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New sufficient conditions, concerned with the coefficients of harmonic functions f(z) = h(z)+g(z)
in the open unit disk U normalized by f(0) = h(0) = h′(0) − 1 = 0, for f(z) to be harmonic close-to-
convex functions are discussed. Furthermore, several illustrative examples and the image domains
of harmonic close-to-convex functions satisfying the obtained conditions are enumerated.

1. Introduction
For a continuous complex-valued function f(z) = u(x, y) + iv(x, y) (z = x + iy), we say that
f(z) is harmonic in the open unit disk U = {z ∈ C : |z| < 1} if both u(x, y) and v(x, y) are real
harmonic in U, that is, u(x, y) and v(x, y) satisfy the Laplace equations

Δu = uxx + uyy = 0, Δv = vxx + vyy = 0. (1.1)

A complex-valued harmonic function f(z) in U is given by f(z) = h(z)+g(z)where h(z) and
g(z) are analytic in U. We call h(z) and g(z) the analytic part and the coanalytic part of f(z),
respectively. A necessary and sufficient condition for f(z) to be locally univalent and sense
preserving in U is |h′(z)| > |g ′(z)| in U (see [1] or [2]). Let H denote the class of harmonic
functions f(z) in U with f(0) = h(0) = 0 and h′(0) = 1. Thus, every normalized harmonic
function f(z) can be written by

f(z) = h(z) + g(z) = z +
∞∑

n=2

anz
n +

∞∑

n=1

bnzn ∈ H, (1.2)

where a1 = 1 and b0 = 0, for convenience.
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We next denote by SH the class of functions f(z) ∈ H that are univalent and sense
preserving in U. Due to the sense-preserving property of f(z), we see that |b1| = |g ′(0)| <
|h′(0)| = 1. If g(z) ≡ 0, then SH reduces to the class S consisting of normalized analytic
univalent functions. Furthermore, for every function f(z) ∈ SH, the function

F(z) =
f(z) − b1f(z)

1 − |b1|2
= z +

∞∑

n=2

an − b1bn
1 − |b1|2

zn +
∞∑

n=2

bn − b1an
1 − |b1|2

zn (1.3)

is also a member of SH. Therefore, we consider the subclass S0
H of SH defined as

S0
H =
{
f(z) ∈ SH : b1 = g ′(0) = 0

}
. (1.4)

Conversely, if F(z) ∈ S0
H, then f(z) = F(z) + b1F(z) ∈ SH for any b1 (|b1| < 1).

We say that a domain D is a close-to-convex domain if the complement of D can be
written as a union of nonintersecting half-lines (except that the origin of one half-line may lie
on one of the other half-lines). Let C, CH, and C0

H be the respective subclasses of S, SH, and
S0
H consisting of all functions f(z), which map U onto a certain close-to-convex domain.

Bshouty and Lyzzaik [3] have stated the following result.

Theorem 1.1. If f(z) = h(z) + g(z) ∈ H satisfies

g ′(z) = zh′(z), Re

(
1 +

zh
′′
(z)

h′(z)

)
> −1

2
(1.5)

for all z ∈ U, then f(z) ∈ C0
H ⊂ S0

H.

A simple and interesting example is below.

Example 1.2. The function

f(z) =
1 − (1 − z)2
2(1 − z)2

+
z2

2(1 − z)2
= z +

∞∑

n=2

n + 1
2

zn +
∞∑

n=2

n − 1
2

zn (1.6)

satisfies the conditions of Theorem 1.1, and therefore f(z) belongs to the class C0
H. We now

show that f(U) is actually a close-to-convex domain. It follows that

f(z) =

(
z

2(1 − z)2
+

z

2(1 − z)

)
+

(
z

2(1 − z)2
− z

2(1 − z)

)

= Re

(
z

(1 − z)2
)

+ i Im
(

z

1 − z
)
.

(1.7)
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Setting

f
(
reiθ
)
=

−2r2 + r(1 + r2) cos θ
(1 + r2 − 2r cos θ)2

+
r sin θ

1 + r2 − 2r cos θ
i = u + iv (1.8)

for any z = reiθ ∈ U (0 � r < 1, 0 � θ < 2π), we see that

−4
(
u + v2

)
=

4r(r − cos θ)(1 − r cos θ)
(1 + r2 − 2r cos θ)2

=
4r(r − t)(1 − rt)
(1 + r2 − 2rt)2

≡ φ(t) (−1 � t = cos θ � 1).

(1.9)

Since

φ′(t) =
−4r(1 − r2)2

(1 + r2 − 2rt)3
� 0, (1.10)

we obtain that

φ(t) � φ(−1) = 4r

(1 + r)2
≡ ψ(r). (1.11)

Also, noting that

ψ ′(r) =
4(1 − r)
(1 + r)3

> 0, (1.12)

we know that

ψ(r) < ψ(1) = 1, (1.13)

which implies that

u > −v2 − 1
4
. (1.14)

Thus, f(z)maps U onto the following close-to-convex domain as shown in Figure 1.

Remark 1.3. LetM be the class of all functions satisfying the conditions of Theorem 1.1. Then,
it was earlier conjectured by Mocanu [4, 5] that M ⊂ S0

H. Furthermore, we can immediately
see that the function f(z) in Example 1.2 is a member of the classM and it shows that f(z) ∈
M is not necessarily starlike with respect to the origin in U (f(z) is starlike with respect to
the origin in U if and only if tw ∈ f(U) for all w ∈ f(U) and t (0 � t � 1)).
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Figure 1: The image of f(z) = (1 − (1 − z)2)/2(1 − z)2 + z2/2(1 − z)2.

Remark 1.4. For the function f(z) = h(z) + g(z) ∈ H given by

g ′(z) = zn−1h′(z) (n = 2, 3, 4, . . .), (1.15)

letting w(t) = f(eit) = h(eit) + g(eit) (−π � t < π), we know that

Im
(
w′′(t)
w′(t)

)
� 0 (−π � t < π), (1.16)

which means that f(z) maps the unit circle ∂U = {z ∈ C : |z| = 1} onto a union of several
concave curves (see [6, Theorem 2.1]).

Jahangiri and Silverman [7] have given the following coefficient inequality for f(z) ∈
H to be in the class CH.

Theorem 1.5. If f(z) ∈ H satisfies

∞∑

n=2

n | an | +
∞∑

n=1

n | bn |� 1, (1.17)

then f(z) ∈ CH.

Example 1.6. The function

f(z) = z +
1
5
z5 (1.18)
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Figure 2: The image of f(z) = z + (1/5)z5.

belongs to the class C0
H ⊂ CH and satisfies the condition of Theorem 1.5. Indeed, f(z)maps U

onto the following hypocycloid of six cusps (cf. [8] or [6]) as shown in Figure 2.
The object of this paper is to find some sufficient conditions for functions f(z) ∈ H

to be in the class CH. In order to establish our results, we have to recall here the following
lemmas due to Clunie and Sheil-Small [1].

Lemma 1.7. If h(z) and g(z) are analytic in U with |h′(0)| > |g ′(0)| and h(z) + εg(z) is close-to-
convex for each ε (|ε| = 1), then f(z) = h(z) + g(z) is harmonic close-to-convex.

Lemma 1.8. If f(z) = h(z) + g(z) is locally univalent in U and h(z) + εg(z) is convex for some
ε (|ε| � 1), then f(z) is univalent close-to-convex.

We also need the following result due to Hayami et al. [9].

Lemma 1.9. If a function F(z) = z +
∑∞

n=2Anz
n is analytic in U and satisfies

∞∑

n=2

⎡

⎣

∣∣∣∣∣∣

n∑

k=1

⎧
⎨

⎩

k∑

j=1

(−1)k−j j(j + 1
)( α
k − j
)
Aj

⎫
⎬

⎭

(
β

n − k
)∣∣∣∣∣∣

+

∣∣∣∣∣∣

n∑

k=1

⎧
⎨

⎩

k∑

j=1

(−1)k−j j(j − 1
)( α
k − j
)
Aj

⎫
⎬

⎭

(
β

n − k
)∣∣∣∣∣∣

⎤

⎦ � 2

(1.19)

for some real numbers α and β, then F(z) is convex in U.

2. Main Results

Our first result is contained in the following theorem.
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Theorem 2.1. If f(z) ∈ H satisfies the following condition

∞∑

n=2

∣∣∣nan − eiϕ(n − 1)an−1
∣∣∣ +

∞∑

n=1

∣∣∣nbn − eiϕ(n − 1)bn−1
∣∣∣ � 1 (2.1)

for some real number ϕ (0 � ϕ < 2π), then f(z) ∈ CH.

Proof. Let F(z) = z +
∑∞

n=2Anz
n be analytic in U. If F(z) satisfies

∞∑

n=2

∣∣∣nAn − eiϕ(n − 1)An−1
∣∣∣ � 1, (2.2)

then it follows that

∣∣∣
(
1 − eiϕz

)
F ′(z) − 1

∣∣∣ =

∣∣∣∣∣

∞∑

n=2

(
nAn − eiϕ(n − 1)An−1

)
zn−1
∣∣∣∣∣

�
∞∑

n=2

∣∣∣nAn − eiϕ(n − 1)An−1
∣∣∣ · | z |n−1

<
∞∑

n=2

∣∣∣nAn − eiϕ(n − 1)An−1
∣∣∣ � 1 (z ∈ U).

(2.3)

This gives us that

Re
((

1 − eiϕz
)
F ′(z)

)
> 0 (z ∈ U), (2.4)

that is, F(z) ∈ C. Then, it is sufficient to prove that

F(z) =
h(z) + εg(z)

1 + εb1
= z +

∞∑

n=2

an + εbn
1 + εb1

zn ∈ C (2.5)

for each ε (|ε| = 1) by Lemma 1.7. From the assumption of the theorem, we obtain that

∞∑

n=2

∣∣∣∣n
an + εbn
1 + εb1

− eiϕ(n − 1)
an−1 + εbn−1

1 + εb1

∣∣∣∣

� 1
1− | b1 |

∞∑

n=2

[∣∣∣nan − eiϕ(n − 1)an−1
∣∣∣ +
∣∣∣nbn − eiϕ(n − 1)bn−1

∣∣∣
]

� 1− | b1 |
1− | b1 | = 1.

(2.6)

This completes the proof of the theorem.
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Figure 3: The image of f(z) = −z − 2 log |1 − z|.

Example 2.2. The function

f(z) = − log(1 − z) + (−mz − log(1 − z)) = z +
∞∑

n=2

1
n
zn + (1 −m)z +

∞∑

n=2

1
n
zn (0 < m � 1)

(2.7)

satisfies the condition of Theorem 2.1 with ϕ = 0 and belongs to the class CH. In particular,
puttingm = 1, we obtain Figure 3.

By making use of Lemma 1.8 with ε = 0 and applying Lemma 1.9, we readily obtain
the next theorem.

Theorem 2.3. If f(z) ∈ H is locally univalent in U and satisfies

∞∑

n=2

⎡

⎣

∣∣∣∣∣∣

n∑

k=1

⎧
⎨

⎩

k∑

j=1

(−1)k−j j(j + 1
)( α
k − j
)
aj

⎫
⎬

⎭

(
β

n − k
)∣∣∣∣∣∣

+

∣∣∣∣∣∣

n∑

k=1

⎧
⎨

⎩

k∑

j=1

(−1)k−j j(j − 1
)( α
k − j
)
aj

⎫
⎬

⎭

(
β

n − k
)∣∣∣∣∣∣

⎤

⎦ � 2

(2.8)

for some real numbers α and β, then f(z) ∈ CH.

Putting α = β = 0 in the above theorem, we arrive at the following result due to
Jahangiri and Silverman [7].
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Theorem 2.4. If f(z) ∈ H is locally univalent in U with

∞∑

n=2

n2|an| � 1, (2.9)

then f(z) ∈ CH.

Furthermore, taking α = 1 and β = 0 in the theorem, we have the following corollary.

Corollary 2.5. If f(z) ∈ H is locally univalent in U and satisfies

∞∑

n=2
{n|(n + 1)an − (n − 1)an−1| + (n − 1)|nan − (n − 2)an−1|} � 2, (2.10)

then f(z) ∈ CH.

Example 2.6. The function

f(z) = −
∫z

0

log(1 − t)
t

dt +
(
z + (1 − z) log(1 − z)) = z +

∞∑

n=2

1
n2
zn +

∞∑

n=2

1
n(n − 1)

zn (2.11)

satisfies the conditions of Corollary 2.5 and belongs to the class CH as shown in Figure 4.

3. Appendix

A sequence {cn}∞n=0 of nonnegative real numbers is called a convex null sequence if cn → 0
as n → ∞ and

cn − cn+1 � cn+1 − cn+2 � 0 (3.1)

for all n (n = 0, 1, 2, . . .).
The next lemma was obtained by Fejér [10].

Lemma 3.1. Let {cn}∞k=0 be a convex null sequence. Then, the function

p(z) =
c0
2

+
∞∑

n=1

cnz
n (3.2)

is analytic and satisfies Re(p(z)) > 0 in U.

Applying the above lemma, we deduce the following theorem.
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Figure 4: The image of f(z) = − ∫z0 (log(1 − t)/t) dt + (z + (1 − z) log(1 − z)).

Theorem 3.2. For some b (|b| < 1) and some convex null sequence {cn}∞n=0 with c0 = 2, the function

f(z) = h(z) + g(z) = z +
∞∑

n=2

cn−1
n

zn + b

(
z +

∞∑

n=2

cn−1
n

zn

)
(3.3)

belongs to the class CH.

Proof. Let us define F(z) by

F(z) =
h(z) + εg(z)

1 + εb
= z +

∞∑

n=2

cn−1
n

zn (3.4)

for each ε (|ε| = 1). Then, we know that

F ′(z) =
c0
2

+
∞∑

n=1

cnz
n (c0 = 2). (3.5)

By virtue of Lemmas 1.7 and 3.1, it follows that Re(F ′(z)) > 0 (z ∈ U), that is, F(z) ∈ C. Thus,
we conclude that f(z) = h(z) + g(z) ∈ CH.

In the same manner, we also have the following theorem.



10 Abstract and Applied Analysis

Theorem 3.3. For some b (|b| < 1) and some convex null sequence {cn}∞n=0 with c0 = 2, the function

f(z) = h(z) + g(z) = z +
∞∑

n=2

1
n

⎛

⎝1 +
n−1∑

j=1

cj

⎞

⎠zn + b

⎛

⎝z +
∞∑

n=2

1
n

⎛

⎝1 +
n−1∑

j=1

cj

⎞

⎠zn

⎞

⎠ (3.6)

belongs to the class CH.

Proof. Let us define F(z) by

F(z) =
h(z) + εg(z)

1 + εb
= z +

∞∑

n=2

1
n

⎛

⎝1 +
n−1∑

j=1

cj

⎞

⎠zn (3.7)

for each ε (|ε| = 1). Then, we know that

(1 − z)F ′(z) =
c0
2

+
∞∑

n=1

cnz
n (c0 = 2). (3.8)

Therefore, by the help of Lemmas 1.7 and 3.1, we obtain that Re((1 − z)F ′(z)) > 0 (z ∈ U),
that is, F(z) ∈ C, which implies that f(z) = h(z) + g(z) ∈ CH.

Remark 3.4. The sequence

{cn}∞n=0 =
{
2, 1,

2
3
, . . . ,

2
n + 1

, . . .

}
(3.9)

is a convex null sequence because

lim
n→∞

cn = lim
n→∞

(
2

n + 1

)
= 0, cn − cn+1 = 2

(n + 1)(n + 2)
� 0,

(cn − cn+1) − (cn+1 − cn+2) = 4
(n + 1)(n + 2)(n + 3)

� 0 (n = 0, 1, 2, . . .).
(3.10)

Setting b = 1/4 in Theorem 3.2 with the above sequence {cn}∞n=0, we derive the
following example.

Example 3.5. The function

f(z) = −z − 2
∫z

0

log(1 − t)
t

dt − 1
4

(
z + 2

∫z

0

log(1 − t)
t

dt

)
= z +

∞∑

n=2

2
n2
zn +

1
4

(
z +

∞∑

n=2

2
n2
zn

)

(3.11)

is in the class CH as shown in Figure 5.
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Figure 5: The image of f(z) in Example 3.5.
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Figure 6: The image of f(z) in Example 3.7.

Moreover, we know the following remark.

Remark 3.6. The sequence

{cn}∞n=0 =
{
2, 1,

1
2
, . . . , 21−n, . . .

}
(3.12)

is a convex null sequence because

lim
n→∞

cn = lim
n→∞

21−n = 0, cn − cn+1 = 2−n � 0,

(cn − cn+1) − (cn+1 − cn+2) = 2−(n+1) � 0 (n = 0, 1, 2, . . .).
(3.13)

Hence, letting b = 1/4 in Theorem 3.3 with the sequence {cn}∞n=0 = {21−n}∞n=0, we have
the following example.
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Example 3.7. The function

f(z) = −3 log(1 − z) + 4 log
(
1 − z

2

)
+
(
−3
4
log(1 − z) + log

(
1 − z

2

))

= z +
∞∑

n=2

1
n

⎛

⎝1 +
n−1∑

j=1

21−j
⎞

⎠zn +
1
4

⎛

⎝z +
∞∑

n=2

1
n

⎛

⎝1 +
n−1∑

j=1

21−j

⎞

⎠zn

⎞

⎠
(3.14)

is in the class CH as shown in Figure 6.
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