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The aim of this paper is to discuss the uniqueness of the difference monomials fnf(z + c). It
assumed that f and g are transcendental entire functions with finite order and Ek)(1, fnf(z+ c)) =
Ek)(1, gng(z + c)), where c is a nonzero complex constant and n, k are integers. It is proved that if
one of the following holds (i) n ≥ 6 and k = 3, (ii) n ≥ 7 and k = 2, and (iii) n ≥ 10 and k = 1,
then fg = t1 or f = t2g for some constants t2 and t3 which satisfy tn+12 = 1 and tn+13 = 1. It is an
improvement of the result of Qi, Yang and Liu.

1. Introduction and Main Results

In this paper, a meromorphic (respectively entire) function always means meromorphic
(respectively, analytic) in the complex plane C. It is also assumed that the reader is familiar
with the basic concepts of the Nevanlinna theory. We adopt the standard notations in the
Nevanlinna value distribution theory of meromorphic functions as explained in [1, 2].

Let f and g be two nonconstant meromorphic functions, and let a be a value in the
extended plane. We say that f and g share the value a CM, provided that f and g have the
same a-pints with the samemultiplicities. We say that f and g share the value a IM, provided
that f and g have the same a-points ignoring multiplicities. The order of f is defined by

σ
(
f
)
= lim sup

r→∞

log T
(
r, f

)

log r
. (1.1)
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Let f be a nonconstant meromorphic function on C, let a ∈ C be a finite value, and
let k be a positive integer or infinity. We denote by E(a, f) the set of zeros of f − a and
count multiplicities, while by E(a, f) the set of zeros of f − a but ignore multiplicities. Also,
we denote by Ek)(a, f) the set of zeros of f − a with multiplicities less than or equal to
k and count multiplicities. For a ∈ C

⋃{∞}, we denote by Nk)(r, 1/(f − a)) the counting
function corresponding to the set Ek)(a, f)while byN(k+1(r, 1/(f − a)) the counting function
corresponding to the set E(k+1(a, f) := E(a, f) \Ek)(a, f). If Ek(a, f) = Ek(a, g), we say that f ,
g share the value a with weight k.

The definition implies that if f and g share a value awith weight k, then z0 is a zero of
f − a with multiplicity m(≤ k) if and only if it is a zero of g − a with multiplicity m(≤ k) and
z0 is a zero of f −awith multiplicitym(> k) if and only if it is a zero of g −awith multiplicity
n(> k) where m is not necessarily equal to n.

Also, we denote by Nk)(r, 1/(f − a)) and N(k+1(r, 1/(f − a)) the reduced forms of
Nk)(r, 1/(f − a)) and N(k+1(r, 1/(f − a)), respectively. At last, we set

Nk

(
r, f

)
= N

(
r, f

)
+N(2

(
r, f

)
+ · · · +N(k

(
r, f

)
. (1.2)

Hayman proposed the well-known conjecture in [3].

Hayman Conjecture

If an entire function f satisfies fnf ′ /= 1 for all n ∈ N, then f is a constant.
In fact, Hayman has proved that the conjecture holds in the cases n ≥ 2 in [4] while

Clunie proved the cases n = 1 in [5], respectively. In 1997, Yang and Hua [6] studied the
uniqueness theorem of the differential monomials and obtained the following result.

Theorem A. Let f and g be nonconstant entire function, and let n ≥ 6 be an integer. If fnf ′ and
gng ′ share 1CM, then either f(z) = c1e

cz, g(z) = c2e
−cz where c1, c2 and c are constants satisfying

(c1c2)
n+1c2 = −1, or f = tg for a constant t such that tn+1 = 1.

In 2010, Qi et al. [7] studied the uniqueness of the difference monomials and obtained
the following result.

Theorem B. Let f and g be transcendental entire functions with finite order, c a non-zero complex
constant, and n ≥ 6 an integer. If E(1, fnf(z + c)) = E(1, gng(z + c)), then fg = t1 or f = t2g for
some constants t1 and t2 which satisfy tn+11 = 1 and tn+12 = 1.

In this paper, we will obtain the following results.

Theorem 1.1. Let f and g be transcendental entire functions with finite order, c a non-zero complex
constant, and n ≥ 6 an integer. If E3)(1, fnf(z + c)) = E3)(1, gng(z + c)), then the assertion of
Theorem B holds.

Theorem 1.2. Let f and g be transcendental entire functions with finite order, c a non-zero complex
constant, and n ≥ 7 an integer. If E2)(1, fnf(z + c)) = E2)(1, gng(z + c)), then the assertion of
Theorem B holds.
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Theorem 1.3. Let f and g be transcendental entire functions with finite order, c a non-zero complex
constant, and n ≥ 10 an integer. If E1)(1, fnf(z + c)) = E1)(1, gng(z + c)), then the assertion of
Theorem B holds.

2. Auxiliary Results

Lemma 2.1 (see [8, Corollary 2.5]). Let f(z) be a meromorphic function in the complex plane with
finite order σ = σ(f), and let η be a fixed non-zero complex number. Then for each ε > 0, one has

m

(

r,
f
(
z + η

)

f(z)

)

+m

(

r,
f(z)

f
(
z + η

)

)

= O
(
rσ−1+ε

)
. (2.1)

Lemma 2.2 (see [8, Theorem 2.1]). Let f(z) be a meromorphic function in the complex plane with
finite order σ = σ(f), and let η be a fixed non-zero complex number. Then for each ε > 0, one has

T
(
r, f

(
z + η

))
= T

(
r, f(z)

)
+O

(
rσ−1+ε

)
+O

(
log r

)
. (2.2)

Lemma 2.3. Let f(z) be an entire function with finite order σ = σ(f), c a fixed non-zero complex
number, and

P(z) = anf(z)n + an−1f(z)n−1 + · · · + a1f(z) + a0, (2.3)

where aj(j = 0, 1, . . . , n) are constants. If F(z) = P(z)f(z + c), then

T(r, F) = (n + 1)T
(
r, f

)
+O

(
rσ(f)−1+ε

)
+O

(
log r

)
. (2.4)

Proof. Since f(z) is an entire transcendental function with finite order, we can deduce from
Lemma 2.1 and the standard Valiron-Mohon’ko theorem that

(n + 1)T
(
r, f(z)

)
= T

(
r, f(z)P(z)

)
+O(1)

= m
(
r, f(z)P(z)

)
+O(1)

≤ m

(
r,
f(z)P(z)
F(z)

)
+m(r, F(z)) +O(1)

= m

(
r,

f(z)
f(z + c)

)
+m(r, F(z)) +O(1)

≤ T(r, F(z)) +O
(
rσ−1+ε

)
+O(1).

(2.5)

Therefore

T(r, F) ≥ (n + 1)T
(
r, f

)
+O

(
rσ−1+ε

)
+O(1). (2.6)
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On the other hand, Lemma 2.2 implies that

T(r, F(z)) ≤ T(r, P(z)) + T
(
r, f(z + c)

)

= nT
(
r, f(z)

)
+ T

(
r, f(z)

)
+O

(
rσ−1+ε

)
+O

(
log r

)

= (n + 1)T
(
r, f

)
+O

(
rσ−1+ε

)
+O

(
log r

)
.

(2.7)

We will obtain the conclusion of Lemma 2.3.

Remark 2.4. The condition “entire” cannot be replaced by “meromorphic” in Lemma 2.3, as is
shown by the following example.

Example 2.5. Let f(z) = (ez − 1)/(ez + 1), c = πi, and F(z) = f(z)f(z + c), we can see

T(r, F)/= 2T
(
r, f

)
+O

(
rσ(f)−1+ε

)
+O

(
log r

)
(2.8)

for every set of {rn}with infinite measure.

Lemma 2.6 (see [9, Lemma 2.1]). Let f and g be two nonconstant meromorphic functions satisfying
Ek)(1, f) = Ek)(1, g) for some positive integer k ∈ N. Define H as follows:

H =
(
f ′′

f ′ −
2f ′

f − 1

)
−
(
g ′′

g ′ −
2g ′

g − 1

)
. (2.9)

IfH /≡ 0, then

N(r,H) ≤ N(2
(
r, f

)
+N(2

(
r,

1
f

)
+N(2

(
r, g

)
+N(2

(
r,

1
g

)
+N0

(
r,

1
f ′

)

+N0

(
r,

1
g ′

)
+N(k+1

(
r,

1
f − 1

)
+N(k+1

(
r,

1
g − 1

)

+ S
(
r, f

)
+ S

(
r, g

)
,

(2.10)

where N0(r, 1/f ′) denotes the counting function of zeros of f ′ but not zeros of f(f − 1) and
N0(r, 1/g ′) is similarly defined.

Lemma 2.7 (see [10]). Under the condition of Lemma 2.6, one has

N1)

(
r,

1
f − 1

)
= N1)

(
r,

1
g − 1

)
≤ N(r,H) + S

(
r, f

)
+ S

(
r, g

)
. (2.11)
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Lemma 2.8 (see [10]). Let H be defined as Lemma 2.6. If H ≡ 0, then either f ≡ g or fg ≡ 1
provided that

lim sup
r→∞, r∈I

N
(
r, f

)
+N

(
r, g

)
+N

(
r, 1/f

)
+N

(
r, 1/f

)

T(r)
< 1, (2.12)

where T(r) := max{T(r, f), T(r, g)} and I is a set with infinite linear measure.

Lemma 2.9 (see [11, Lemma 2.2]). Let T : (0,+∞) → (0,+∞) be a nondecreasing continuous
function, s > 0, 0 < α < 1, and let F ⊂ R+ be the set of all r such that

T(r) ≤ αT(r + s). (2.13)

If the logarithmic measure of F is infinite, then

lim sup
r→∞

log T
(
r, f

)

log r
= ∞. (2.14)

3. Proof of Theorem 1.1

We define

F := fnf(z + c),

G := gng(z + c).
(3.1)

First of all, suppose that H /≡ 0. We replace f and g by F and G, respectively, in Lemma 2.7
and Lemma 2.8. Thus,

N1)

(
r,

1
F − 1

)
= N1)

(
r,

1
G − 1

)
≤ N(r,H) + S

(
r, f

)
+ S

(
r, g

)

≤ N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)

+N(4

(
r,

1
F − 1

)
+N(4

(
r,

1
G − 1

)
+ S

(
r, f

)
+ S

(
r, g

)
.

(3.2)

Applying the second main theorem to F and G jointly implies that

T(r, F) + T(r, G) ≤ N

(
r,

1
F

)
+N

(
r,

1
F − 1

)
+N

(
r,

1
G

)
+N

(
r,

1
G − 1

)

−N0

(
r,

1
F ′

)
−N0

(
r,

1
G′

)
+ S

(
r, f

)
+ S

(
r, g

)
.

(3.3)
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Noting that

N

(
r,

1
F − 1

)
− 1
2
N1)

(
r,

1
F − 1

)
+N(4

(
r,

1
F − 1

)
≤ 1

2
N

(
r,

1
F − 1

)
≤ 1

2
T(r, F),

N

(
r,

1
G − 1

)
− 1
2
N1)

(
r,

1
G − 1

)
+N(4

(
r,

1
G − 1

)
≤ 1

2
N

(
r,

1
G − 1

)
≤ 1

2
T(r, G).

(3.4)

According to Lemma 2.9 and (3.2)–(3.4), we can obtain that

T(r, F) + T(r, G) ≤ 2N2

(
r,

1
F

)
+ 2N2

(
r,

1
G

)
+ S

(
r, f

)
+ S

(
r, g

)

≤ 4N
(
r,

1
f

)
+ 4N

(
r,

1
g

)
+ 2N

(
r,

1
f(z + c)

)

+ 2N
(
r,

1
g(z + c)

)
+ S

(
r, f

)
+ S

(
r, g

)

≤ 6N
(
r,

1
f

)
+ 6N

(
r,

1
g

)
+ S

(
r, f

)
+ S

(
r, g

)

≤ 6T
(
r,

1
f

)
+ 6T

(
r,

1
g

)
+ S

(
r, f

)
+ S

(
r, g

)
.

(3.5)

Lemma 2.3 shows that

T(r, F) = (n + 1)T
(
r, f

)
+O

(
rσ(f)−1+ε

)
+O

(
log r

)
,

T(r, G) = (n + 1)T
(
r, g

)
+O

(
rσ(g)−1+ε

)
+O

(
log r

)
.

(3.6)

We can deduce that

(n − 5)
(
T
(
r, f

)
+ T

(
r, g

)) ≤ O
(
rσ(f)−1+ε

)
+O

(
rσ(g)−1+ε

)
+ S

(
r, f

)
+ S

(
r, g

)
, (3.7)

which is impossible since n ≥ 6. Therefore, we have H ≡ 0. Noting that

N

(
r,

1
F

)
+N

(
r,

1
G

)
≤ 3T

(
r, f

)
+ 3T

(
r, g

)
+ S

(
r, f

)
+ S

(
r, g

) ≤ T(r), (3.8)

where T(r) = max{T(r, F), T(r, G)}. Together with Lemma 2.8, it shows that either F ≡ G or
FG ≡ 1. We will consider the following two cases.

Case 1. Suppose that F(z) = G(z). Therefore

f(z)nf(z + c) = g(z)ng(z + c). (3.9)
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Let h1(z) = f(z)/g(z); we have

h1(z)nh1(z + c) ≡ 1. (3.10)

If h1(z) is not a constant, then Lemma 2.2 and (3.10) imply that

nT(r, h1) = T(r, h1(z + c)) +O(1) = T(r, h1) +O
(
rσ(h1)−1+ε

)
+O

(
log r

)
, (3.11)

which is a contraction with n ≥ 6. Thus, h1(z) ≡ t1, where t1 is a constant. From (3.10), we
have f(z) = t1g(z) and tn+11 = 1.

Case 2. Suppose that F(z)G(z) ≡ 1. Therefore

f(z)nf(z + c)g(z)ng(z + c) ≡ 1. (3.12)

Let h2(z) = f(z)g(z); we have

h2(z)nh2(z + c) ≡ 1. (3.13)

By the same way as Case 1, we can obtain that h2 is a constant. Therefore, f(z)g(z) = t2 and
tn+12 = 1.

4. Proof of Theorem 1.2

Noting that

N

(
r,

1
F − 1

)
− 2
5
N1)

(
r,

1
F − 1

)
+
4
5
N(3

(
r,

1
F − 1

)
≤ 3

5
N

(
r,

1
F − 1

)
≤ 3

5
T(r, F),

N

(
r,

1
G − 1

)
− 2
5
N1)

(
r,

1
G − 1

)
+
4
5
N(3

(
r,

1
G − 1

)
≤ 3

5
N

(
r,

1
G − 1

)
≤ 3

5
T(r, G).

(4.1)

According to (3.1) and (4.1), we can obtain the conclusion of Theorem 1.2 by the same way
as Section 3.

5. Proof of Theorem 1.3

Noting that

N

(
r,

1
F − 1

)
− 1
4
N1)

(
r,

1
F − 1

)
+
1
2
N(2

(
r,

1
F − 1

)
≤ 3

4
N

(
r,

1
F − 1

)
≤ 3

4
T(r, F),

N

(
r,

1
G − 1

)
− 1
4
N1)

(
r,

1
G − 1

)
+
1
2
N(2

(
r,

1
G − 1

)
≤ 3

4
N

(
r,

1
G − 1

)
≤ 3

4
T(r, G).

(5.1)
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According to (3.1) and (5.1), we can obtain the conclusion of Theorem 1.2 by the same way
as Section 3.
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