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We investigate the consistency of spectral regularization algorithms. We generalize the usual defi-
nition of regularization function to enrich the content of spectral regularization algorithms. Under
a more general prior condition, using refined error decompositions and techniques of operator
norm estimation, satisfactory error bounds and learning rates are proved.

1. Introduction

In this paper, we study the consistency analysis of spectral regularization algorithms in reg-
ression learning.

Let (X, d) be a compact metric space and ρ a probability distribution onZ = X×Y with
Y = R. The regression learning aims at estimating or approximating the regression function

fρ(x) =
∫
Y

ydρ
(
y | x) (1.1)

through a set of samples z = {(xi, yi)}mi=1 ∈ Zm drawn independently and identically ac-
cording to ρ from Z.

In learning theory, a reproducing kernel Hilbert space (RKHS) associated with a Mer-
cer kernel K(x, y) is usually taken as the hypothesis space. Recall that a function K : X ×
X → R is called a Mercer kernel if it is continuous, symmetric, and positive semidefinite.
The reproducing kernel Hilbert space HK is defined to be the closure of the linear span of
Kx := K(·, x), x ∈ X. The reproducing property takes the form

f(x) =
〈
f,Kx

〉
K, ∀f ∈ HK, ∀x ∈ X. (1.2)
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For the Mercer kernel K(x, y), we denote that

κ = max
x∈X

√
K(x, x). (1.3)

Our first contribution is to generalize the definition of regularization in [1] such that
many more learning algorithms can be included in the scope of spectral algorithms.

Definition 1.1. We say that a family of continuous functions gλ : [0, κ2] → R, λ ∈ (0, 1] is
regularization, if the following conditions hold.

(i) There exists a constant D such that

sup
0<σ≤κ2

∣∣σgλ(σ)∣∣ ≤ D. (1.4)

(ii) There exists a constant B > 0, 0 < α ≤ 1 such that

sup
0<σ≤κ2

∣∣gλ(σ)∣∣ ≤ B

λα
. (1.5)

(iii) There exists a constant γ such that

sup
0<σ≤κ2

∣∣1 − gλ(σ)σ
∣∣ ≤ γ. (1.6)

(iv) The qualification ν0 of the regularization gλ is the maximal ν such that

sup
0<σ≤κ2

∣∣1 − gλ(σ)σ
∣∣σν ≤ γνλ

αν, (1.7)

where γν does not depend on λ.

Our definition for regularization is different from that in [1]. In fact, the definition
given by [1] is the special case when taking α = 1 in (1.5) and (1.7). So from this viewpoint,
our assumption is more mild and it is fit for more general situations, for example, coefficient
regularization algorithms correspond to spectral algorithms with α = 1/2, the relation bet-
ween coefficient regularization algorithms and spectral algorithms had been explored in [2].

Let x = {xi}mi=1 and y = {yi}mi=1. The sample operator Sx : HK → R
m is defined as Sxf =

{f(xi)}mi=1. The adjoint of Sx under 1/m times the Euclidean norm is ST
x c = (1/m)

∑m
i=1 ciKxi .

For simplicity, we use Tx to stand for ST
xSx.

The spectral regularization algorithm considered here is given by

fλ
z = gλ(Tx)ST

x y. (1.8)

The regularization gλ, λ ∈ (0, 1] in (1.8) was proposed originally to solve ill-posed
inverse problems. The relation between learning theory and regularization of linear ill-posed
problems has been well discussed in a series of articles, see [1, 3] and the references therein.
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The analysis made in previous literatures provides us with a deep understanding of the
connection between learning theory and regularization.

A large class of learning algorithms can be considered as spectral regularization
algorithms in accordance with different regularizations.

Example 1.2. The regularized least square algorithm is given as

fλ
z = arg min

f∈HK

1
m

m∑
i=1

(
yi − f(xi)

)2 + λ
∥∥f∥∥2K. (1.9)

It has been well understood due to a lot of literatures [4–11], and so forth. It is proved in [7]
that

fλ
z = (Tx + λI)−1ST

xy, (1.10)

which corresponds to algorithm (1.8)with the regularization

gλ(σ) = (σ + λ)−1. (1.11)

In this case, we have B = D = γ = γν0 = α = 1, the qualification ν0 = 1.

Example 1.3. In regression learning, the coefficient regularization with l2 norm becomes

fλ
z = fαz , αz = argmin

α∈Rm

1
m

m∑
i=1

(
yi − fα(xi)

)2 + λm
m∑
i=1

α2
i , (1.12)

where

fα =
m∑
i=1

αiKxi , ∀α ∈ R
m. (1.13)

The coefficient regularization was first introduced by Vapnik [12] to design linear
programming support vector machines. The consistency of this algorithm has been studied
in literatures [2, 13, 14]. In [2], it is proved that the sample error has O(1/

√
m) decay, even

for nonpositive semidefinite kernels, and

fλ
z =
(
λI + T2

x

)−1
TxS

T
x y. (1.14)

Thus, it corresponds to algorithm (1.8)with the regularization

gλ(σ) =
(
σ2 + λ

)−1
σ. (1.15)

In this case, we have B = D = γ = γν0 = 1, the qualification ν0 = 2 and α = 1/2.
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Example 1.4. Landweber iteration is defined by gλ(σ) =
∑�1/λ�−1

i=0 (1 − σ)i where �a� = max{m :
m ∈ Z, m ≤ a}. This corresponds to the gradient descent algorithm in Yao et al. [15]with con-
stant step-size. In this case, we have that any ν ∈ [0,+∞) can be considered as qualification
of this method and γν = 1 if 0 < ν ≤ 1 and γν = νν otherwise.

Let f+
H be the projection of fρ ontoHK, hereHK denotes the closure ofHK in L2

ρX(X).
The generalization error of fλ

z is

E
(
fλ
z

)
=
∫
Z

(
fλ
z (x) − y

)2
dρ =

∫
X

(
fλ
z (x) − f+

H(x)
)2
dρX +

∫
X

(
f+
H(x) − fρ(x)

)2
dρX + σ2,

(1.16)

where ρX is themarginal distribution of ρ onX, σ2 is the variance of randomvariable y−fρ(x).
So the goodness of the approximation fλ

z is measured by ‖fλ
z − f+

H‖ρX , where we take the L2

norm defined as

∥∥f∥∥ρX =
(∫

X

∣∣f(x)∣∣2dρX
)1/2

, ∀f ∈ L2
ρX(X). (1.17)

The integral operator LK associated with kernel K from L2
ρX (X) to L2

ρX (X) is defined
by

LKf(x) =
∫
X

K(x, t)f(t)dρX(t), ∀f ∈ L2
ρX(X). (1.18)

LK is a nonnegative self-adjoint compact operator [4]. If the domain of LK is restricted to
HK, it also is a nonnegative self-adjoint compact operator from HK to HK, with norm
‖LK‖HK →HK ≤ κ2 [16]. In the sequel, we simply write ‖LK‖ instead of ‖LK‖HK →HK and
assume that |y| ≤ M almost surely.

As usual, we use the following error decomposition:

∥∥∥fλ
z − f+

H
∥∥∥
ρX

≤
∥∥∥fλ

z − fλ
∥∥∥
ρX

+
∥∥fλ − f+

H
∥∥
ρX
, (1.19)

where

fλ = gλ(LK)LKf
+
H. (1.20)

The first term on the right-hand side of (1.19) is called sample error, and the second one
is approximation error. Sample error depends on the sampling, and the law of large numbers
would lead to its estimation; approximation error is independent of the sampling, and its
estimation is mainly through the method of operator approximation.

In order to deduce the error bounds and learning rates, we have to set restriction on
the class of possible probability measures that is usually called prior condition. In previous
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literatures, prior conditions are usually described through the smoothness of regression func-
tion fρ. We suppose the following prior condition:

f+
H = ϕ(LK)h0, h0 ∈ L2

ρX (X), ‖h0‖ρX ≤ R. (1.21)

Here, ϕ called the index function is some continuous nondecreasing function defined on
[0, κ2] with ϕ(0) = 0.

In the sequel, we request the qualification ν0 > 1/2, and there exists μ0 > 0 covering ϕ,
which means that there is c > 0 such that

c
λμ0

ϕ(λ)
≤ inf

λ≤σ≤κ2

σμ0

ϕ(σ)
, 0 < λ ≤ κ2. (1.22)

It is easy to see that, for any μ ≥ μ0, μ covers ϕ.
Furthermore, we request that ϕ(t) is operator monotone on [0, κ2], that is, there is a

constant cϕ < ∞, such that for any pair U,V of nonnegative self-adjoint operators on some
Hilbert space with norm less than κ2, it holds

∥∥ϕ(U) − ϕ(V )
∥∥ ≤ cϕϕ(‖U − V ‖), (1.23)

and, there is dϕ > 0 such that

dϕ
λ

ϕ(λ)
≤ σ

ϕ(σ)
, 0 < λ < σ ≤ κ2. (1.24)

It is proved that ϕ(t) = tα for 0 ≤ α ≤ 1 is operator monotone [8].
In [1], Bauer et al. consider the following prior condition:

f+
H ∈ Ωϕ,R, Ωϕ,R =

{
f ∈ HK :f = ϕ(LK)v, ‖v‖K ≤ R

}
. (1.25)

This condition is somewhat restrictive, since it asks that f+
H must belong toHK.

Our result shows that satisfactory error bound is available with a more general prior
condition, this is our second main contribution. So from this view point, our work is mean-
ingful. The main result of this paper is the following theorem.

Theorem 1.5. Suppose the index function ϕ with covering number μ0 > 0 is operator monotone on
[0, κ2]. The qualification ν0 satisfies ν0 > max{1/2, μ0} and that m ≥ 2 log(4/δ) for 0 < δ < 1.
Then, with confidence 1 − δ, there holds

∥∥∥fλ
z − f+

H
∥∥∥
ρX

≤ C1

{(
1 + λ−α/2ζ1/2

)(
ϕ(λ)λ(α−1)μ0 + ϕ(ζ) + λ−α/2η

)

+
[
λ(α−1)

(
ϕ(λ)
)1/μ0
]min{μ0, ν0−1/2}

}
,

(1.26)
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where

ζ = 2κ2

√
2 log(4/δ)

m
,

η = ϕ(λ)λ−μ0+min{α(μ0−1/2), 0}m−1 log
4
δ
+
(
1 + ϕ(λ)λ(α−1)μ0

)
m−1/2

√
log

4
δ

+ λmin{μ0, ν0−1/2}(α−1)+α/2(ϕ(λ))min{(2ν0−1)/2μ0, 1},

(1.27)

and C1 is a constant independent of λ,m, δ.

This theorem shows the consistency of the spectral algorithms, gives the error bound,
and also can lead to satisfactory learning rates by the explicit expression of ϕ.

This paper is prepared as follows. In Section 2, we will prove a basic lemma about
estimation of operator norms related to the regularization and two concentration inequalities
with vector value random variables. In Section 3, we give the proof of Theorem 1.5. In
Section 4, we derive learning rate under the setting of several specific regularization.

2. Some Lemmas

We simply write γ0 instead of γν0 in (1.7) for qualification ν0. To estimate the error ‖fλ
z −f+

H‖ρX ,
we need the following lemma to bound the norms of some operators.

Lemma 2.1. Let ϕ be an index function and ν0 > max{1/2, μ0}. Then, the following inequalities
hold true:

sup
0<σ≤κ2

∣∣1 − gλ(σ)σ
∣∣σs ≤ γ1−s/v0γs/v0

0 λαs, ∀0 < s ≤ ν0, (2.1)

sup
0<σ≤κ2

∣∣1 − gλ(σ)σ
∣∣ϕs(σ) ≤ αsϕ

s(λ)λ(α−1)μ0s, ∀0 < s ≤ ν0
μ0

, (2.2)

sup
0<σ≤κ2

∣∣1 − gλ(σ)σ
∣∣ϕ(σ)√σ ≤ β1λ

min{μ0, ν0−1/2}(α−1)+α/2(ϕ(λ))min{(2ν0−1)/2μ0, 1}, (2.3)

sup
0<σ≤κ2

∣∣∣gλ(σ)σ1/2ϕ(σ)
∣∣∣ ≤ β2ϕ(λ)λmin{α(μ0−1/2), 0}−μ0 . (2.4)

Here, αs, β1, β2 are constants only dependent on ν0, μ0, γ, γ0, c, ϕ(κ2).

Proof. By (1.6) and (1.7), for any 0 < s ≤ ν0, we have

sup
0<σ≤κ2

∣∣1 − gλ(σ)σ
∣∣σs ≤ sup

0<σ≤κ2

[∣∣1 − gλ(σ)σ
∣∣σν0
]s/ν0 × ∣∣1 − gλ(σ)σ

∣∣1−s/ν0

≤ γ1−s/v0γs/v0
0 λαs.

(2.5)
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Since μ0s ≤ ν0 and ϕ is covered by μ0, by (2.1) and (1.6), we get

sup
0<σ≤κ2

∣∣1 − gλ(σ)σ
∣∣ϕs(σ) = max

{
sup
0<σ<λ

∣∣1 − gλ(σ)σ
∣∣ϕs(σ), sup

λ≤σ≤κ2

∣∣1 − gλ(σ)σ
∣∣ϕs(σ)
σμ0s

σμ0s

}

≤ max
{
γϕs(λ),

1
cs
ϕs(λ)γ1−μ0s/v0γ

μ0s/v0

0 λ(α−1)μ0s

}

= max
{
γ,

1
cs
γ1−μ0s/v0γ

μ0s/v0

0

}
ϕs(λ)λ(α−1)μ0s .= αsϕ

s(λ)λ(α−1)μ0s.

(2.6)

In order to prove the third inequality, let τ = min{2ν0/(2ν0 − 1), ν0/μ0} and τ(1 −
1/2ν0) = (1/μ0)min{μ0, ν0 − 1/2}, by (2.2), we have

sup
0<σ≤κ2

∣∣1 − gλ(σ)σ
∣∣1−1/2ν0ϕ(σ) = sup

0<σ≤κ2

[∣∣1 − gλ(σ)σ
∣∣ϕτ(σ)

]1−1/2ν0(ϕ(σ))1−τ(1−1/2ν0)

≤
(
ϕ
(
κ2
))1−τ(1−1/2ν0)

α1−1/2ν0
τ λmin{μ0, ν0−1/2}(α−1)

×(ϕ(λ))min{(2ν0−1)/2μ0, 1}.

(2.7)

Thus,

sup
0<σ≤κ2

∣∣1 − gλ(σ)σ
∣∣ϕ(σ)√σ = sup

0<σ≤κ2

[∣∣1 − gλ(σ)σ
∣∣σν0
]1/2ν0 × ∣∣1 − gλ(σ)σ

∣∣1−1/2ν0ϕ(σ)

≤ β1λ
min{μ0,ν0−1/2}(α−1)+α/2(ϕ(λ))min{(2ν0−1)/2μ0, 1},

(2.8)

where β1 is a constant only dependent on ν0, μ0, γ, γ0, c, ϕ(κ2).
If 0 < μ0 ≤ 1/2, we have

sup
0<σ≤κ2

∣∣∣gλ(σ)σ1/2ϕ(σ)
∣∣∣ = max

{
sup
0<σ<λ

∣∣∣gλ(σ)σ1/2ϕ(σ)
∣∣∣, sup

λ≤σ≤κ2

∣∣∣∣gλ(σ)σμ0+1/2ϕ(σ)
σμ0

∣∣∣∣
}

≤ max

{
sup
0<σ<λ

∣∣gλ(σ)σ∣∣1/2∣∣gλ(σ)∣∣1/2ϕ(λ), ϕ(λ)
cλμ0

Dμ0+1/2B1/2−μ0λ−(1/2−μ0)α

}

≤ max
{√

BD, c−1Dμ0+1/2B1/2−μ0
}
ϕ(λ)λα(μ0−1/2)−μ0 .

(2.9)

Similarly computation shows that, for μ0 ≥ 1/2,

sup
0<σ≤κ2

∣∣∣gλ(σ)σ1/2ϕ(σ)
∣∣∣ ≤ max

{√
BD, c−1Dκ2μ0−1

}
ϕ(λ)λ−μ0 . (2.10)

Thus, the last inequality holds, and we complete the proof.
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By taking s = 1/2 in (2.1), we have

sup
0<σ≤κ2

∣∣1 − gλ(σ)σ
∣∣σ1/2 ≤ γ1−1/2v0γ1/2v0

0 λα/2. (2.11)

The estimates of operator norm mainly adopt the following classical argument in
operator theory. Argument: let A be a positive operator in a Hilbert space, for f ∈ C[0, ‖A‖],
then f(A) is self-adjoint by [17, Proposition 4.4.7] and σ(f(A)) = {f(t) : t ∈ σ(A)} by [17,
Theorem 4.4.8] where σ(A) is the spectral set of A. Consequently, ‖f(A)‖ ≤ ‖f‖∞.

The following probability inequality concerning random variables with values in a
Hilbert space is proved in [18].

Lemma 2.2. Let H be a Hilbert space and ξ a random variable on (Z, ρ) with values in H. Assume
‖ξ‖ ≤ M̃ < ∞ almost surely. Denote σ2(ξ) = E(‖ξ‖2). Let {zi}mi=1 be independent random drawers
of ρ. For any 0 < δ < 1, with confidence 1 − δ, there holds

∥∥∥∥∥
1
m

m∑
i=1

[ξ(zi) − E(ξ)]

∥∥∥∥∥ ≤
2M̃ log(2/δ)

m
+

√
2σ2(ξ) log(2/δ)

m
. (2.12)

Let HS(HK) be the class of all the Hilbert Schmidt operators onHK. It forms a Hilbert
space with inner product

〈T, S〉HS :=
∞∑
i=1

〈
Tϕi, Sϕi

〉
K, (2.13)

where ϕi is an orthonormal basis of HK and this definition does not depend on the choice of
the basis. The integral operator LK, as an operator on HK, belongs to HS(HK) and ‖LK‖HS ≤
κ2 (see [9]). By Lemma 2.2, we can estimate the following operator norms.

Lemma 2.3. Let x = {xi}mi=1 be a sample set i.i.d drawn from (X, ρX). With confidence 1 − δ, we have

∥∥∥LK − ST
xSx

∥∥∥ ≤ κ2

⎛
⎝ 2 log(2/δ)

m
+

√
2 log(2/δ)

m

⎞
⎠. (2.14)

Proof. Observe that ST
xSx = (1/m)

∑m
i=1 Kxi〈·, Kxi〉K. Denote ST

xSx = (1/m)
∑m

i=1 ξ(xi). Here ξ
is the random variable on (X, ρX) given by ξ(x) = Kx〈·, Kx〉K.

Consider

〈ξ(x), ξ(x)〉HS =
∞∑
i=1

〈
Kx

〈
ϕi,Kx

〉
K,Kx

〈
ϕi,Kx

〉
K

〉
K
=

∞∑
i=1

〈
ϕi,Kx

〉2
KK(x, x) ≤ κ4. (2.15)

For x ∈ X and f ∈ HK, the reproducing property insures that

ξ(x)
(
f
)
= Kx

〈
f,Kx

〉
K = f(x)Kx. (2.16)
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Hence, E(ξ) = LK, and thereby

(
LK − ST

xSx

)
= Eξ − 1

m

m∑
i=1

ξ(xi). (2.17)

According to (2.15), there holds σ2(ξ) = E‖ξ‖2HS ≤ κ4. Inequality (2.14) then follows from
(2.12) and the fact that ‖LK − ST

xSx‖ ≤ ‖LK − ST
xSx‖HS.

Lemma 2.4. Under the assumption of Lemma 2.1. Let z = {zi}mi=1 be a sample set i.i.d drawn from
(Z, ρ). With confidence 1 − δ, we have

∥∥∥ST
xy − Txfλ

∥∥∥
K
≤2κ
(
M + κβ2Rϕ(λ)λ−μ0+min{α(μ0−1/2), 0}

) log(2/δ)
m

+β1Rλmin{μ0,ν0−1/2}(α−1)+α/2

× (ϕ(λ))min{(2ν0−1)/2μ0, 1} + κ
(
α1λ

(α−1)μ0ϕ(λ)R + cρ
)√2 log(2/δ)

m
.

(2.18)

Proof. Define ς = (fλ(x) − y)Kx, so ς is a random variable from Z to HK. Combing the rep-
roducing property with Cauchy-Schwartz inequality, we get

∥∥fλ∥∥∞ = sup
x∈X

∣∣〈fλ,Kx

〉
K

∣∣ ≤ κ
∥∥fλ∥∥K. (2.19)

Since L1/2
K is an isometric isomorphism from (HK, ‖ · ‖ρX ) onto (HK, ‖ · ‖K) (see [16]), we

obtain

∥∥fλ∥∥K =
∥∥∥gλ(LK)L

1/2
K ϕ(LK)L

1/2
K h0

∥∥∥
K

≤
∥∥∥gλ(LK)L

1/2
K ϕ(LK)

∥∥∥ × ‖h0‖ρX

≤ sup
0<t≤κ2

∣∣∣gλ(t)t1/2ϕ(t)
∣∣∣ × R

≤ β2ϕ(λ)λmin{α(μ0−1/2), 0}−μ0R,

(2.20)

where the last inequality follows from (2.4).
By |y| ≤ M almost surely, there holds

‖ς‖2K =
〈(
fλ(x) − y

)
Kx,
(
fλ(x) − y

)
Kx

〉
K ≤ κ2

(
M + κβ2ϕ(λ)λmin{α(μ0−1/2), 0}−μ0R

)2
. (2.21)
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By (2.3) and LKfρ = LKf
+
H, we get

‖Eς‖K =
∥∥LK

(
fρ − fλ

)∥∥
K
=
∥∥LK

(
f+
H − fλ

)∥∥
K

=
∥∥LKϕ(LK)

(
I − gλ(LK)LK

)
h0
∥∥
K

≤
∥∥∥(I − gλ(LK)LK

)
ϕ(LK)L

1/2
K

∥∥∥ ×
∥∥∥L1/2

K h0

∥∥∥
K

≤ β1Rλ
min{μ0, ν0−1/2}(α−1)+α/2(ϕ(λ))min{(2ν0−1)/2μ0, 1},

E‖ς‖2K = E
(
y − fλ(x)

)2
K(x, x)

≤ κ2E
(
y − fλ(x)

)2

≤ κ2
[∫

Z

(
y − fρ(x)

)2
dρ +

∫
X

(
fρ(x) − f+

H(x)
)2
dρX +

∫
X

(
f+
H(x) − fλ(x)

)2
dρX

]

≤ κ2
(
α2
1λ

2(α−1)μ0ϕ2(λ)R2 +
∫
Z

(
y − fρ(x)

)2
dρ +

∥∥fρ − f+
H
∥∥2
ρX

)
,

(2.22)

where, in the last step, we used the result of Proposition 3.1 in Section 3. For simplicity, we
write c2ρ for

∫
Z(y − fρ(x))

2dρ + ‖fρ − f+
H‖2ρX . Applying Lemma 2.2, there holds

∥∥∥∥∥
1
m

m∑
i=1

[ς(zi) − Eς]

∥∥∥∥∥
K

≤ 2κ
(
M + κβ2Rϕ(λ)λ−μ0+min{α(μ0−1/2), 0}

) log(2/δ)
m

+ κ
(
α1λ

(α−1)μ0ϕ(λ)R + cρ
)√2 log(2/δ)

m
.

(2.23)

Then, we can use the following inequality to get the desired error bound,

∥∥∥ST
xy − Txfλ

∥∥∥
K
≤
∥∥∥∥∥
1
m

m∑
i=1

[ς(zi) − Eς]

∥∥∥∥∥
K

+ ‖Eς‖K. (2.24)

This completes the proof of Lemma 2.4.

3. Error Analysis

Proposition 3.1. Let ϕ be an index function with μ0 > 0 covering ϕ and ν0 > max{1/2, μ0}, so
under the assumptions of (1.21), there holds ‖fλ − f+

H‖ρX ≤ α1λ
(α−1)μ0ϕ(λ)R.

Proof. From the definition of fλ and f+
H, we have

fλ − f+
H = gλ(LK)LKf

+
H − f+

H =
(
gλ(LK)LK − I

)
ϕ(LK)h0. (3.1)
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So the following error estimation holds

∥∥fλ − f+
H
∥∥
ρX

≤ ∥∥(gλ(LK)LK − I
)
ϕ(LK)

∥∥ × ‖h0‖ρX
≤ sup

0<σ≤κ2

∣∣(gλ(σ)σ − 1
)
ϕ(σ)
∣∣ × ‖h0‖ρX

≤ α1λ
(α−1)μ0ϕ(λ)R,

(3.2)

where the last inequality follows from (2.2).

Let us focus on the estimation of sample error.
Consider

∥∥∥fλ
z − fλ

∥∥∥
ρX

=
∥∥∥L1/2

K (fλ
z − fλ)

∥∥∥
K
≤
∥∥∥L1/2

K

(
gλ(Tx)Tx − I

)
fλ −
(
gλ(Tx)Tx − I

)
L1/2
K fλ
∥∥∥
K

+
∥∥∥(gλ(Tx)Tx − I

)
gλ(LK)LKϕ(LK)L

1/2
K h0

∥∥∥
K
+
∥∥∥L1/2

K gλ(Tx)
(
ST
xy − Txfλ

)∥∥∥
K

:= ‖I1‖K + ‖I2‖K + ‖I3‖K.
(3.3)

The idea is to separately bound each term inHK. We start dealing with the first term of (3.3).
Consider

I1 =
(
L1/2
K − T1/2

x

)(
gλ(Tx)Tx − I

)(
ϕ(LK) − ϕ(Tx)

)
gλ(LK)L

1/2
K L1/2

K h0

+
(
L1/2
K − T1/2

x

)(
gλ(Tx)Tx − I

)
ϕ(Tx)gλ(LK)L

1/2
K L1/2

K h0

+
(
gλ(Tx)Tx − I

)(
T1/2
x − L1/2

K

)
ϕ(LK)gλ(LK)L

1/2
K L1/2

K h0

= J1 + J2 + J3.

(3.4)

According to (1.4) and (1.5), we derive the following bound:

∥∥∥gλ(LK)L
1/2
K

∥∥∥ ≤ sup
0<σ≤κ2

∣∣∣gλ(σ)σ1/2
∣∣∣ = sup

0<σ≤κ2

√∣∣gλ(σ)σ∣∣ ×
√∣∣gλ(σ)∣∣

≤ λ−α/2
√
DB.

(3.5)

Now, we are in the position to bound (3.4).
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Suppose that m ≥ 2 log(4/δ), then

κ2

⎛
⎝2 log(4/δ)

m
+

√
2 log(4/δ)

m

⎞
⎠ ≤ 2κ2

√
2 log(4/δ)

m
:= ζ,

2κ
(
M + κβ2Rϕ(λ)λ−μ0+min{α(μ0−1/2), 0}

) log(4/δ)
m

+ κ
(
α1λ

(α−1)μ0ϕ(λ)R + cρ
)√2 log(4/δ)

m

+ β1Rλ
min{μ0,ν0−1/2}(α−1)+α/2(ϕ(λ))min{(2ν0−1)/2μ0,1}

≤ 2κ2β2Rϕ(λ)λ−μ0+min{α(μ0−1/2), 0} log(4/δ)
m

+ κ
(
M + α1Rϕ(λ)λ(α−1)μ0 + cρ

)√2 log(4/δ)
m

+ β1Rλ
min{μ0,ν0−1/2}(α−1)+α/2(ϕ(λ))min{(2ν0−1)/2μ0,1}

≤ C0

⎛
⎝ϕ(λ)λ−μ0+min{α(μ0−1/2), 0}m−1 log

4
δ
+
(
1 + ϕ(λ)λ(α−1)μ0

)
m−1/2

√
log

4
δ

+λmin{μ0,ν0−1/2}(α−1)+α/2(ϕ(λ))min{(2ν0−1)/2μ0,1}
)

:= C0η.

(3.6)

By Lemmas 2.3 and 2.4, with confidence 1−δ, the following inequalities hold simultaneously:

∥∥∥LK − ST
xSx

∥∥∥ ≤ ζ,
∥∥∥ST

xy − Txfλ
∥∥∥
K
≤ C0η. (3.7)

Combing (1.6), (3.5) together with the operator monotonicity property of ϕ(t) and t1/2,
we obtain

‖J1‖K ≤
∥∥∥L1/2

K − T1/2
x

∥∥∥ × ∥∥gλ(Tx)Tx − I
∥∥ × ∥∥ϕ(LK) − ϕ(Tx)

∥∥

×
∥∥∥gλ(LK)L

1/2
K

∥∥∥ ×
∥∥∥L1/2

K h0

∥∥∥
K

≤ cϕγ
√
DBRλ−α/2‖LK − Tx‖1/2 × ϕ(‖LK − Tx‖)

≤ cϕγ
√
DBRλ−α/2ζ1/2ϕ(ζ).

(3.8)

By Lemma 2.1 and (3.5),

‖J2‖K ≤
∥∥∥L1/2

K − T1/2
x

∥∥∥ × ∥∥(gλ(Tx)Tx − I
)
ϕ(Tx)

∥∥ × ∥∥∥gλ(LK)L
1/2
K

∥∥∥ ×
∥∥∥L1/2

K h0

∥∥∥
K

≤ R
√
DB‖LK − Tx‖1/2 × α1λ

(α−1)μ0−α/2ϕ(λ)

≤ α1R
√
DBζ1/2ϕ(λ)λ(α−1)μ0−α/2.

(3.9)
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For the purpose of bounding ‖J3‖K, we rewritten J3 as the following form:

J3 =
(
gλ(Tx)Tx − I

)
T1/2
x
(
ϕ(LK) − ϕ(Tx)

)
gλ(LK)L

1/2
K L1/2

K h0

+
(
gλ(Tx)Tx − I

)
T1/2
x ϕ(Tx)gλ(LK)L

1/2
K L1/2

K h0

− (gλ(Tx)Tx − I
)(
ϕ(LK) − ϕ(Tx)

)
gλ(LK)LKL

1/2
K h0

− (gλ(Tx)Tx − I
)
ϕ(Tx)gλ(LK)LKL

1/2
K h0.

(3.10)

In the same way, we have that

‖J3‖K ≤ γ1−1/2v0γ1/2v0
0 R

√
DBϕ(ζ) + β1λ

min{μ0,ν0−1/2}(α−1)(ϕ(λ))min{(2ν0−1)/2μ0,1}√DBR

+ γRDϕ(ζ) + RDα1ϕ(λ)λ(α−1)μ0 .
(3.11)

Thus, we can get the bound for ‖I1‖K by combining (3.8), (3.9), and (3.11). What left is to
estimate ‖I2‖K and ‖I3‖K, we can employ the same way used in the estimation of ‖I1‖K.

Consider

‖I2‖K ≤
∥∥∥(gλ(Tx)Tx − I

)(
ϕ(LK) − ϕ(Tx)

)
gλ(LK)LKL

1/2
K h0

∥∥∥
K

+
∥∥∥(gλ(Tx)Tx − I

)
ϕ(Tx)gλ(LK)LKL

1/2
K h0

∥∥∥
K

≤ γRDϕ(ζ) + α1RDϕ(λ)λ(α−1)μ0 ,

(3.12)

‖I3‖K ≤
∥∥∥(L1/2

K − T1/2
x

)
gλ(Tx)

(
ST
xy − Txfλ

)∥∥∥
K
+
∥∥∥T1/2

x gλ(Tx)
(
ST
xy − Txfλ

)∥∥∥
K

≤ C0Bλ
−αζ1/2η + C0

√
DBηλ−α/2.

(3.13)

Lastly, combining (3.8) to (3.13) with Proposition 3.1, we have Theorem 1.5 holds.

4. Learning Rates

Significance of this paper lies in two facts; firstly, we generalize the definition of regularization
and enrich the content of spectral regularization algorithms; secondly, analysis of this paper
is able to undertake on the very general prior condition (1.21). Thus, our results can be ap-
plied to many different kinds of regularization, such as regularized least square learning, co-
efficient regularization learning, and (accelerate) landweber iteration and spectral cutoff. In
this section, we will choose a suitable index function and apply Theorem 1.5 to some specific
algorithms mentioned in Section 1.

4.1. Least Square Regularization

In this case, the regularization is gλ(σ) = 1/(σ + λ), λ ∈ (0, 1] with B = D = γ = γ0 = α = 1.
The qualification of this algorithm is ν0 = 1. Suppose ϕ(t) = tr with 0 < r ≤ 1, that means
f+
H = Lr

Kh0, h0 ∈ L2
ρX (X). Thus, we have that μ0 = r covering ϕ(t).
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Using the result of Theorem 1.5, we obtain the following corollary.

Corollary 4.1. Under the assumptions of Theorem 1.5, we have the following.

(i) For 0 < r ≤ 1/2, with confidence 1 − δ, there holds

∥∥∥fλ
z − f+

H
∥∥∥
ρX

≤ O

((
λr +m−r/2 + λ−1m−3/4

)(
1 + λ−1/2m−1/4

)(
log

4
δ

)5/4
)
. (4.1)

By taking λ = m−1/2, we have the following learning rate:

∥∥∥fλ
z − f+

H
∥∥∥
ρX

≤ O

(
m−r/2

(
log

4
δ

)5/4
)
. (4.2)

(ii) For 1/2 ≤ r < 1, with confidence 1 − δ, there holds

∥∥∥fλ
z − f+

H
∥∥∥
ρX

≤ O

((
λ1/2 + λ−1/2m−1/2 + λ−1m−3/4 +m−1/4

)(
log

4
δ

)5/4
)
. (4.3)

By taking λ = m−1/2, we have the following learning rate:

∥∥∥fλ
z − f+

H
∥∥∥
ρX

≤ O

(
m−1/4

(
log

4
δ

)5/4
)
. (4.4)

4.2. Coefficient Regularization with the l2 Norm

In this case, the regularization is gλ(σ) = σ/(σ2 + λ), λ ∈ (0, 1] with B = D = γ = γ0 = 1, α =
1/2. The qualification is ν0 = 2. We also consider the index function ϕ(t) = tr with 0 < r ≤ 1
and μ0 = r.

Corollary 4.2. Under the assumptions of Theorem 1.5, we have the following.

(i) For 0 < r ≤ 1/2, with confidence 1 − δ, there holds

∥∥∥fλ
z − f+

H
∥∥∥
ρX

≤ O

((
1 + λ−1/4m−1/4

)(
λr/2 +m−r/2 +m−1/2λ−1/4 +m−1λ(1/2)(r−1)

)(
log

4
δ

)5/4
)
.

(4.5)

By taking λ = m−1, we have the following learning rate:

∥∥∥fλ
z − f+

H
∥∥∥
ρX

≤ O

(
m−r/2

(
log

4
δ

)5/4
)
. (4.6)
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(ii) For 1/2 ≤ r ≤ 1, with confidence 1 − δ, there holds

∥∥∥fλ
z − f+

H
∥∥∥
ρX

≤ O

((
1 + λ−1/4m−1/4

)(
λr/2 +m−r/2 +m−1/2λ−1/4

)(
log

4
δ

)5/4
)
. (4.7)

By taking λ = m−2/(2r+1), we have the following learning rate:

∥∥∥fλ
z − f+

H
∥∥∥
ρX

≤ O

(
m−r/(2r+1)

(
log

4
δ

)5/4
)
. (4.8)

For coefficient regularization, the learning rates derived by Theorem 1.5 are almost
the same, see Corollary 5.2 in [2]. For least square regularization, the learning rates in
Corollary 4.1 are weak, the analysis in [8] by integral operator method gives learning rate
O(m−3r/4(1+r)) for 0 < r ≤ 1/2; leave one out analysis in [11] gives the rate O(m−r/(1+2r)).

Our analysis is influenced by both the prior condition and the regularization. Under
the weaker prior condition (1.21), some techniques for error analysis in [1] are inapplicable;
we take more complicated error decomposition and refined analysis to estimate error bounds
and learning rates.
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