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We discuss nonlinear homogeneous eigenvalue problems and the variational characterization
of their eigenvalues. We focus on the Ljusternik-Schnirelmann method, present one possible
alternative to this method and compare it with the Courant-Fischer minimax principle in the linear
case. At the end we present a special nonlinear eigenvalue problem possessing an eigenvalue
which allows the variational characterization but is not of Ljusternik-Schnirelmann type.

The question of characterization of the set of all eigenvalues of nonlinear homogeneous
eigenvalue problem is a very important problem of the calculus of variations that has been
open since the 1970s, see, for example, [1]. While the well-known Courant-Fischer minimax
principle provides complete characterization of the set of eigenvalues of the linear eigenvalue
problem, its nonlinear counterparts, like the Ljusternik-Schnirelmannmethod, do not exhaust
the entire set of eigenvalues in general. The purpose of this paper is to discuss this issue in the
context of general homogeneous nonlinear eigenvalue problem (1). In particular, we want
to explain that “variational characterization” is not a synonym for “Ljusternik-Schnirelmann
characterization.” Indeed, this obfuscation is quite common in the literature (cf. [2]) andmight
lead to many misunderstandings.

We present a variational argument in order to find an eigenvalue that is not
characterized by the Ljusternik-Schnirelmann formula. For this purpose we present the
periodic problem for the one-dimensional p-Laplacian from [3] as a concrete example and
heuristically enlighten technically involved estimates. We show the local character of our
variational characterization contrary to the global character of the Ljusternik-Schnirelmann
method. This illustrates the striking difference between the linear and nonlinear problems.
Note that also this “local procedure” does not yield all the eigenvalues of the problem in
question.
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The novelty of this paper is thus to point out some connections might be hidden
in more technically complicated papers and to remind some challenging problems of the
calculus of variations. We also rigorously show that the second eigenvalue of Ljusternik-
Schnirelmann type for (1) can be found as a minimax over a special class of curves rather
than the family of sets of genus greater than or equal to 2. This fact makes the construction
of the second eigenvalue more geometrically transparent and might be useful in numerical
approach to find its concrete value.

Let J, S : X → X∗ be odd and (p − 1)-homogeneous operator from a Banach space X
into its dual, p > 1. A real number λ and an element u ∈ X, u/= 0, for which

J(u) − λS(u) = 0 (1)

are called an eigenvalue and an eigenvector of the eigenvalue problem (1). Set

F(u) := 〈J(u), u〉, G(u) := 〈S(u), u〉, (2)

where 〈·, ·〉 stands for the duality pairing between X∗ and X. Assume that J and S are such
that F and G are C1-functionals from X into R,

〈
F ′(u), v

〉
= 〈J(u), v〉, 〈G′(u), v

〉
= 〈S(u), v〉,

S := {u ∈ X : G(u) = 1} (3)

is a C1-manifold without boundary that does not contain the zero element 0 ∈ X. The
Lagrange multiplier method implies that λ0 is an eigenvalue of (1) and u0 is the corresponding
eigenvector if and only if u0 is a critical point of F|S and F(u0) = λ0 (i.e., λ0 is the corresponding
critical level). There are several methods to find critical points of F on S. However, it seems
that with the exception of some special situations (e.g., J and S are linear operators) none of
the “nonlinear” methods describes the entire set of critical levels and critical points of F|S.
One of the most frequently used methods is based on the notion of the Krasnoselskii genus.

Set A := {A ⊂ X : A is closed and symmetric}. The Krasnoselskii genus of a set A,
γ(A), is defined as follows:

γ(A) :=

{
inf

{
m ∈ N : ∃h ∈ C0 (A,Rm \ {0}), h is odd

}
,

∞ if
{
m ∈ N : ∃h ∈ C0 (A,Rm \ {0}), h is odd

}
= ∅. (4)

For any k ∈ N consider a family of sets defined by

Fk :=
{
A ∈ A : A ⊂ S, γ(A) ≥ k

}
. (5)

Assume that γ(S) = ∞. Then, Fk /= ∅ for any k ∈ N and it is invariant under any continuous
and odd map from S into itself.

Let us assume that F satisfies the Palais-Smale condition on S. The Ljusternik-
Schnirelmann method yields a sequence {λk}∞k=1 ⊂ R given by

λk := inf
A∈Fk

sup
u∈A

F(u). (6)
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Every λk is a critical level of F subject to S, and it is achieved at some uk ∈ S, that is,

(F|S)′(uk) = 0 (7)

(cf. [4, 5]). It follows that λk is an eigenvalue of (1) and uk is the corresponding eigenvector.
In general, the sequence {λk}∞k=1 given by (6) does not exhaust the set of all critical levels of
F|S, and thus it might not be the set of all eigenvalues of (1). An eigenvalue of (1) that allows
the characterization (6) is called an eigenvalue of Ljusternik-Schnirelmann type.

The model example of the abstract setting presented above is the eigenvalue problem for
the Dirichlet p-Laplacian. Indeed, set X = W

1,p
0 (Ω), p > 1, and

F(u) =
∫

Ω
|∇u|pdx, G(u) =

∫

Ω
|u|pdx, (8)

where Ω ⊂ R
N is a bounded domain. Then,

S =
{
u ∈ X : ‖u‖Lp(Ω) = 1

}
, (9)

and a critical point u0 ∈ S, F(u0) = λ0 satisfies

〈
F ′(u0), v

〉
= λ0

〈
G′(u0), v

〉
(10)

for any v ∈ X. But this is a weak formulation of the problem

−Δpu0 − λ0|u0|p−2u0 = 0 in Ω,

u0 = 0 on ∂Ω,
(11)

and, therefore, λ0 is an eigenvalue and u0 is the corresponding eigenvector (eigenfunction) of
the Dirichlet p-Laplacian (11).

If p /= 2 and Ω ⊂ R
N , N ≥ 2, it is a long-standing open problem whether or not the

sequence{λk}∞k=1 given by (6) exhausts the entire set of eigenvalues of (11). On the other
hand, if Ω = (0, 1), p > 1, or Ω ⊂ R

N , N ≥ 1, and p = 2 (i.e., the problem (11) is linear),
the sequence {λn}∞n=1 given by (6) is the set of all eigenvalues of (11). To prove this fact in
the former case the ODE techniques (uniqueness of the solution of an associated initial value
problem) are employed while in the latter case the linearity of the problem plays the key role.

There are several other variational characterizations similar to (6). Namely, the family
of sets Fk can be replaced by an other family F̃k, which is invariant with respect to any
continuous odd semiflow Φ : S × [0,∞) → S such that Φ(·, 0) = idS, Φ(·, t) : S → S is
a homeomorphism for any fixed t ≥ 0 and F(Φ(u, ·)) is nonincreasing for any fixed u ∈ S.
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Then,

λ̃k:= inf
A∈F̃k

sup
u∈A

F(u), k ∈ N, (12)

is a critical level of F|S.
We give a concrete example of F̃k below (cf. [6]). Let Sk−1 be the unit sphere in R

k.
Set

F̃k :=
{
A ⊂ S : ∃h : Sk−1 −→ S, A = h

(
Sk−1

)
, h is odd and continuous

}
. (13)

It is clear that F̃k � Fk, which implies

λk ≤ λ̃k, k ∈ N. (14)

It is also obvious that λ1 = λ̃1. We claim that λ2 = λ̃2 as well. Indeed, for an A ∈ F2

there exists (arbitrarily small) symmetric neighborhood N(A) ⊂ S such that γ(N(A)) ≥ 2
(see, [7, Proposition 2.3]). Without loss of generality we may assume thatN(A) is a pathwise
connected set in S (otherwise γ(N(A)) = 1, a contradiction). Choosing u ∈ N(A), we have
−u ∈ N(A) by symmetry, and there is a continuous path ϕ ∈ N(A) from u to −u. By
symmetry of N(A) we also have −ϕ ⊂ N(A). But ϕ ∪ (−ϕ) = h(S1) for some continuous
and odd map h of S1 into S. Since the neighborhood N(A) can be chosen small enough, the
value of

max
u∈ϕ∪(−ϕ)

F(u) − sup
u∈A

F(u) (15)

can be made smaller than any positive number. This implies λ̃2 ≤ λ2, which proves the claim.
The author is not aware of any assumptions laid on J and S that would guarantee that

also λk = λ̃k for k ≥ 3 (cf. [6]).
It is instructive to compare formula (12) with the classical Courant-Fisher minimax

principle:

ck := inf
X′⊂X
dimX′=k

max
u∈S∩X′

F(u) (16)

under the assumptions that J, S are linear operators,X is a Hilbert space and (Ju, u)X defines
an equivalent inner product on X (cf. problem (11) with p = 2).

Let X′ ⊂ X, dimX′ = k. Then, A = S ∩X′ is homeomorphic to Sk−1, that is, A ∈ F̃k and
hence λ̃k ≤ ck. In order to prove the opposite inequality we need the following assertion.

Lemma 1 (cf. [5]). Any compact and symmetric subset A of a Hilbert space, such that γ(A) = k
contains at least k mutually orthogonal vectors u1, . . . , uk.



Abstract and Applied Analysis 5

Since γ(A) = k for A ∈ F̃k, there exist u1, . . . , uk ∈ A such that (Jui, uj)X = 0 for i /= j.
Set X′ = Lin{u1, . . . , uk}. It follows from the linearity of J that maxS∩X′F(u) ≤ maxAF(u),
which implies ck ≤ λ̃k. Together with the opposite inequality proved above we thus get

λ̃k = ck. (17)

Similarly, one proves that also λk = ck.
In particular, it follows from our discussion that the second Ljusternik-Schnirelmann

eigenvalue of (1) can be characterized as follows:

λ2 = inf
γ∈Csym

max
u∈γ

F(u), (18)

where Csym is the family of all continuous symmetric and closed curves in S.
The idea of construction of an eigenvalue that is not of Ljusternik-Schnirelmann type

comes from the following heuristics.
Set Φ(γ) := maxu∈γF(u). Then, λ2 = infγ∈CsymΦ(γ), that is, λ2 is a “global minimum” of

Φ over the set Csym (cf. [5]). The idea is to find a “local minimum” of Φ over Csym, say μ2,
which satisfies λ2 < μ2 < λ3, that is, μ2 /∈ {λk}∞k=1. For this purpose we find a subset of curves
C ⊂ Csym, which is invariant with respect to any continuous odd semiflow and which satisfies

λ2 = inf
γ∈Csym

max
u∈γ

F(u) < inf
γ∈C

max
u∈γ

F(u) = μ2 < λ3. (19)

The invariance of C then guarantees that μ2 is a critical point of F|S.
Below we present a concrete example. The technical details and precise estimates can

be found in [3]. We set X = W
1,p
per(−πp, πp), the Sobolev space of all (2πp)-periodic functions

f : R → R such that the restriction of f to the interval [−πp, πp] belongs toW1,p(−πp, πp) and
f(−πp) = f(πp). This space is endowed with the norm

‖f‖ :=
(∥∥f ′∥∥p

Lp(−πp,πp) +
∥∥f

∥∥p

Lp(−πp,πp)

)1/p

< ∞. (20)

Here,

πp := 2
∫1

0

ds

(1 − sp)1/p
=

2π
p sin

(
π/p

) . (21)

We also set

S :=
{
f ∈ X : ‖f‖Lp(−πp,πp) = 1

}
. (22)

Let ε > 0 be a fixed number, and let q : R → R be a given continuous (2πp)-periodic function
of x ∈ R.
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We define Jε, S : X → X∗ by

〈Jε(u), v〉 :=
∫πp

−πp

∣
∣u′∣∣p−2u′v′dx + ε

∫πp

−πp

q|u|p−2uv dx,

〈S(u), v〉 :=
∫πp

−πp

|u|p−2uv dx
(23)

for u, v ∈ X. We also set

Fε(u) :=
∫πp

−πp

∣
∣u′∣∣pdx + ε

∫πp

−πp

q|u|pdx. (24)

The operator equation

Jε(u) − λS(u) = 0 (25)

corresponds to the weak formulation of the following eigenvalue problem:

−
(∣∣u′∣∣p−2u′

)′
+ εq(x)|u|p−2u = λ|u|p−2u in R,

u is
(
2πp

)
-periodic in R.

(26)

For ε = 0 the set of all eigenvalues of (26) is given by the sequence

λ0 = 0, λ2n−1 = λ2n =
(
p − 1

)
np, n = 1, 2, . . . , (27)

and it is proved in [2] that each eigenvalue λk (k = 0, 1, 2, . . .) has a Ljusternik-Schnirelmann
variational characterization:

λk = inf
A∈Fk+1

max
u∈A

∫πp

−πp

∣∣u′(x)
∣∣pdx. (28)

The eigenvalue λ0 is simple, and the corresponding eigenfunction is a constant (and thus does
not change the sign in [−πp, πp]). For any n = 1, 2, . . ., we have that λ2n−1 = λ2n is not a simple
eigenvalue. Given any fixed t ∈ R, every function sinp(nx + t) of x ∈ R is an eigenfunction
associated with λ2n−1 = λ2n. Here, sinpx for x ∈ [0, πp/2] is defined implicitly by the formula

x =
∫ sinpx

0
(1 − sp)−1/pds (29)

and then extended to an odd (about 0), (2πp)-periodic function on R.

Remark 2. The reader should notice that only in the linear case p = 2 do the corresponding
eigenfunctions associatedwith λ2n−1 = λ2n form a linear space of dimension two. In contrast, if
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p /= 2, then the multiplicity should be understood in the sense of the Ljusternik-Schnirelmann
variational characterization (28). In fact, in this case the set of all eigenfunctions associated with
each eigenvalue λ2n−1 = λ2n is a two-dimensional manifold, the linear hull of which is infinite-
dimensional (cf. [2]). If these eigenfunctions are normalized by a scalar multiplication factor
in order to belong to S, they form a one-dimensional submanifold in Lp(−πp, πp), which is
diffeomorphic to a circle, the linear hull of which is again infinite-dimensional.

For ε > 0, q /= 0 the problem (26) possesses a sequence of eigenvalues tending to
infinity and given by

λεk = inf
A∈Fk+1

max
u∈A

Fε(u) (30)

for k = 0, 1, 2, . . .. The first eigenvalue is simple, and the corresponding eigenfunction does
not change sign. For each n = 1, 2, 3, . . . we have

λε2n−1 ≤ λε2n < λε2n+1 ≤ λε2n+2, (31)

where equalities may possibly occur. Eigenfunctions associated with λε2n−1 and λε2n have
precisely 2n zeros in (−πp, πp], and, for each k = 0, 1, 2, . . ., we have

lim
ε→ 0+

λεk = λk (32)

(see [2]). It is also proved in [2] that for any integers m,n ≥ 1 and for any ε > 0, small
enough, there exists a special (2πp)-periodic function q ∈ C1(R) such that λε2n−1 < λε2n
and the open interval (λε2n−1, λ

ε
2n) contains at least m eigenvalues of (26). In particular,

these eigenvalues do not allow the variational characterization (30). In the paper [3] we
have shown that in contrast with the eigenvalues of Ljusternik-Schnirelmann type that are
“globally variational,” some of the above mentioned “new” eigenvalues from (λ2n−1, λ2n)
have a variational characterization that has a “local character,” meaning that the minimum
part (inf) of the minimax formula (30) is taken only locally in the sense mentioned above.
In order to illustrate our method we focus on n = 1, that is, we find “local variational”
eigenvalue of (26) in the interval (λε1, λ

ε
2), provided ε is small enough.

The first critical level of Ljusternik-Schnirelmann type (L.S. type for short) for F0 on
S, 0 = λ0 = minu∈SF0(u) is attained at ±ϕ0 (ϕ0 ≡ constant > 0). The second critical level of L.S.
type, λ1 = p − 1, is defined by the minimax formula

λ1 = min
γ∈C1

max
τ∈[−1,1]

F0
(
γ(τ)

)
, (33)

where C1 is the set of all continuous curves in S that connect the “south pole”-ϕ0 with the
“north pole” ϕ0. The level λ1 is attained at the point u = γt(0) on the curve γt ∈ C1 (t ∈ R)
defined by

γt(τ) := ‖ht(τ)‖Lp
per
ht(τ), τ ∈ [−1, 1], (34)
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where

ht(τ) = τϕ0 +
(
1 − τ2

)
e(t)(x), x ∈ R, (35)

and e(t)(x) := (2πp/p)
−1/psinp(x + t) is a normalized eigenfunction associated with λ1 = λ2

(see [3]). Notice that the curves γt correspond to the “meridians” on S with the points of
“longitude” t and the “latitude” τ .

For construction of a special function q = q(x) the following observation plays the key
role: the function sinp : x → sinpx, from R to R, is real analytic in the open set R\{(1/2)kπp :
k ∈ Z} and, furthermore, it is not C3 at the point kπp (k ∈ Z) if 1 < p < 2 and it is not C3

at the point (k + 1/2)πp if (k ∈ Z) 2 < p < ∞. Due to these facts a function q can be found
that controls the “splitting process” that involves the eigenvalues λε1 and λε2. In particular, q is
constructed in such a way that the function of the independent variable t,

F
(
t; q

)
=
∫πp

−πp

q(x)
∣∣sinp(x + t)

∣∣pdx, (36)

has a global minimizer tmin ∈ [0, πp] and a local minimizer tmin ∈ (0, πp) such that

F
(
tmin; q

)
< F

(
tmin; q

)
. (37)

This property together with fine estimates for p > 2 (see [3]) allows us to prove the local
hyperbolic geometry of the functional Fε on S. Namely, thanks to (37), we can ”localize” the set
of curves C2 � C1 that pass through a suitable open neighborhood of the function e(tmin)
in the topology of Lp(−πp, πp). The “inf” in the variational characterization of λε1 is then
approached “away from” curves that belong to C2. The family of curves C2 is then proved
to be invariant with respect to continuous odd semiflow on S and

λε1 = inf
γ∈C1

max
τ∈[−1,1]

Fε

(
γ(τ)

)
< inf

γ∈C2

max
τ∈[−1,1]

Fε

(
γ(τ)

)
< λε2 (38)

holds for ε > 0 small enough. Then,

λε1 < λ̃ε1 = inf
γ∈C2

max
τ∈[−1,1]

Fε

(
γ(τ)

)
< λε2 (39)

is the desired variational eigenvalue that is not of the L.S. type.
This construction is not possible in the linear case, p = 2. Besides the fact that all

eigenvalues of the linear problem are of L.S. type, this follows from the analyticity of the
function sinx. For this reason the functional F with desired properties does not exist in
the case p = 2, which illustrates the striking difference between the linear and nonlinear
eigenvalue problem.



Abstract and Applied Analysis 9

Acknowledgment

This work was supported by the European Regional Development Fund (ERDF), project
“NTIS—New Technologies for Information Society,” European Center of Excellence,
CZ.1.05/1.1.00/02.0090 and project KONTAKT ME09109.

References
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