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We develop a method to obtain approximate solutions of nonlinear system of partial differential
equations with the help of Sumudu decomposition method (SDM). The technique is based on the
application of Sumudu transform to nonlinear coupled partial differential equations. The nonlinear
term can easily be handled with the help of Adomian polynomials. We illustrate this technique
with the help of three examples, and results of the present technique have close agreement with
approximate solutions obtained with the help of Adomian decomposition method (ADM).

1. Introduction

Most of phenomena in nature are described by nonlinear differential equations. So scientists
in different branches of science try to solve them. But because of nonlinear part of these
groups of equations, finding an exact solution is not easy. Different analytical methods have
been applied to find a solution to them. For example, Adomian has presented and developed
a so-called decomposition method for solving algebraic, differential, integrodifferential,
differential-delay and partial differential equations. In the nonlinear case for ordinary
differential equations and partial differential equations, the method has the advantage of
dealing directly with the problem [1, 2]. These equations are solved without transforming
them to more simple ones. The method avoids linearization, perturbation, discretization, or
any unrealistic assumptions [3, 4]. It was suggested in [5] that the noise terms appears always
for inhomogeneous equations. Most recently, Wazwaz [6] established a necessary condition
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that is essentially needed to ensure the appearance of “noise terms” in the inhomogeneous
equations. In the present paper, the intimate connection between the Sumudu transform
theory and decomposition method arises in the solution of nonlinear partial differential
equations is demonstrated.

The Sumudu transform is defined over the set of the functions

A =
{
f(t) : ∃M,τ1, τ2 > 0,

∣∣f(t)∣∣ < Met/τj , if t ∈ (−1)j × [0,∞)
}

(1.1)

by the following formula:

G(u) = S
[
f(t);u

]

=
∫∞

0
f(ut)e−tdt, u ∈ (−τ1, τ2).

(1.2)

The existence and the uniqueness were discussed in [7], for further details and
properties of the Sumudu transform and its derivatives we refer to [8]. In [9], some
fundamental properties of the Sumudu transform were established.

In [10], this new transform was applied to the one-dimensional neutron transport
equation. In fact one can easily show that there is a strong relationship between double
Sumudu and double Laplace transforms, see [7].

Further in [11], the Sumudu transform was extended to the distributions and some of
their properties were also studied in [12]. Recently Kılıçman et al. applied this transform to
solve the system of differential equations, see [13].

A very interesting fact about Sumudu transform is that the original function and its
Sumudu transform have the same Taylor coefficients except a factor n!. Thus if

f(t) =
∞∑
n=0

ant
n (1.3)

then

F(u) =
∞∑
n=0

n!ant
n, (1.4)

see [14].
Similarly, the Sumudu transform sends combinations, C(m,n), into permutations,

P(m,n) and hence it will be useful in the discrete systems. Further

S(H(t)) = £(δ(t)) = 1,

£(H(t)) = S(δ(t)) =
1
u
.

(1.5)

Thus we further note that since many practical engineering problems involve
mechanical or electrical systems where action is defined by discontinuous or impulsive
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forcing terms. Then the Sumudu transform can be effectively used to solve ordinary
differential equations as well as partial differential equations and engineering problems.
Recently, the Sumudu transform was introduced as a new integral transform on a time
scale T to solve a system of dynamic equations, see [15]. Then the results were applied on
ordinary differential equations when T = R, difference equations when T = N0, but also, for
q-difference equations when T = qN0 , where qN0 := {qt : t ∈ N0 for q > 1} or T = qZ := qZ ∪ {0}
for q > 1 which has important applications in quantum theory and on different types of time
scales like T = hN0, T = N

2
0, and T = Tn the space of the harmonic numbers. During this study

we use the following Sumudu transform of derivatives.

Theorem 1.1. Let f(t) be in A, and let Gn(u) denote the Sumudu transform of the nth derivative,
fn(t) of f(t), then for n ≥ 1

Gn(u) =
G(u)
un

−
n−1∑
k=0

f (k)(0)
un−k . (1.6)

For more details, see [16].

We consider the general inhomogeneous nonlinear equation with initial conditions
given below:

LU + RU +NU = h(x, t), (1.7)

where L is the highest order derivative which is assumed to be easily invertible, R is a linear
differential operator of order less than L,NU represents the nonlinear terms and h(x, t) is the
source term. First we explain themain idea of SDM: themethod consists of applying Sumudu
transform

S[LU] + S[RU] + S[NU] = S[h(x, t)]. (1.8)

Using the differential property of Laplace transform and initial conditions we get

1
un

S[U(x, t)] − 1
un

U(x, 0) − 1
un−1U

′(x, 0) − · · · − Un−1(x, 0)
u

+ S[RU] + S[NU] = S[h(x, t)].

(1.9)

By arrangement we have

S[U(x, t)] = U(x, 0) + uU′(x, 0) + · · · + un−1Un−1(x, 0) − unS[RU] − unS[NU] + unS[h(x, t)].
(1.10)

The second step in Sumudu decomposition method is that we represent solution as an
infinite series:

U(x, t) =
∞∑
i=0

Ui(x, t) (1.11)
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and the nonlinear term can be decomposed as

NU(x, t) =
∞∑
i=0

Ai, (1.12)

where Ai are Adomian polynomials [6] of U0, U1, U2, . . ., Un and it can be calculated by
formula

Ai =
1
i!

di

dλi

[
N

∞∑
i=0

λiUi

]

λ=0

, i = 0, 1, 2, . . . . (1.13)

Substitution of (1.11) and (1.12) into (1.10) yields

S

[ ∞∑
i=0

Ui(x, t)

]
= U(x, 0) + uU′(x, 0) + · · · + un−1Un−1(x, 0) − unS[RU(x, t)]

− unS

[ ∞∑
i=0

Ai

]
+ unS[h(x, t)].

(1.14)

On comparing both sides of (1.14) and by using standard ADM we have:

S[U0(x, t)] = U(x, 0) + uU′(x, 0) + · · · + un−1Un−1(x, 0) + unS[h(x, t)] = Y (x, u) (1.15)

then it follows that

S[U1(x, t)] = −unS[RU0(x, t)] − unS[A0],

S[U2(x, t)] = −unS[RU1(x, t)] − unS[A1].
(1.16)

In more general, we have

S[Ui+1(x, t)] = −unS[RUi(x, t)] − unS[Ai], i ≥ 0. (1.17)

On applying the inverse Sumudu transform to (1.15) and (1.17), we get

U0(x, t) = K(x, t),

Ui+1(x, t) = −S−1[unS[RUi(x, t)] + unS[Ai]], i ≥ 0,
(1.18)

where K(x, t) represents the term that is arising from source term and prescribed initial
conditions. On using the inverse Sumudu transform to h(x, t) and using the given condition
we get

Ψ = Φ + S−1[h(x, t)], (1.19)
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where the function Ψ, obtained from a term by using the initial condition is given by

Ψ = Ψ0 + Ψ1 + Ψ2 + Ψ3 + · · · + Ψn, (1.20)

the termsΨ0,Ψ1,Ψ2,Ψ3, . . . ,Ψn appears while applying the inverse Sumudu transform on the
source term h(x, t) and using the given conditions. We define

U0 = Ψk + · · · + Ψk+r , (1.21)

where k = 0, 1, . . . , n, r = 0, 1, . . . , n − k. Then we verify that U0 satisfies the original equation
(1.7). We now consider the particular form of inhomogeneous nonlinear partial differential
equations:

LU + RU +NU = h(x, t) (1.22)

with the initial condition

U(x, 0) = f(x), Ut(x, 0) = g(x), (1.23)

where L = ∂2/∂t2 is second-order differential operator, NU represents a general non-linear
differential operator where as h(x, t) is source term. The methodology consists of applying
Sumudu transform first on both sides of (1.10) and (1.23),

S[U(x, t)] = f(x) + ug(x) − u2S[RU] − u2S[NU] + u2S[h(x, t)]. (1.24)

Then by the second step in Sumudu decomposition method and inverse transform as
in the previous we have

U(x, t) = f(x) + tg(t) − S−1
[
u2S[RU] − u2S[NU]

]
+ S−1

[
u2S[h(x, t)]

]
. (1.25)

2. Applications

Now in order to illustrate STDM we consider some examples. Consider a nonlinear partial
differential equation

Utt +U2 −U 2
x = 0, t > 0 (2.1)

with initial conditions

U(x, 0) = 0,

Ut(x, 0) = ex.
(2.2)
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By taking Sumudu transform for (2.1) and (2.2)we obtain

S[U(x, t)] = uex + u2S
[
U2

x −U2
]
. (2.3)

By applying the inverse Sumudu transform for (2.3), we get

[U(x, t)] = tex + S−1
[
u2S

[
U2

x −U2
]]

(2.4)

which assumes a series solution of the function U(x, t) and is given by

U(x, t) =
∞∑
i=0

Ui(x, t). (2.5)

Using (2.4) into (2.5)we get

∞∑
i=0

Ui(x, t) = tex + S−1
[
u2S

[ ∞∑
i=0

Ai(U) −
∞∑
i=0

Bi(U)

]]
. (2.6)

In (2.6) Ai(u) and Bi(u) are Adomian polynomials that represents nonlinear terms. So
Adomian polynomials are given as follows:

∞∑
i=0

Ai(U) = U2
x,

∞∑
i=0

Ai(U) = U2.

(2.7)

The few components of the Adomian polynomials are given as follows:

A0(U) = U2
0x, A1(U) = 2U0xU1x, Ai(U) =

i∑
r=0

UrxUi−rx,

B0(U) = U2
0, B1(U) = 2U0U1, Bi(U)

i∑
r=0

UrUi−r .

(2.8)

From the above equations we obtain

U0(x, t) = tex,

Ui+1(x, t) = S−1
[
S

[ ∞∑
i=0

Ai(U) −
∞∑
i=0

Bi(U)

]]
, n ≥ 0.

(2.9)
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Then the first few terms of Ui(x, t) follow immediately upon setting

U1(x, t) = S−1
[
u2S

[ ∞∑
i=0

A0(U) −
∞∑
i=0

B0(U)

]]

= S−1
[
u2S

[
U2

0x −U2
0

]]
= S−1

[
u2S

[
t2e2x − t2e2x

]]

= S−1
[
u2S[0]

]
= 0.

(2.10)

Therefore the solution obtained by LDM is given as follows:

U(x, t) =
∞∑
i=0

Ui(x, t) = tex. (2.11)

Example 2.1. Consider the system of nonlinear coupled partial differential equation

Ut

(
x, y, t

) − VxWy = 1,

Vt

(
x, y, t

) −WxUy = 5,

Wt

(
x, y, t

) −UxVy = 5

(2.12)

with initial conditions

U
(
x, y, 0

)
= x + 2y,

V
(
x, y, 0

)
= x − 2y,

W
(
x, y, 0

)
= −x + 2y.

(2.13)

Applying the Sumudu transform (denoted by S)we have

U
(
x, y, u

)
= x + 2y + u + uS

[
VxWy

]
,

V
(
x, y, u

)
= x − 2y + 5u + uS

[
WxUy

]
,

W
(
x, y, u

)
= −x + 2y + 5u + uS

[
UxVy

]
.

(2.14)

On using inverse Sumudu transform in (2.14), our required recursive relation is given
by

U
(
x, y, t

)
= x + 2y + t + S−1[uS[VxWy

]]
,

V
(
x, y, t

)
= x − 2y + 5t + S−1[uS[WxUy

]]
,

U
(
x, y, t

)
= −x + 2y + 5t + S−1[uS[UxVy

]]
.

(2.15)
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The recursive relations are

U0
(
x, y, t

)
= t + x + 2y,

Ui+1
(
x, y, t

)
= S−1

[
uS

[ ∞∑
i=0

Ci(V,W)

]]
, i ≥ 0,

V0
(
x, y, t

)
= 5t + x − 2y,

Vi+1
(
x, y, t

)
= S−1

[
uS

[ ∞∑
i=0

Di(U,W)

]]
, i ≥ 0,

W0
(
x, y, t

)
= 5t − x + 2y,

Wi+1
(
x, y, t

)
= S−1

[
uS

[ ∞∑
i=0

Ei(U,V )

]]
, i ≥ 0,

(2.16)

where Ci(V,W), Di(U,W), and Ei(U,V ) are Adomian polynomials representing the nonlin-
ear terms [1] in above equations. The few components of Adomian polynomials are given as
follows

C0(V,W) = V0xW0y,

C1(V,W) = V1xW0y + V0xW1y,

...

Ci(V,W) =
i∑

r=0

VrxWi−ry,

D0(U,W) = U0yW0x,

D1(U,W) = U1yW0x +W1xU0y,

...

Di(U,W) =
i∑

r=0

WrxUi−ry,

E0(U,V ) = U0xV0y,

E1(U,V ) = U1xV0y +U0xV1y,

...

Ei(V,W) =
i∑

r=0

UrxVi−ry.

(2.17)
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By this recursive relation we can find other components of the solution

U1
(
x, y, t

)
= S−1[uS[C0(V,W)]] = S−1[uS[V0xW0y

]]
= S−1[uS[(1)(2)]] = 2t,

V1
(
x, y, t

)
= S−1[uS[D0(U,W)]] = S−1[uS[W0xU0y

]]
= S−1[uS[(−1)(2)]] = −2t,

W1
(
x, y, t

)
= S−1[uS[E0(U,V )]] = S−1[uS[U0xV0y

]]
= S−1[uS[(1)(−2)]] = −2t,

U2
(
x, y, t

)
= S−1[uS[C1(V,W)]] = S−1[uS[V1xW0y + V0xW1y

]]
= 0,

V2
(
x, y, t

)
= S−1[uS[D1(U,W)]] = S−1[uS[U0yW1x +U1yW0x

]]
= 0,

W2
(
x, y, t

)
= S−1[uS[D1(U,V )]] = S−1[uS[U1xV0y +U0xV1y

]]
= 0.

(2.18)

The solution of above system is given by

U
(
x, y, t

)
=

∞∑
i=0

Ui

(
x, y, t

)
= x + 2y + 3t,

V
(
x, y, t

)
=

∞∑
i=0

Vi

(
x, y, t

)
= x − 2y + 3t,

W
(
x, y, t

)
=

∞∑
i=0

Wi

(
x, y, t

)
= −x + 2y + 3t.

(2.19)

Example 2.2. Consider the following homogeneous linear system of PDEs:

Ut(x, t) − Vx(x, t) − (U − V ) = 2,

Vt(x, t) +Ux(x, t) − (U − V ) = 2,
(2.20)

with initial conditions

U(x, 0) = 1 + ex, V (x, 0) = −1 + ex. (2.21)

Taking the Sumudu transform on both sides of (2.20), then by using the differentiation
property of Sumudu transform and initial conditions, (2.21) gives

S[U(x, t)] = 1 + ex − 2u + uS[Vx] + uS[U − V ],

S[V (x, t)] = −1 + ex − 2u − uS[Ux] + uS[U − V ],
(2.22)

Ux(x, t) =
∞∑
i=0

Uxi(x, t), Vx(x, t) =
∞∑
i=0

Vxi(x, t). (2.23)
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Using the decomposition series (2.23) for the linear terms U(x, t), V (x, t) and Ux, Vx,
we obtain

S

[ ∞∑
i=0

Ui(x, t)

]
= 1 + ex − 2u + uS

[ ∞∑
i=0

Vix

]
+ uS

[ ∞∑
i=0

Ui −
∞∑
i=0

Vi

]
,

S

[ ∞∑
i=0

Vi(x, t)

]
= −1 + ex − 2u − uS

[ ∞∑
i=0

Uix

]
+ uS

[ ∞∑
i=0

Ui −
∞∑
i=0

Vi

]
.

(2.24)

The SADM presents the recursive relations

S[U0(x, t)] = 1 + ex − 2u,

S[V0(x, t)] = −1 + ex − 2u,

S[Ui+1] = uS[Vix] + uS[Ui − Vi], i ≥ 0,

S[Vi+1] = −uS[Uix] + uS[Ui − Vi], i ≥ 0.

(2.25)

Taking the inverse Sumudu transform of both sides of (2.25) we have

U0(x, t) = 1 + ex − 2t,

V0(x, t) = −1 + ex − 2t,

U1 = S−1[uS[V0x] + uS[U0 − V0]] = S−1[uex + 2u] = tex + 2t,

V1 = S−1[−uS[U0x] + uS[U0 − V0]] = S−1[−uex + 2u] = −tex + 2t,

U2 = S−1
[
u2ex

]
=

t2

2!
ex,

V2 = S−1
[
u2ex

]
=

t2

2!
ex,

(2.26)

and so on for other components. Using (1.11), the series solutions are given by

U(x, t) = 1 + ex
(
1 + t +

t2

2!
+
t3

3!
· · ·

)
,

V (x, t) = −1 + ex
(
1 − t +

t2

2!
− t3

3!
· · ·

)
.

(2.27)

Then the solutions follows

U(x, t) = 1 + ex+t,

V (x, t) = −1 + ex−t.
(2.28)
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Example 2.3. Consider the system of nonlinear partial differential equations

Ut + VUx +U = 1,

Vt −UVx − V = 1
(2.29)

with initial conditions

U(x, 0) = ex, V (x, 0) = e−x. (2.30)

On using Sumudu transform on both sides of (2.29), and by taking Sumudu transform
for the initial conditions of (2.30)we get

S[U(x, t)] = ex + u − uS[VUx] − uS[U],

S[V (x, t)] = ex + u + uS[UVx] + uS[V ].
(2.31)

Similar to the previous example, we rewrite U(x, t) and V (x, t) by the infinite series
(1.11), then inserting these series into both sides of (2.31) yields

S

[ ∞∑
i=0

Ui(x, t)

]
= ex + u − uS

[ ∞∑
i=0

Ai

]
− uS

[ ∞∑
i=0

Ui

]
,

S

[ ∞∑
i=0

Vi(x, t)

]
= e−x + u + uS

[ ∞∑
i=0

Bi

]
− uS

[ ∞∑
i=0

Vi

]
,

(2.32)

where the terms Ai and Bi are handled with the help of Adomian polynomials by (1.12)
that represent the nonlinear terms VUx and UVx, respectively. We have a few terms of the
Adomian polynomials for VUx and UVx which are given by

A0 = U0xV0, A1 = U0xV1 +U1xV0,

A2 = U0xV2 +U1xV1 +U2xV0,

...

B0 = V0xU0, B1 = V0xU1 + V1xU0,

B2 = V0xU2 + V1xU1 + V2xU0,

...

(2.33)
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By taking the inverse Sumudu transform we have

U0 = ex + t,

V0 = e−x + t,
(2.34)

Ui+1 = S−1[u] − S−1[uS[Ai]] − S−1[uS[Ui]],

Vi+1 = S−1[u] + S−1[uS[Bi]] + S−1[uS[Vi]].
(2.35)

Using the inverse Sumudu transform on (2.35)we have

U1 = −t − t2

2!
− tex − t2

2!
ex,

V1 = −t − t2

2!
+ te−x − t2

2!
e−x,

U2 =
t2

2!
+
t2

2!
ex · · · ,

V2 =
t2

2!
+
t2

2!
e−x · · · .

(2.36)

The rest terms can be determined in the same way. Therefore, the series solutions are
given by

U(x, t) = ex
(
1 − t +

t2

2!
− t3

3!
· · ·

)
,

V (x, t) = e−x
(
1 + t +

t2

2!
+
t3

3!
· · ·

)
.

(2.37)

Then the solution for the above system is as follows:

U(x, t) = ex−t, V (x, t) = e−x+t. (2.38)

3. Conclusion

The Sumudu transform-Adomian decomposition method has been applied to linear and
nonlinear systems of partial differential equations. Three examples have been presented, this
method shows that it is very useful and reliable for any nonlinear partial differential equation
systems. Therefore, this method can be applied to many complicated linear and nonlinear
PDEs.
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equation in unbounded domain,” Applied Mathematics and Computation, vol. 177, no. 2, pp. 737–744,
2006.

[3] N. Bellomo and R. A. Monaco, “A comparison between Adomian’s decomposition methods and
perturbation techniques for nonlinear random differential equations,” Journal of Mathematical Analysis
and Applications, vol. 110, no. 2, pp. 495–502, 1985.

[4] R. Race, “On the Adomian decomposition method and comparison with Picard’s method,” Journal of
Mathematical Analysis and Applications, vol. 128, pp. 480–483, 1987.

[5] G. Adomian and R. Rach, “Noise terms in decomposition solution series,” Computers & Mathematics
with Applications, vol. 24, no. 11, pp. 61–64, 1992.

[6] A. M. Wazwaz, “Necessary conditions for the appearance of noise terms in decomposition solution
series,” Applied Mathematics and Computation, vol. 81, pp. 1718–1740, 1987.
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