization problems of control
systems with time delays have been reported in the literature (see [25, 26], and the references
therein). Lyapunov-Krasovskii functional approach is usually used to cope with various
problems [27]. Dissipative theory about time-delay systems is discussed in references [28–
31]. Sufficient conditions that guarantee robustly stable and strictly passive for uncertain
time-delay systems are derived [28]. Dissipativity of linear and nonlinear time-delay systems
is, respectively, discussed in [29, 30]. Dissipative problems of singular time-delay systems are
considered in [31]. Unlike the systems discussed in the literatures, we consider a special class
of linear state/input delay systems. This paper considers the dissipative problem of linear
state/input delay systems with a new supply rate and with a storage function substituted by
Lyapunov-Krasovskii functional.

There is no systematic dissipativity theory about time-delay systems because of the
existence of delays. We consider linear state/input delay systems in this paper. The cause is
not only that it has a simply form but it contains state delay and input delay. Motivated by
dissipative theory, the variants of supply rate contain not input and output but delay input.
A new quadratic supply rate developed in our paper is a function of input, delay input,
and output. Based on it, we give sufficient and necessary conditions of dissipativity and
exponential dissipativity and show its relationship to dissipativity and stability of the system.
Finally, we discuss passivity and L2-gain and derive position-real lemma and bounded-real
lemma for the system.

Notation.

Rn denotes the n-dimensional Euclidean space, and ‖ · ‖ stands for the Euclidean norm of any
vector. Rn×m is the set of n × m real matrices, and λ(·), λmax(·), λmin(·) denote, respectively,
the eigenvalues, and the maximum eigenvalues, the minimum eigenvalues of any square
matrix. We use W > 0 to denote a symmetric positive-definite matrix. In a symmetric block
matrix, the expression ∗ will be used to denote the submatrices that lie under the diagonal.
Given a positive number r > 0, Cr = C([0, r],Rn) denotes the Banach space of continuous
functions that maps the interval [0, r] into Rn with the topology of uniform convergence,and
‖ · ‖c denotes the norm of continuous function, that is, for φ ∈ Cr , ‖φ‖c = sup0≤τ≤r‖φ(τ)‖. The
space of square integrable functions is denoted by L2. And, for any g(t) ∈ L2[t0,∞), its norm
is defined as

∥
∥g(t)

∥
∥ =

[∫∞

t0

∥
∥g(t)

∥
∥
2
dt

]1/2

. (1.1)
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The rest of the paper is organized as follows. Problem formulation is presented
in Section 2. We give some results about dissipativity analysis of linear state/input delay
systems in Section 3. In Section 4, positive-real lemma and bounded-real lemma are derived.
Finally, a brief conclusion is provided to summarize the paper.

2. Problem Formulation

Consider the continuous-time systems with a state/input delay

ẋ(t) = A1x(t) +A2x(t − d) + B1u(t) + B2(t − d),

y(t) = C1x(t) + C2(t − d),

x(θ) = ϕ(θ), θ ∈ [t0 − d, t0],

(2.1)

where x(t) ∈ X ⊂ Rn is the state vector, x(t − d) = xt ∈ Cd is the delay state vector,
u(t) ∈ U ⊂ Rm is exogenous input, where U is the set of admissible input, y(t) ∈ Y ⊂ Rp

is the measured output vector. A1, A2, B1, B2, C1, and C2 are constant system matrices with
appropriate dimensions. d > 0 is an unknown constant delay. ϕ(t) ∈ Cd which is a real-
valued continuous function on [t0 − d, t0] with the topology of uniform convergence is the
initial function. For any continuous initial function ϕ(t) and any admissible input u(t), there
exists a unique solution x(t, t0, ϕ, u) to system (2.1) on [t0,∞) which continuously depends
on the initial data. If t ≥ t0, we denote the segment of trajectory by xt(ϕ, u)

xt

(

ϕ, u
)

: θ −→ x
(

t − t0 + θ, ϕ, u
)

, θ ∈ [t0 − d, t0]. (2.2)

Assume that a real-valued function w about input and output variants is the supply
rate of system (2.1). We assume that for all admissible input and for any t0, t ∈ R+, the output
y(t) = y(t, t0, ϕ, u) of (2.1) is such that w(t) satisfies the follwing:

∫ t

t0

w(τ)dτ < ∞, ∀t > t0. (2.3)

Definition 2.1. The linear time-delay system (2.1) with supply rate w is said to be dissipative
if there exists a nonnegative functional S : X × Cd → R+, called the storage functional, such
that for all t, t0 ∈ R+ (t ≥ t0), (x, xt) ∈ X × Cd, and u ∈ U,

s(x, xt) − s(x0, xt0) ≤
∫ t

t0

w(τ)dτ, (2.4)

where x = x(t, t0, ϕ, u), and w(t) is a function about input and output, with y = y(t0, ϕ, u).

Remark 2.2. The inequality (2.4) is called the dissipation inequality. The dissipation inequality
implies that the increase in generalized system energy over a given time interval cannot
exceed the generalized energy supply delivered to the system (2.1) during this time interval.
Thus, some of the supplied generalized energy to the system is stored, and some is
dissipative. The dissipated energy is nonnegative and equals the difference of the right-hand
of dissipation inequality and the left-hand.
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Remark 2.3. If using equality sign as a substitution for inequality sign in the dissipation
inequality, then Definition 2.1 of dissipativity becomes the definition of losslessness. We call
system (2.1) lossless with respect to supply rate w.

The next definition shows the notion of available storage, which is the maximum
amount of storage energy which may be extracted from a dynamical system.

Definition 2.4. The available storage, sa, of system (2.1) with supply rate w is the functional
sa : X × Cd → R defined by

sa(x, xt) = − inf
u∈U,t≥t0

{∫ t

t0

w(τ)dτ

}

. (2.5)

Note that the available storage, whenever defined, is nonnegative, that is, for all
(x, xt) ∈ X × Cd, sa(x, xt) ≥ 0. The available storage plays an important role in determining
whether a given system is dissipative or not. This is shown in the following proposition (see
[1]).

Proposition 2.5. The available storage, sa, is finite for all (x, xt) ∈ X×Cd if and only if system (2.1)
with respect to w is dissipative. Moreover, any possible storage function s satisfies 0 ≤ sa ≤ s and if
sa is continuous, then sa itself is a possible storage function.

Since supply rate is a function of input and output and system (2.1) contains delay
input, the delay input should be considered as an argument of supply rate. The supply
rate should be functional about input, delay input, and output, that is, w(t) = w(u(t), u(t −
d), y(t)). Motivated by Reference [1, 2], we are interested in studying dissipativity of system
(2.1) with the following new quadratic supply rate:

w
(

u(t), u(t − d), y(t)
)

= yT (t)Ty(t) + 2yT (t)S1u(t) + 2yT (t)S2u(t − d)

+ uT (t)R1u(t) + uT (t − d)R2u(t − d) + 2uT (t)R3u(t − d),
(2.6)

where T ∈ Rp×p, Si ∈ Rp×m (i = 1, 2), and Rj ∈ Rm×m (j = 1, 2, 3) are known constant matrices
with T and Ri being symmetric. Specially, two important special cases of dissipative system
(2.1) are the following.

(i) When w(u(t), u(t − d), y(t)) = yT (t)u(t) + yT (t)u(t − d), m = p, dissipative system
(2.1) is also called passive system.

(ii) When w(u(t), u(t − d), y(t)) = γ2(uT (t)u(t) + uT (t − d)u(t − d)) − y(t)yT (t), γ > 0,
dissipative system (2.1) is also called finite gain system.

Remark 2.6. Generally speaking, the storage functional s is nonnegative and needs not to
satisfy differentiability. Lyapunov-Krasovskii functional V (x, xt) can be chosen instead of s
because it is an energy functional representing the abstract storage energy of system. If choose
s = V (x, xt), then the dissipation inequality becomes

V (x, xt) − V (x0, xt0) ≤
∫ t

t0

w(τ)dτ. (2.7)
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If functional V is continuous differentiable, then the integral version of dissipation inequality
(2.7) can be transformed into a differential version. Differentiating both sides of (2.7), we can
get the following:

d

dt
V (x, xt) ≤ w

(

u(t), u(t − d), y(t)
)

. (2.8)

In this paper, we assume that s has the following form of Lyapunov-Krasovskii functional:

V (xt) = xT (t)Px(t) +
∫ t

t−d
xT (τ)Qx(τ)dτ, (2.9)

where P , Q are positive-definite matrices.
Before concluding this section, we introduce two definitions which will be used in the

development of our results.

Definition 2.7. The linear time-delay system (2.1) is reachable from the origin, if for any given
x1 and t1, there exist t2 ≤ t1 and an admissible control u(t) ∈ U such that the state can be
driven from x(t1) = x1 to x(t2) = 0.

Remark 2.8. We suppose that the system (2.1) is reachable from the origin.

Definition 2.9. The linear time-delay system (2.1) with u(t) ≡ 0 and u(t − d) ≡ 0 is zero-state
detectable, if for any trajectory x(t, t0, ϕ, 0), there holds

y ≡ 0 =⇒ lim
t→∞

x
(

t, t0, ϕ, 0
)

= 0. (2.10)

3. Dissipativity Analysis

Notice that dissipativity defined according to the Definition 2.1 represents an input-output
property of the system. The following theorem, which is the central result of our paper, shows
that dissipativity can also be characterized in terms of the coefficient matrices of system (2.1).

Theorem 3.1. System (2.1) is said to be dissipative with respect to supply rate (2.6) if and only if
there exist positive definite matrices P ,Q and constant matrices Li ∈ Rn×n,Wi ∈ Rn×m (i = 1, 2) such
that

LT
1L1 = −PA1 −AT

1P −Q + CT
1 TC1, LT

2L2 = Q + CT
2 TC2,

LT
1L2 = −PA2 + CT

1 TC2, LT
1Wi = −PBi + CT

1Si,

LT
2Wi = CT

2Si, WT
1 W2 = R3, WT

i Wi = Ri.

(3.1)

Proof

Sufficiency. Suppose that V (xt) of form (2.9), Li and Wi are given such that (3.1) is satisfied.
Then, for any admissible control u and any t0 and ϕ, we consider the following performance
index:

J =
d

dt
V (xt) −w(t). (3.2)
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Using (3.1) and (2.9), we can get the following:

J =
d

dt
V (xt) −

[

yT (t)Ty(t) + 2yT (t)S1u(t) + 2yT (t)S2u(t − d)

+uT (t)R1u(t) + uT (t − d)R2u(t − d)
]

= xT (t)
(

PA1 +AT
1P

)

x(t) + 2xT (t)PA2x(t − d) + 2xT (t)PB1u(t)

+ 2xT (t)PB2u(t − d) + xT (t)Qx(t) − xT (t − d)Qx(t − d)

− xT (t)CT
1 TC1x(t) − 2xT (t)CT

1 TC2x(t − d) − xT (t − d)CT
2 TC2x(t − d)

− 2xT (t)CT
1S1u(t) − 2xT (t − d)CT

2S2u(t) − 2xT (t)CT
1S2u(t − d)

− 2xT (t − d)CT
2S2u(t − d) − uT (t)R1u(t) − uT (t − d)R2u(t − d)

= xT (t)
(

PA1 +AT
1P +Q − CT

1 TC1

)

x(t) + 2xT (t)
(

PA2 − CT
1 TC2

)

x(t − d)

+ 2xT (t)
(

PB1 − CT
1S1

)

u(t) + 2xT (t)
(

PB2 − CT
2S1

)

u(t − d)

+ xT (t − d)
(

−Q − CT
2 TC2

)

x(t − d) + 2xT (t − d)
(

−CT
2S1

)

u(t)

+ 2xT (t − d)
(

−CT
2S2

)

u(t − d) + uT (t)(−R1)u(t)

+ 2uT (t − d)(−R2)u(t − d)

+ 2uT (t)(−R3)u(t − d)

≤ −(L1x(t) + L2x(t − d) +W1u(t) +W2u(t − d))T (L1x(t) + L2x(t − d)

+W1u(t) +W2u(t − d))

≤ 0.

(3.3)

Obviously,

d

dt
V (xt) ≤ w(t). (3.4)

Integrating both sides of (3.4) from t0 to t, it yields

V (xt) − V (xt0) ≤
∫ t

t0

w(τ)dτ. (3.5)

Necessity. Suppose that system (2.1) is dissipative with respect to the supply rate (2.6). We
will show that the available storage, Va, is a solution of (3.1) for some appropriate matrices
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Li and Wi. Due to (2.6) and Definition 2.4, it follows from Proposition 2.5 that the available
storage Va of system (2.1) is finite for all xt ∈ Cd, Va(0) = 0 and satisfies that

Va(xt) − Va(xt0) ≤
∫ t

t0

w(τ)dτ, (3.6)

for all t ≥ t0 and u ∈ U.
Differentiating both sides of the above inequality,

d

dt
Va(xt) ≤ w

(

u(t), u(t − d), y(t)
)

. (3.7)

Defining a functional d : X × Cd × U → R by

d(x(t), x(t − d), u(t), u(t − d)) = − d

dt
Va(xt) +w

(

u(t), u(t − d), y(t)
)

. (3.8)

From (3.7), d(x(t), x(t − d), u(t), u(t − d)) ≥ 0. In addition, it is known from (3.8) that
d(x(t), x(t − d), u(t), u(t − d)) is quadratic in x(t), x(t − d), u(t) and u(t − d).

Thus there exist constant matrices Li ∈ Rn×n, and Wi ∈ Rn×m (i = 1, 2) such that

d(x(t), x(t − d), u(t), u(t − d)) = (L1x(t) + L2x(t − d) +W1u(t) +W2u(t − d))T

·(L1x(t) + L2x(t − d) +W1u(t) +W2u(t − d)).
(3.9)

Substituting (3.9) into (3.8), we have

− d

dt
Va(xt) + yT (t)Ty(t) + 2yT (t)S1u(t) + 2yT (t)S2u(t − d)

+ uT (t)R1u(t) + uT (t − d)R2u(t − d) + 2uT (t)R3u(t − d)

= (L1x(t) + L2x(t − d) +W1u(t) +W2u(t − d))T

· (L1x(t) + L2x(t − d) +W1u(t) +W2u(t − d))

(3.10)

for all (x, xt) ∈ X × Cd and u(t) ∈ U.

Now, let V (xt) = Va(xt). Equating coefficients of equal powers, (3.1) is obtained.
Theorem 3.1 provides a dissipative criterion for system (2.1). Theorem 3.1 can be

represented by linear matrix inequality (LMI). The Corollary 3.2 shows a LMI’s version of
dissipative criterion.
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Corollary 3.2. System (2.1) is said to be dissipative with respect to supply rate (2.6) if and only if
there exist positive definite matrices P and Q such that

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Σ1 PA2 − CT
1 TC2 PB1 − CT

1S1 PB2 − CT
1S2

∗ −Q − CT
2 TC2 −CT

2S1 −CT
2S2

∗ ∗ −R1 −R3

∗ ∗ ∗ −R2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

≤ 0, (3.11)

where Σ1 = PA1 +AT
1P +Q − CT

1 TC1.

The theory of dissipative systems is used to investigate stability of system via
Lyapunov methods. It is shown in the following theorem.

Theorem 3.3. Suppose that system (2.1) is dissipative with smooth storage functional (2.9) with
respect to the supply rate (2.6) and zero-state detectable, then the unforced system ẋ(t) = A1x(t) +
A2x(t − d) is Lyapunov stable if T ≤ 0 and asymptotically stable if T < 0.

Proof. Suppose that system (2.1) is dissipative, according to the proof part of Theorem 3.1,
and (3.10) is satisfied. Let u(t) = u(t − d) = 0, we have

d

dt
V (xt) = −(L1x(t) + L2x(t − d))T (L1x(t) + L2x(t − d)) + yT (t)Ty(t). (3.12)

If T ≤ 0, then (d/dt)V (xt) ≤ 0. The unforced system is Lyapunov stable (see [22, 23]).
If T < 0, then (d/dt)V (xt) < 0. By zero-state detectable and LaSalle’s invariance

principle (see [22, 23]), the unforced system is asymptotically stable.

Next, we give some results of exponential dissipativity. First, the definition of
exponential dissipativity is represented.

Definition 3.4. The linear time-delay system (2.1) with supply rate w is said to be
exponentially dissipative if there exists a nonnegative storage functional S : X × Cd → R+

and a constant ε > 0, such that for all t, t0 ∈ R+ (t ≥ t0), (x, xt) ∈ X × Cd, and u ∈ U,

eεts(x, xt) − eεt0s(x0, xt0) ≤
∫ t

t0

eετw(τ)dτ, (3.13)

where x = x(t, t0, ϕ, u) and w(t) = w(u(t), u(t − d), y(t)), with y = y(t0, ϕ, u).

Remark 3.5. When we choose ε = 0, the definition of exponential dissipativity becomes the
definition of dissipativity.

Assume that s has the following form of Lyapunov-Krasovskii functional:

V (xt) = xT (t)Px(t) +
∫ t

t−d
xT (τ)eε(τ−t)Qx(τ)dτ, (3.14)

where P , Q are positive definite matrices, and ε is a positive constant.
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Theorem 3.6. System (2.1) is said to be exponentially dissipative with respect to supply rate (2.6)
if and only if there exist positive definite matrices P , Q, constant matrices Li ∈ Rn×n, Wi ∈ Rn×m

(i = 1, 2) and a constant ε > 0 such that

LT
1L1 = −PA1 −AT

1P − εP −Q + CT
1 TC1, LT

2L2 = e−εdQ + CT
2 TC2,

LT
1L2 = −PA2 + CT

1 TC2, LT
1Wi = −PBi + CT

1Si,

LT
2Wi = CT

2Si, WT
1 W2 = R3, WT

i Wi = Ri.

(3.15)

Proof. Using (3.14), there is

d

dt

[

eεtV (xt) − eεt0V (xt0) −
∫ t

t0

eετw(τ)dτ

]

= eεt
d

dt
V (xt) + εeεtV (xt) − eεtw(t)

= eεt
[
d

dt
V (xt) + εV (xt) −w(t)

]

.

(3.16)

Let performance index be

J1 =
d

dt
V (xt) + εV (xt) −w(t). (3.17)

Note that eεt ≥ 1. So if J1 ≤ 0, we can directly obtain that

eεt
[
d

dt
V (xt) + εV (xt) −w(t)

]

≤ 0. (3.18)

Substituting (d/dt)V (xt) and V (xt) into J1, it yields the following:

J1 = xT (t)
(

PA1 +AT
1P

)

x(t) + 2xT (t)PA2x(t − d) + 2xT (t)PB1u(t)

+ 2xT (t)PB2u(t − d) + xT (t)Qx(t) − xT (t − d)e−εdQx(t − d)

− ε

∫ t

t−d
xT (τ)eε(τ−t)Qx(τ) dτ + εxT (t)Px(t)

+ ε

∫ t

t−d
xT (τ)eε(τ−t)Qx(τ)dτ −w(t)

= xT (t)
(

PA1 +AT
1P +Q + εP

)

x(t) + 2xT (t)PA2x(t − d) + 2xT (t)PB1u(t)

+ 2xT (t)PB2u(t − d) − xT (t − d)e−εdQx(t − d) −w(t).

(3.19)

The sufficiency and necessity proof is similar to the corresponding part of Theorem 3.1. For
the sake of brevity, we omit it.

We show the result of Theorem 3.6 by LMI.
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Corollary 3.7. System (2.1) is said to be exponentially dissipative with respect to supply rate (2.6) if
and only if there exist positive definite matrices P , Q and a constant ε > 0 such that

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Σ2 PA2 − CT
1 TC2 PB1 − CT

1S1 PB2 − CT
1S2

∗ −e−εdQ − CT
2 TC2 −CT

2S1 −CT
2S2

∗ ∗ −R1 −R3

∗ ∗ ∗ −R2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

≤ 0, (3.20)

where Σ2 = PA1 +AT
1P + εP +Q − CT

1 TC1.

Similar to the result about the effect of dissipativity on the stability of unforced system,
we will show that the exponentially dissipative system which satisfies that the property of
zero-state detectability is exponentially stable.

Theorem 3.8. Suppose that system (2.1) is exponentially dissipative with smooth storage functional
(3.14) with respect to the supply rate (2.6) and zero-state detectable, then the unforced system ẋ(t) =
A1x(t) +A2x(t − d) is exponentially stable if T ≤ 0.

Proof. According to the conditions of Theorem 3.8 and the proof of Theorem 3.6, we can get
the following:

eεt
[
d

dt
V (xt) + εV (xt)

]

= −(L1x(t) + L2x(t − d))T (L1x(t) + L2x(t − d)) + eεtyT (t)Ty(t).

(3.21)

If T ≤ 0, then

d

dt
V
(

xt

(

ϕ, 0
))

+ εV
(

xt

(

ϕ, 0
)) ≤ 0. (3.22)

Integrating both sides from t0 to t, it yields that

V
(

xt

(

ϕ, 0
)) ≤ e−ε(t−t0)V

(

ϕ
)

, t ≥ t0. (3.23)

From (3.14), we get the following inequality:

α1
∥
∥x

(

t, ϕ, 0
)∥
∥
2 ≤ V

(

xt

(

ϕ, 0
)) ≤ α2

∥
∥xt

(

ϕ, 0
)∥
∥
2
C, (3.24)

where α1 = λmin(P) and α2 = λmax(P) + dλmax(Q).
By (3.23) and (3.24), we have

α1
∥
∥x

(

t, ϕ, 0
)∥
∥
2 ≤ V

(

xt

(

ϕ, 0
)) ≤ e−ε(t−t0)V

(

ϕ
) ≤ α2e

−ε(t−t0)∥∥ϕ
∥
∥
2
C. (3.25)
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Any solution x(t, ϕ, 0) of unforced system satisfies that

∥
∥x

(

t, ϕ, 0
)∥
∥ ≤

√
α2

α1
e−(1/2)ε(t−t0)

∥
∥ϕ

∥
∥
C, t ≥ t0. (3.26)

Thus, the unforced system is exponentially stable.

4. Positive-Real and Bounded-Real Conditions

4.1. Positive-Real Lemma

When m = p, we shall focus on studying dissipative systems with supply rate given by the
inner product of the following form;

w
(

u(t), u(t − d), y(t)
)

= yT (t)u(t) + yT (t)u(t − d). (4.1)

For convenience, we characterize this choice by means of a separate definition.

Definition 4.1. The linear time-delay system (2.1) with supply rate (4.1) is said to be passive
if it is dissipative with supply rate (4.1); that is, there exists a nonnegative storage functional
S : X × Cd → R+, such that for all t, t0 ∈ R+ (t ≥ t0), (x, xt) ∈ X × Cd, and u ∈ U,

s(x, xt) − s(x0, xt0) ≤
∫ t

t0

(

yT (τ)u(τ) + yT (τ)u(τ − d)
)

dτ. (4.2)

The following theorem is positive-real lemma (KYP lemma) for linear time-delay
system (2.1).

Theorem 4.2. System (2.1) is said to be passive with respect to supply rate (4.1) if and only if there
exist positive definite matrices P , Q and constant matrices Li ∈ Rn×n (i = 1, 2) such that

LT
1L1 = −PA1 −AT

1P −Q, LT
2L2 = Q,

LT
1L2 = −PA2, −PBi +

1
2
CT

1 = 0, C2 = 0.
(4.3)

Proof. Let T = R1 = R2 = R3 = 0, and S1 = S2 = (1/2)In in Theorem 3.1. We can getW1 = W2 =
0. The result can be directly obtained.

We rewrite the positive-real condition of (4.3) in terms of LMI.
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Corollary 4.3. System (2.1) is said to be passive with respect to supply rate (4.1) if and only if there
exists positive definite matrices P and Q such that

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Σ3 PA2 PB1 − 1
2
CT

1 PB2 − 1
2
CT

1

∗ −Q 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

≤ 0, (4.4)

where Σ3 = PA1 +AT
1P +Q.

4.2. Bounded-Real Lemma

In this subsection, we shall be particularly interested in the quadratic supply rate

w
(

u(t), u(t − d), y(t)
)

= γ2
(

uT (t)u(t) + uT (t − d)u(t − d)
)

− y(t)yT (t), (4.5)

where positive constant γ > 0 and u(t) ∈ L2[t0,∞).

Definition 4.4. The system (2.1) is said to have finite L2-gain from u(t) to y(t) less than or
equal to γ > 0, if it is dissipative with supply rate (4.5): that is, there exists a nonnegative
storage functional S : X × Cd → R+, such that for all (t0, t) ∈ [0,∞)(t ≥ t0), (x, xt) ∈ X × Cd,
and any u(t) ∈ L2[t0, t]

s(x, xt) − s(x0, xt0) ≤
∫ t

t0

[

γ2
(

uT (τ)u(τ) + uT (τ − d)u(τ − d)
)

− y(τ)yT (τ)
]

dτ. (4.6)

When u(t) = u(t − d) = 0, obviously, s(x, xt) − s(x0, xt0) ≤ − ∫ t

t0
y(τ)yT (τ)dτ ≤ 0.

Inequality (4.6) can be rewritten as
∫ t

t0

y(τ)yT (τ)dτ ≤
∫ t

t0

γ2
(

uT (τ)u(τ) + uT (τ − d)u(τ − d)
)

dτ. (4.7)

The following theorem is bounded-real lemma for linear time-delay system (2.1).

Theorem 4.5. System (2.1) is said to have finiteL2-gain from u(t) to y(t) less than or equal to γ > 0
with respect to supply rate (4.5) if and only if there exist positive definite matrices P , Q and constant
matrices Li ∈ Rn×n,Wi ∈ Rn×m (i = 1, 2) such that

LT
1L1 = −PA1 −AT

1P −Q − CT
1C1, LT

2L2 = Q − CT
2C2,

LT
1L2 = −PA2 − CT

1C2, LT
1Wi = −PBi,

LT
2Wi = WT

1 W2 = 0, WT
i Wi = γ2I.

(4.8)

Proof. The result can be directly obtained from the consequence of Theorem 3.1 with T = −I,
R1 = R2 = γ2I, and S1 = S2 = R3 = 0.
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By LMI, Theorem 4.5 can be rewritten as the following corollary.

Corollary 4.6. System (2.1) is said to have finiteL2-gain from u(t) to y(t) less than or equal to γ > 0
with respect to supply rate (4.5) if and only if there exist positive definite matrices P and Q such that

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Σ3 PA2 + CT
1C2 PB1 PB2

∗ −Q + CT
2C2 0 0

∗ ∗ −γ2I 0

∗ ∗ ∗ −γ2I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

≤ 0, (4.9)

where Σ4 = PA1 +AT
1P +Q − CT

1C1.

Remark 4.7. The connections between passive property or finite gain property and unforced
systems have not been shown in this section. They can be derived according to the results of
Theorem 3.3 and Theorem 3.8.

5. Conclusion

This paper considers dissipativity theory for linear state/input delay systems. Motivated
by reference [1, 2], we consider a new type quadratic supply rate for linear state/input
delay systems. The choice of the new supply rate also depends on the case of system
itself. Based on new supply rate, the necessary and sufficient conditions of dissipativity
and exponential dissipativity are represented. And, stability results of dissipative linear
state/input delay systems are derived. Finally, we focus on passive and finiteL2-gain systems
and discuss positive-real and bounded-real condition, correspondingly. Positive-real lemma
and bounded-real lemma based on new supply rate may help us to analyze the problem
of stabilization using output or state feedback for the system with or without external
disturbances, that is a future direction of research. Interconnected dissipative delay systems
are also considered in future works.
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