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By introducing subdifferentiability of lower semicontinuous convex function ϕ(x(t), x(t − τ)) and
its conjugate function, as well as critical point theory and operator equation theory, we obtain
the existence of multiple subharmonic periodic solutions to the following second-order nonlinear
nonautonomous neutral nonlinear functional differential equation x

′′
(t)+x

′′
(t−2τ)+f(t, x(t), x(t−

τ), x(t − 2τ)) = 0, x(0) = 0.

1. Introduction

The existence of periodic solutions for differential system has received a great deal of
attention in the last few decades. Different from ordinary differential equations and partial
differential equations that do not contain delay variate, it is very difficult to study the
existence of periodic solutions for functional differential equations. For this reason, many
mathematicians developed different approaches such as the averaging method [1], the
Massera-Yoshizawa theory [2, 3], the Kaplan-York [4] method of coupled systems, the
Grafton cone mapping method [5], the Nussbaum method of fixed point theory [6] and
Mawhin [7] coincidence degree theory.

However, the critical point theory was rarely used in the literature, and most of the
existing results were established for autonomous functional differential equations while little
was done for nonautonomous equations via critical point theory.
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In this paper, by using critical point and operator equation theories, we study
the existence of the following second-order nonlinear and nonautonomous mixed-type
functional differential equation:

x′′(t) + x′′(t − 2τ) + f(t, x(t), x(t − τ), x(t − 2τ)) = 0,

x(0) = 0.
(1.1)

Our basic assumptions are the following (A1) ∼ (A3) and (A4) ∼ (A6) to be given in
Section 4:

(A1) f(t, x1, x2, x3) ∈ C(R4,R), and ∂f(t, x1, x2, x3)/∂t /= 0;

(A2) there exists a continuously differentiable function F(t, x1, x2) ∈ C1(R3,R) such that

F ′
2(t, x1, x2) + F

′
1(t, x2, x3) = f(t, x1, x2, x3), (1.2)

where F ′
2(t, x1, x2) and F ′

1(t, x2, x3) denote ∂F(t, x1, x2)/∂x2 and ∂F(t, x2, x3)/∂x2,
respectively;

(A3) F(t + τ, x1, x2) = F(t, x1, x2) for all x1, x2 ∈ R.

2. Variational Structure

Fix γ > 1, τ > 0, where γ is a positive integer and

H1
0
[
0, 2γτ

]
=
{
x(t) ∈ L2[0, 2γτ

] | x′ ∈ L2[0, 2γτ
]
, x(t) is 2γτ-periodic function in t

x(0) = 0, and x(t) has compact support on
[
0, 2γτ

]}
.

(2.1)

It is obvious thatH1
0[0, 2γτ] is a Sobolev space by defining the inner product (·, ·) and

the norm ‖ · ‖ as follows:

〈
x, y

〉
H1

0 [0,2γτ]
=
∫2γτ

0
x′(t)y′(t)dt,

‖x‖H1
0 [0,2γτ]

=

(∫2γτ

0

∣∣x′(t)
∣∣2dt

)1/2

, ∀x, y ∈ H1
0
[
0, 2γτ

]
.

(2.2)

Moreover, x(t) ∈ H1
0[0, 2γτ] can be expressed as

x(t) = a0 +
∞∑

k=1

(
ak cos

kπ

γτ
t + bk sin

kπ

γτ
t

)
. (2.3)
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Let us consider the functional I(x) defined onH1
0[0, 2γτ] by

I(x) =
∫2γτ

0

[
x′(t)x′(t − τ) − F(t, x(t), x(t − τ))]dt. (2.4)

For all x, y ∈ H1
0[0, 2γτ] and ε > 0, we know that

I
(
x + εy

)
= I(x) + ε

(∫2γτ

0

[
x′(t)y′(t − τ) + x′(t − τ)y′(t)

−(F(t, x(t)+ εy(t), x(t − τ) + εy(t − τ)) − F(t, x(t), x(t − τ)))]dt
)

+ ε2
∫2γτ

0
y′(t)y′(t − τ)dt.

(2.5)

It is then easy to see that

〈
I ′(x), y

〉
=
∫2γτ

0

[
x′(t)y′(t − τ) + x′(t − τ)y′(t) − F ′

1(t, x(t), x(t − τ))y(t)

−F ′
2(t, x(t), x(t − τ))y(t − τ)

]
dt,

(2.6)

where I ′(x) denotes the Frechet differential of the function I(x). By the periodicity of
F(t, u1, u2), x(t), and y(t), we have

∫2γτ

0
x′(t)y′(t − τ)dt =

∫2γτ

0
x′(t)dy(t − τ) = x′(t)y(t − τ)∣∣2γτ0 ,

−
∫2γτ

0
x′′(t)y(t − τ)dt = −

∫2γτ

0
x′′(t + τ)y(t)dt,

∫2γτ

0
x′(t − τ)y′(t)dt = −

∫2γτ

0
x′′(t − τ)y(t)dt.

(2.7)

Similarly, we have

∫2γτ

0
F ′
2(t, x(t), x(t − τ))y(t − τ)dt =

∫ (2γ−1)τ

−τ
F ′
2(t + τ, x(t + τ), x(t))y(t)dt

=
∫2γτ

0
F ′
2(t, x(t + τ), x(t))y(t)dt.

(2.8)
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Hence,

〈
I ′(x), y

〉
=
∫2γτ

0

[−x′′(t + τ) − x′′(t − τ)

−F ′
u1(t, x(t)x(t − τ)) − F ′

u2(t, x(t + τ), x(t))
]
y(t)dt.

(2.9)

Therefore, the Euler equation corresponding to the functional I(x) is

x′′(t + τ) + x′′(t − τ) + [F ′
u1(t, x(t), x(t − τ)) + F ′

u2(t, x(t + τ), x(t))
]
= 0. (2.10)

It is not difficult to see that (2.10) is equivalent to (1.1). Thus, system (1.1) is the Euler
equation of the functional I(x). It follows that it is possible to obtain 2γτ-periodic solutions
of system (1.1) by seeking critical points of the functional I(x).

Since I(x) has neither a supremum nor an infimum, we do not seek critical points
of the functional I(x) by the extremum method. But we may use operator equation theory.
First via the dual variational principle, we obtain new operator equations (see (4.16)) related
to (1.1). Then solutions to system (1.1) are obtained by seeking critical points of operator
equation (4.16).

In this paper, our main tool is the following.

Lemma 2.1 (Maintain Pass Theorem). Let H be a real Banach space. If I(·) ∈ C1(H,R) satisfies
the Palais-Smale condition as well as the following additional conditions:

(1) there exist constants ρ > 0 and a > 0 such that I(x) ≥ a, for all x ∈ ∂Bρ, where Bρ =
{x ∈ H : ‖x‖H < ρ},

(2) I(θ) ≤ 0 and there exists x0 ∈Bρ such that I(x0) ≤ 0, then c = infh∈Γsups∈[0,1]I(h(s)) is a
positive critical value of I, where

Γ = {h ∈ C([0, 1],H) | h(0) = θ, h(1) = x0}. (2.11)

The rest of this paper is organized as follows. Subdifferentiability of lower
semicontinuous convex function ϕ(x(t), x(t − τ)) and its conjugate function are introduced
in Section 3. In Section 4, we first give the definition of the weak solution to (1.1), then
we establish the new operator equation (4.16) related to (1.1) by the conjugate function of
F(t, x(t), x(t − τ)) and show that we can obtain solution to (1.1) from the solution to operator
equation (4.16). In Section 5, by seeking critical points of operator equation (4.16), we obtain
the result that there exist multiple subharmonic periodic solutions to system (1.1). Finally in
Section 6, an example and a remark are given to illustrate our result.

3. The Subdifferentiability and the Conjugate Function of
the Lower Semicontinuous Convex Function ϕ(x(t), x(t − τ))

Let X be a space of all given n × τ-periodic functions in t and a Banach space, where n ∈ N

is a positive integer. Denote R = R ∪ {+∞}. Let ϕ : X2 → R be a lower semicontinuous
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convex function. Generally, ϕ is not always differentiable in conventional sense, but we may
generalize the definition of “derivative” as follows.

Definition 3.1. Let (x∗
1, x

∗
2) ∈ X∗ × X∗. We say that (x∗

1, x
∗
2) is a subgradient of ϕ at point

(x0(t), x0(t − τ)) ∈ X ×X if

ϕ(x0(t), x0(t − τ)) +
〈
x∗
1, x(t) − x0(t)

〉
+
〈
x∗
2, x(t − τ) − x0(t − τ)

〉 ≤ ϕ(x(t), x(t − τ)). (3.1)

For all x0(t) ∈ X, the set of all subgradients of ϕ at point (x0(t), x0(t − τ)) will be called the
sub-differential of ϕ at point (x0(t), x0(t − τ)) and will be denoted by ∂ϕ(x0(t), x0(t − τ)).

By the definition of Subdifferentiability of function ϕ, we may define its conjugate
function ϕ∗ by

ϕ∗(x∗
1, x

∗
2
)
= sup

{〈
x∗
1, x(t)

〉
+
〈
x∗
2, x(t − τ)

〉 − ϕ(x(t), x(t − τ))}, (3.2)

where 〈·〉 denotes the duality relation ofX∗ andX. So it is not difficult to obtain the following
propositions.

Proposition 3.2. ϕ∗ is a lower semicontinuous convex function (ϕ∗ may have functional value +∞,
but not functional value −∞).

Proposition 3.3. If ϕ ≤ ψ, then ϕ∗ ≥ ψ∗.

Proposition 3.4 (Yang inequality). One has

ϕ(x(t), x(t − τ)) + ϕ∗(x∗
1, x

∗
2
) ≥ 〈

x∗
1, x(t)

〉
+
〈
x∗
2, x(t − τ)

〉
. (3.3)

Proposition 3.5. One has

ϕ(x(t), x(t − τ)) + ϕ∗(x∗
1, x

∗
2
)
=
〈
x∗
1, x(t)

〉
+
〈
x∗
2, x(t − τ)

〉

⇐⇒ (
x∗
1, x

∗
2
) ∈ ∂ϕ(x(t), x(t − τ)).

(3.4)

Proposition 3.6. ϕ∗ does not always equal +∞.

Proof. Let x0(t) ∈ X and β ∈ R such that ϕ(x0(t), x0(t − τ)) < +∞ and β0 < ϕ(x0(t), x0(t − τ)).
We consider the two convex sets in X2 × R defined by

A = epiϕ �
{(
x(t), x(t − τ), β) ∈ X2 × R |: ϕ(x(t), x(t − τ)) < +∞, β > ϕ(x(t), x(t − τ))

}
,

B =
{(
x0(t), x0(t − τ), β0

)}
.

(3.5)
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By Hahn-Banach Theorem, we know that there exists (f1, f2, k) ∈ X∗ ×X∗ ×R and α ∈ R such
that

〈
f1, x(t)

〉
+
〈
f2, x(t − τ)

〉
+ kβ > α, ∀(x(t), x(t − τ), β) ∈ eipϕ,

〈
f1, x0(t)

〉
+
〈
f2, x0(t − τ)

〉
+ kβ0 < α.

(3.6)

So, we have

〈
f1, x0(t)

〉
+
〈
f2, x0(t − τ)

〉
+ kϕ(x0(t), x0(t − τ)) > α >

〈
f1, x0(t)

〉
+
〈
f2, x0(t − τ)

〉
+ kβ0.

(3.7)

Thus k > 0, and

〈
− 1
k
f1, x(t)

〉
+
〈
− 1
k
f2, x(t − τ)

〉
− ϕ(x(t), x(t − τ)) < −α

k
. (3.8)

Since ϕ∗ is a lower semicontinuous convex function that does not always equal +∞,
we may define its conjugate function ϕ∗∗ by

ϕ∗∗(x∗∗
1 , x

∗∗
2
)
= sup
(x∗1,x∗2)∈X∗×X∗

{〈
x∗∗
1 , x

∗
1

〉
+
〈
x∗∗
2 , x

∗
2
〉 − ϕ(x∗

1, x
∗
2
)}
, (3.9)

where 〈·〉 denotes the duality relation of X∗∗ and X∗.

Theorem 3.7. Let ϕ be a lower semicontinuous convex function that does not always equal +∞, then
ϕ∗∗ = ϕ.

Proof. We divide our proof into two parts. First we show that ϕ∗∗ = ϕ holds when ϕ > 0 and
then ϕ∗∗ = ϕ holds for all lower semicontinuous convex functions ϕ that do not always equal
+∞.

(i) The case when ϕ > 0.
From the definition of ϕ∗∗ and Yang inequality, it is obvious that ϕ∗∗ ≤ ϕ holds.
Next, to prove ϕ∗∗ ≥ ϕ holds, suppose to the contrary that there exist a point

(x0(t), x0(t − τ)) ∈ X2, such that ϕ∗∗(x0(t), x0(t − τ)) < ϕ(x0(t), x0(t − τ)) holds.
Consider the two convex sets

A = eipϕ �
{(
x(t), x(t − τ), β) ∈ X2 × R | ϕ(x(t), x(t − τ)) < +∞, β ≥ ϕ(x(t), x(t − τ))

}
,

B0 =
{(
x0(t), x0(t − τ), ϕ∗∗(x0(t), x0(t − τ))

)}
.

(3.10)

By the Hahn-Banach Theorem, we know that there exist (g1, g2, k∗) ∈ X∗ ×X∗ × R and α1 ∈ R

such that

〈
g1, x(t)

〉
+
〈
g2, x(t − τ)

〉
+ k∗β > α1, ∀(x(t), x(t − τ), β) ∈ eipϕ, (3.11)

〈
g1, x0(t)

〉
+
〈
g2, x0(t − τ)

〉
+ k∗ϕ∗∗(x0(t), x0(t − τ)) < α1. (3.12)
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So, it follows that k∗ ≥ 0. Let ε > 0. Using ϕ > 0 and (3.11), one obtains that

〈
g1, x(t)

〉
+
〈
g2, x(t − τ)

〉
+ (k∗ + ε)ϕ(x(t), x(t − τ)) ≥ α1, ∀(x(t), x(t − τ)) ∈ D(ϕ). (3.13)

Thus, we have

ϕ∗
(
− g1
k∗ + ε

,− g2
k∗ + ε

)
≤ − α1

k∗ + ε
. (3.14)

Then, by the definition of ϕ∗∗, we obtain that

ϕ∗∗(x0(t), x0(t − τ)) ≥
〈
− g1
k∗ + ε

, x0(t)
〉
+
〈
− g2
k∗ + ε

, x0(t − τ)
〉
− ϕ∗

(
− g1
k∗ + ε

,− g2
k∗ + ε

)

≥
〈
− g1
k∗ + ε

, x0(t)
〉
+
〈
− g2
k∗ + ε

, x0(t − τ)
〉
+

α1
k∗ + ε

.

(3.15)

That is to say,

〈
g1, x0(t)

〉
+
〈
g2, x0(t − τ)

〉
+ (k∗ + ε)ϕ∗∗(x0(t), x0(t − τ)) ≥ α1, ∀ε > 0, (3.16)

which is a contradiction to (3.12).
(ii) For all ϕ, by Proposition 3.6, we know that D(ϕ∗)/= ∅. Choose (x∗

10, x
∗
20) ∈ D(ϕ∗),

and define function ϕ by

ϕ(x(t), x(t − τ)) = ϕ(x(t), x(t − τ)) − 〈x∗
10, x(t)

〉 − 〈x∗
20, x(t − τ)

〉
+ ϕ∗(x∗

10, x
∗
20
)
. (3.17)

Then ϕ is a lower semicontinuous convex function that is not always equal to +∞ and satisfies
ϕ ≥ 0. By the result of (i), we have that ϕ∗∗ = ϕ. On the other hand, we have

ϕ∗(x∗
1, x

∗
2
)
= ϕ∗(x∗

1 + x
∗
10, x

∗
2 + x

∗
20
) − ϕ∗(x∗

10, x
∗
20
)
,

ϕ∗∗(x(t), x(t − τ)) = ϕ(x(t), x(t − τ)) − 〈x∗
10, x(t)

〉 − 〈x∗
20, x(t − τ)

〉
+ ϕ∗(x∗

10, x
∗
20
)
.

(3.18)

That is, ϕ∗∗ = ϕ.

Corollary 3.8. Let ϕ be a lower semicontinuous convex function that is not always equal to +∞. Then
(x∗

1, x
∗
2) ∈ ∂ϕ(x(t), x(t − τ)) if and only if

(x(t), x(t − τ)) ∈ ∂ϕ∗(x∗
1, x

∗
2
)
. (3.19)
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Proof. One has

(
x∗
1, x

∗
2
) ∈ ∂ϕ(x(t), x(t − τ)) ⇐⇒ 〈

x∗
1, x(t)

〉
+
〈
x∗
2, x(t − τ)

〉

= ϕ(x(t), x(t − τ)) + ϕ∗(x∗
1, x

∗
2
)

= ϕ∗∗(x(t), x(t − τ)) + ϕ∗(x∗
1, x

∗
2
)

⇐⇒ (x(t), x(t − τ)) ∈ ∂ϕ∗(x∗
1, x

∗
2
)
.

(3.20)

4. Weak Solution to (1.1)

Define an operator A = d2/dt2. By (2.6) and

〈u(t), A(ω(t))〉 =
∫2γτ

0
u(t)ω′′(t)dt = u(t)

(
ω′(t)

)∣∣2γτ
0 −

∫2γτ

0
ω′(t)u′(t)dt

= −
∫2γτ

0
u′(t)dω(t) = −u′(t)ω(t)∣∣2γτ0 +

∫2γτ

0
ω(t)du′(t)

= 〈Au(t), ω(t)〉

(4.1)

as well as

〈u(t), A(ω(t − τ))〉 = 〈Au(t + τ), ω(t)〉, 〈u(t − τ), A(ω(t))〉 = 〈A(u(t − τ)), ω(t)〉
(4.2)

we may define a weak solution to (1.1) as follows.

Definition 4.1. For u ∈ Lp[0, 2γτ], we say that u is a weak solution to (1.1), if

〈u(t), A(ω(t − τ))〉 + 〈u(t − τ), A(ω(t))〉 + 〈ω(t), F ′
1(t, u(t), u(t − τ))

〉

+
〈
ω(t − τ), F ′

2(t, u(t), u(t − τ))
〉
= 0,

(4.3)

for all ω(t) ∈ D(A) ∩ Lp[0, 2γτ], where

〈u(t), υ(t)〉 =
∫2γτ

0
u(t)υ(t)dt, (4.4)

when u(t) ∈ Lp[0, 2γτ], υ(t) ∈ Lq[0, 2γτ], where 2 < p < +∞, (1/p) + (1/q) = 1.
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Our objective is to define the conjugate function of F(t, x(t), x(t − τ)) by using
the definition of Subdifferentiability of lower semicontinuous convex function and by
making use of the dual variational structure. So we add three more conditions on function
F(t, x(t), x(t − τ)) as follows:

(A4) u = (u1, u2) → F(t, u1, u2) is a continuously differentiable and strictly convex
function and satisfies

F(t, 0, 0) = 0, F ′
1(t, 0, 0) = F

′
2(t, 0, 0) = 0 ∀t ∈ [

0, 2γτ
]
; (4.5)

(A5) for α2 = 1/p, there exist constantsM,C > 0, such that when |u| =
√
u21 + u

2
2 ≥ C we

have

F(t, u1, u2) ≤ α2
[
F ′
1(t, u1, u2)u1 + F

′
2(t, u1, u2)u2

]
,

F(t, u1, u2) ≤M|u|(1/α2);
(4.6)

(A6)

lim
|u|→ 0

F(t, u1, u2)

|u|2
= 0. (4.7)

The conjugate function of function F(t, x(t), x(t − τ)) is defined by

H(t, ω(t), ω(t − τ)) = sup
x(t)∈Lp[0, 2γτ]

{〈ω(t), x(t)〉 + 〈ω(t − τ), x(t − τ)〉 − F(t, x(t), x(t − τ))},

(4.8)

for t ∈ [0, 2γτ].
Then H is a continuously differentiable and strictly convex function. By the duality

principle (Corollary 3.8), we have that

(ω(t), ω(t − τ)) = (
F ′
1(t, x(t), x(t − τ)), F ′

2(t, x(t), x(t − τ))
)

⇐⇒ (
H ′

1(t, ω(t), ω(t − τ)),H ′
2(t, ω(t), ω(t − τ))

)
= (x(t), x(t − τ)),

(4.9)

where H ′
1(t, ω(t), ω(t − τ)) and H ′

2(t, ω(t), ω(t − τ)) denote ∂H(t, ω(t), ω(t − τ))/∂ω(t) and
∂H(t, ω(t), ω(t − τ))/∂ω(t − τ), respectively.

Example 4.2. Let F(x(t), x(t − τ)) = (1/p)(
√
x2(t) + x2(t − τ))p. Then

H(ω(t), ω(t − τ)) = 1
q

(√
ω2(t) +ω2(t − τ)

)q

. (4.10)
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Proof. The above expression holds since

H(ω(t), ω(t − τ)) = sup
x(t)∈Lp[0, 2γτ]

{
〈ω(t),x(t)〉+〈ω(t − τ), x(t−τ)〉− 1

p

(√
x2(t)+x2(t−τ)

)p}

= sup
λ>0

{√
ω2(t) +ω2(t − τ) λ − 1

p
λp
}

=
1
q

(√
ω2(t) +ω2(t − τ)

)q

.

(4.11)

Let R(A) denote the value field of operator A. Then R(A) is a closed set. Let P be the
orthogonal projection operator of R(A) and K̂ = A−1P . Then it is not difficult to see that K̂
maps continuous continuation into a compact operator of Lq[0, 2γτ] → Lq[0, 2γτ].

Let

E =
{
(υ(t), υ(t − τ)) ∈ (

Lq
[
0, 2γτ

])2
υ(0) = 0 | 〈φ(t), υ(t)〉 = 〈

φ(t), υ(t − τ)〉

=
〈
φ(t − τ), υ(t)〉 = 0, ∀φ(t) ∈ �(A) ∩ Lp[0, 2γτ], φ(0) = 0

}
,

(4.12)

where �(A) = {u ∈ D(A)|A(u(t) + u(t − 2τ)) = 0}.

Remark 4.3. In fact, for all x(0) = 0, x(t) ∈ Lp[0, 2γτ], or x(t) ∈ Lq[0, 2γτ], x(t) can be
expressed as

x(t) = a0 +
∞∑

k=1

(
ak cos

kπ

γτ
t + bk sin

kπ

γτ
t

)
. (4.13)

So, it follows that

〈
υ(t), φ(t)

〉
= 0 ⇐⇒ 〈

φ(t − τ), υ(t)〉 = 〈
φ(t), υ(t − τ)〉 = 〈

φ(t), υ(t)
〉
= 0. (4.14)

Thus E can also be expressed as

E =
{
(υ(t), υ(t − 2τ)) ∈ Lq[0, 2γτ] × Lq[0, 2γτ], v(0) = 0 | 〈φ(t), υ(t)〉 = 0,

∀φ(t) ∈ �(A) ∩ Lp[0, 2γτ], φ(0) = 0
}
.

(4.15)
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We want {(υ(t), υ(t − τ)), (χ(t), χ(t − τ))} to satisfy

χ(t) = K̂(υ(t − τ)) +H ′
1(t, υ(t), υ(t − τ)),

χ(t − τ) = K̂(υ(t)) +H ′
2(t, υ(t), υ(t − τ)),

(4.16)

where (υ(t), υ(t − τ)) ∈ E, χ(t) ∈ �(A) ∩ Lp[0, 2γτ], that is, (χ(t), χ(t − τ)) ∈ E⊥.
If {(υ(t), υ(t − τ)), (χ(t), χ(t − τ))} is a solution to (4.16) and if u(t) = H ′

1(t, υ(t), υ(t −
τ)), u(t − τ) = H ′

2(t, υ(t), υ(t − τ)), then by the duality principle and (4.16), we have

〈u(t),A(z(t − τ))〉+〈u(t − τ),A(z(t))〉+〈z(t),F ′
1(t,u(t),u(t−τ))

〉
+
〈
z(t − τ),F ′

2(t,u(t),u(t − τ))
〉

=
〈
H ′

1

(
t, υ(t), υ′(t − τ)), A(z(t − τ))〉 + 〈H ′

2(t, υ(t), υ(t − τ)), A(z(t))
〉
+ 〈z(t), υ(t)〉

+ 〈z(t − τ), υ(t − τ)〉

=
〈
χ(t) − K̂(υ(t − τ)), A(z(t − τ))

〉
+
〈
χ(t − τ) − K̂(υ(t)), A(z(t))

〉
+ 〈z(t), υ(t)〉

+ 〈z(t), υ(t)〉

= −〈υ(t), z(t)〉−〈υ(t), z(t)〉 + 〈z(t), υ(t)〉 + 〈z(t), υ(t)〉=0 ∀z(t) ∈ D(A) ∩ Lp[0, 2γτ].
(4.17)

Thus, u(t) is a weak solution to (1.1).

5. Existence of Solutions to Operator Equation (4.16)

In this section, we discuss the existence of solutions to operator equation (4.16) by using the
critical point theory. Our main result is the following.

Theorem 5.1. Under assumptions (A1) ∼ (A6), problem (1.1) has at least one nontrivial weak 2γτ-
periodic solution.

To prove this theorem, we state and prove the following lemmas first.
Let υ = (υ(t), υ(t − τ)), and

K

(
υ(t)

υ(t − τ)

)

=

⎛

⎝
0 K̂

K̂ 0

⎞

⎠
(

υ(t)

υ(t − τ)

)

=

⎛

⎝
K̂υ(t − τ)
K̂υ(t)

⎞

⎠. (5.1)

It is not difficult to verify that 〈K(υ), ψ〉 = 〈υ,K(ψ)〉 = 〈Kυ(t−τ), ψ(t)〉+〈Kυ(t), ψ(t−
τ)〉, where ψ = (ψ(t), ψ(t − τ)), that is, the operator K is a symmetric operator.
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We may obtain solutions to (4.16) by seeking critical points of functional J(υ) defined
by

J(υ) =
1
2
〈K(υ), υ〉 +

∫2γτ

0
H(t, υ)dt

=
1
2

〈
K̂υ(t − τ), υ(t)

〉
+
1
2

〈
K̂υ(t), υ(t − τ)

〉

+
∫2γτ

0
H(t, υ(t), υ(t − τ))dt ∀(υ(t), υ(t − τ)) ∈ E.

(5.2)

J may be regarded as the restriction to E of function Ĵ defined on Lq[0, 2γτ]×Lq[0, 2γτ]
since both functions have identical component on E. Moreover

Ĵ ′(υ) = K(υ) +H ′(υ). (5.3)

Since

〈
Ĵ ′(υ) − J ′(υ), z

〉
= 0, ∀υ ∈ E, z = (z(t), z(t − τ)) ∈ E, (5.4)

there exist χ(t) ∈ �(A) and χυ = (χυ(t), χυ(t − τ)) ∈ E⊥ such that

Ĵ ′(υ) − J ′(υ) = χυ. (5.5)

So if υ∗ is a critical point of J ′(υ∗) = 0 on E, then there exists χ∗
υ∗ = (χ∗

υ∗(t), χ
∗
υ∗(t − τ)) ∈

E⊥ such that

K(υ∗) +H ′∗ = χ∗
υ∗ . (5.6)

Hence, {υ∗, χ∗
υ∗} is a solution to (4.16). That is, {(υ∗(t), υ∗(t−τ)), (χ∗

υ∗(t), χ
∗
υ∗(t−τ))} is a solution

to (4.16).

Lemma 5.2. The following two conditions are equivalent:

(1) F(t, u1, u2) ≤ α2[F ′
1(t, u1, u2)u1 + F ′

2(t, u1, u2)u2], for all t ∈ [0, 2γτ], when |u| =√
u21 + u

2
2 ≥ C;

(2) F(t, βu1, βu2) ≥ β1/α2F(t, u1, u2) > 0, for all β ≥ 1, t ∈ [0, 2γτ], |u| ≥ C.

Proof. For all u = (u1, u2), |u| ≥ C, let Φ(β) = F(t, βu1, βu2), Ψ(β) = β1/α2F(t, u1, u2).
(2) ⇒ (1). By Φ(β) ≥ Ψ(β), for all β ≥ 1 and Φ(1) = Ψ(1), it is easy to see that Φ′(1) ≥

Ψ′(1). That is,

F ′
1(t, u1, u2)u1 + F

′
2(t, u1, u2)u2 ≥

1
α2
F(t, u1, u2). (5.7)
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(1) ⇒ (2). By

Φ′(β
)
= F ′

1

(
t, βu1, βu2

)
u1 + F ′

2
(
t, βu1, βu2

)
u2

=
1
β

[
F ′
1

(
t, βu1, βu2

)
βu1 + F ′

2
(
t, βu1, βu2

)
βu2

] ≥ 1
α2β

Φ
(
β
)
,

(5.8)

it follows that

F
(
t, βu1, βu2

) ≥ β1/α2F(t, u1, u2) > 0, ∀β ≥ 1, t ∈ [
0, 2γτ

]
. (5.9)

Lemma 5.3. Let F(t, u1, u2) satisfy assumptions (A4) and (A5). Then there exist constants m > 0
andM > 0 such that

F(t, u1, u2) ≥ m
(√

u21 + u
2
2

)1/α2
∀t ∈ [

0, 2γτ
]
, when |u| ≥ C,

∣∣F ′(t, u1, u2)
∣∣ ≤

(
21/α2M −m

)(√
u21 + u

2
2

)(1/α2)−1
, when |u| ≥ C,

(5.10)

where |F ′(t, u1, u2)| =
√
|F ′

1(t, u1, u2)|2 + |F ′
2(t, u1, u2)|2.

Proof. Let

m = min
(u1,u2)∈∂BC

F(t, u1, u2)
C1/α2

, (5.11)

where BC denotes the ball of radius C centered at the origin. By (A4), one knows m > 0. On
the other hand, by Lemma 5.2 and (A5), we have

F(t, u1, u2) ≥ F

⎛

⎜
⎝t,

Cu1√
u21 + u

2
2

,
Cu2√
u21 + u

2
2

⎞

⎟
⎠

⎛

⎜
⎝

√
u21 + u

2
2

C

⎞

⎟
⎠

1/α2

≥ m
(√

u21 + u
2
2

)1/α2
.

(5.12)

By the convexity of function F, one has

F(t, u1, u2) + F ′
1(t, u1, u2)(z1 − u1) + F ′

2(t, u1, u2)(z2 − u2) ≤ F(t, z1, z2). (5.13)
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Let z = (z1, z2) run all over the ball B|u|(z) of radius |u| centered at u = (u1, u2), and
choose the maximum of F ′

1(t, u1, u2)(z1 − u1) + F ′
2(t, u1, u2)(z2 − u2). Then it is not difficult to

see that

∣∣F ′(t, u1, u2)
∣∣
√
u21 + u

2
2 ≤M

(√
z21 + z

2
2

)1/α2
−m

(√
u21 + u

2
2

)1/α2
. (5.14)

By z ≤ 2|u| we have that

∣∣F ′(t, u1, u2)
∣∣ ≤

(
21/α2M −m

) (√
u21 + u

2
2

)(1/α2)−1
. (5.15)

Lemma 5.4. H ∈ C1(R3,R) is a strictly convex function and satisfies

(1)

H ′
1(t, 0, 0) = H

′
2(t, 0, 0) = 0, H(t, 0, 0) = 0, ∀t ∈ [

0, 2γτ
]
; (5.16)

(2)

Cα2

M
|ω|1/(1−α2) − C1 ≤ H(t, ω(t), ω(t − τ)) ≤ Cα2

m
|ω|1/(1−α2) + C2; (5.17)

(3)

C′
α2 |ω|α2/(1−α2) − C4 ≤

∣∣H ′(t, ω(t), ω(t − τ))∣∣ ≤ Cα2

(
21/(1−α2)

m
− 1
M

)

× |ω|α2/(1−α2) + C3;

(5.18)

(4)

lim
|ω|→ 0

H(t, ω(t), ω(t − τ))
|ω|2

= ∞, (5.19)

where C1, . . . , C4 are constants, Cα2 and C
′
α2 are constants, depending

on α2, |ω| =
√
ω2(t) +ω2(t − τ) and |H ′(t, ω(t), ω(t − τ))| =√

|H ′
1(t, ω(t), ω(t − τ))|2 + |H ′

2(t, ω(t), ω(t − τ))|2.

Proof. By Corollary 3.8 and F ′
1(t, 0, 0) = F ′

2(t, 0, 0) = 0, we have H ′
1(t, 0, 0) = H ′

2(t, 0, 0) =
0, for all t ∈ [0, 2γτ]. Moreover, by the definition ofH, we know thatH(t, 0, 0) = 0.
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Now we show that (5.17) holds. By (A5) one obtains F(t, u1, u2) ≤ M|u|1/α2 +
C1, for all u = (u1, u2) ∈ R

2. So, by Proposition 3.3 and Example 4.2, it is easy to see that

H(t, ω(t), ω(t − τ)) ≥ Cα2

M
|ω|1/(1−α2) − C1, (5.20)

where Cα2 = 21/(1−α2)/Mα2/(1−α2)−1(αα2/(1−α2)2 − α1/(1−α2)2 ).
Similar arguments to the proof of Lemma 5.3 show that there exists a constant C2 such

that

F(t, u1, u2) ≥ m|u|1/α2 − C2. (5.21)

Therefore, it follows that

H(t, ω(t), ω(t − τ)) ≤ Cα2

m
|ω|1/(1−α2) + C2. (5.22)

Next we show that (5.18) holds. Again as in the proof of Lemma 5.3, we can estimate
H ′ by

∣∣H ′(t, ω(t), ω(t − τ))∣∣ ≤ Cα2

(
21/(1−α2)

m
− 1
M

)

|ω|α2/(1−α2) + C3, (5.23)

where C3 = max{C1 +C2, sup|ω|<1|H ′(t, ω(t), ω(t−τ))||}. By Lemma 5.3 again and the duality
principle

(u1, u2) =
(
H ′

1(t, ω(t), ω(t − τ)),H ′
2(t, ω(t), ω(t − τ))

)

⇐⇒ (ω(t), ω(t − τ)) = (
F ′
1(t, u1, u2), F

′
2(t, u1, u2)

) (5.24)

when |H ′(t, ω(t), ω(t − τ))| ≥ C, we have

|ω| ≤
(
21/α2M −m

)
| H ′(1/α2)−1. (5.25)

Since there exists a constant MC such that when |u| =
√
u21 + u

2
2 = |H ′(t, ω(t), ω(t − τ))| ≤ C,

we have

|ω| = ∣∣F ′(t, u1, u2)
∣∣ ≤MC. (5.26)

Choose

C′
α2 =

(
21/α2M −m

)α2/(α2−1)
, C4 = C′

α2M
α2/(1−α2)
C . (5.27)

Then it is not difficult to see

∣∣H ′(t, ω(t), ω(t − τ))∣∣ ≥ C′
α2 |ω|α2/(1−α2) − C4. (5.28)
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Finally, we show that (5.19) holds. By (A6), for all ε > 0, there exists δ > 0 so that when

|u| =
√
u21 + u

2
2 < δ, we have

F(t, u1, u2) ≤ ε
√
u21 + u

2
2. (5.29)

Now, for all K > 0, choose ε = 1/4K and let η = 2εδ(ε). Then whenever
√
ω2(t) +ω2(t − τ) <

η, we have

H(t, ω(t), ω(t − τ)) ≥ 1
4ε

(
ω2(t) +ω2(t − τ)

)
= K|ω|2. (5.30)

That is,

lim
|ω|→ 0

H(t, ω(t), ω(t − τ))
|ω|2

= ∞. (5.31)

Lemma 5.5. There exist constants Cδ and C′
δ
depending on δ, such that

H(t, ω(t), ω(t − τ)) ≥
⎧
⎨

⎩

Cδ|ω|2, when |ω| ≤ δ,
C′
δ|ω|q, when |ω| > δ,

(5.32)

and when δ → +0, Cδ → +∞.

Proof. By (5.19), we have

lim
|ω|→ 0

H(t, ω(t), ω(t − τ))
|ω|2

= ∞. (5.33)

So, as δ → +0, we obtain Cδ � inf{H(t, ω(t), ω(t − τ))/|ω|2 : |ω| ≤ δ} → +∞. That is,

H(t, ω(t), ω(t − τ)) ≥ Cδ|ω|2, (5.34)

when |ω| ≤ δ.
We next show the validity of the second part of the inequality.
For all ω0 = (ω0(t), ω0(t − τ)), |ω0| = 1, let φω0(β) = H(t, βω0(t), βω0(t − τ)). Then

φ′
ω0

(
β
)
= H ′

1

(
t, βω0(t), βω0(t − τ)

)
ω0(t) +H ′

2
(
t, βω0(t), βω0(t − τ)

)
ω0(t − τ). (5.35)

Since φω0 is a convex function for all β > 0, we have

H ′
1

(
t, βω0(t), βω0(t − τ)

)
ω0(t) +H ′

2
(
t, βω0(t), βω0(t − τ)

)
ω0(t − τ) ≥ 1

β
φω0

(
β
)
. (5.36)
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So, by (5.34) we obtain

H ′
1(t, δω0(t), δω0(t − τ))ω0(t) +H ′

2(t, δω0(t), δω0(t − τ))ω0(t − τ) ≥ Cδ · δ. (5.37)

By the convexity ofH again, it is easy to see that

H(t, sω0(t), sω0(t − τ)) ≥ H ′
1(t, δω0(t), δω0(t − τ))(s − δ)ω0(t)

+H ′
2(t, δω0(t), δω0(t − τ))(s − δ)ω0(t − τ)

+H(t, δω0(t), δω0(t − τ))

≥ Cδ · δ(s − δ) + Cδδ
2 = Cδδs, ∀s > 0.

(5.38)

So, we further obtain that

H(t, ω(t), ω(t − τ)) ≥ Cδ · δ|ω|. (5.39)

By Lemma 5.4, there exists T > 0 such that

H(t, ω(t), ω(t − τ)) ≥ Cα2

2M
|ω|q. (5.40)

Let C′
δ
= min{Cα2/2M,T1−qδCδ}. Then by (5.34), (5.39), and (5.40), we have

H(t, ω(t), ω(t − τ)) ≥
{
Cδ|ω|2, |ω| ≤ δ,
C′
δ|ω|q, |ω| > δ.

(5.41)

Lemma 5.6. Let υm = (υm(t), υm(t − τ)) ⇀ υ = (υ(t), υ(t − τ)) (weakly convergent sequence on
Lq([0, 2γτ])2) and satisfy

∫2γτ

0
H(t, υm)dt −→

∫2γτ

0
H(t, υ)dt as m −→ ∞. (5.42)

Then

∫2γτ

0
H(t, υm − υ)dt −→ 0 as m −→ ∞. (5.43)

Proof. (I) First, we show that the terms in {H(t, υm)} have equicontinuous integrals, that is,
for all ε > 0, there exists δ > 0 such that

∀m,
∫

Ω
H(t, υm)dt < ε when μ(Ω) < δ. (5.44)
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SinceH is convex, we have

H ′
1(t, υ)(υ(t) − υm(t)) +H ′

2(t, υ)(υ(t − τ) − υm(t − τ)) ≤ H(t, υm) −H(t, υ). (5.45)

So, from υm ⇀ υ and the above equality, we have

∫2γτ

0
H(t, υ)dt ≤ lim

m→∞

∫2γτ

0
H(t, υm)dt. (5.46)

ByH ≥ 0 and the assumption that
∫2γτ
0 H(t, υ)dt → ∫2γτ

0 H(t, υm)dt, it is not difficult to see

lim
m→∞

∫

Ω
H(t, υm)dt =

∫

Ω
H(t, υ)dt for all measurable sets Ω. (5.47)

Now suppose to the contrary that {H(t, υm)} does not have equicontinuous integrals,
that is, there exists ε0 > 0 and functions υmk = (υmk(t), υmk(t − τ)), as well as measurable sets
Ωk, such that the following inequalities

∫

Ω
H(t,±υ)dt < ε0, for all measurable sets Ω, μ(Ω) < δ,

∫

Ωk

H(t, υmk)dt ≥ ε0, μ(Ωk) <
δ

2k

(5.48)

hold. Then choose Ω0 =
⋃∞
k=1 Ωk. It is not difficult to obtain μ(Ω0) < δ and

∫

Ω0

H(t, υmk)dt ≥
∫

Ωk

H(t, υmk)dt ≥ ε0, (5.49)

which is contradictory to (5.46) and (5.47).
(II) For all b > 0, we divide [0, 2γτ] into the following three subsets:

Q1 =
{
t ∈ [

0, 2γτ
] | |υ| =

√
υ2(t) + υ2(t − τ) > b

}
,

Qm
2 =

{
t ∈ [

0, 2γτ
] | |υ| ≤ b, |υm − υ| ≥ δ},

Qm
3 =

{
t ∈ [

0, 2γτ
] | |υ| ≤ b, |υm − υ| < δ},

(5.50)

where |υm−υ| =
√
(υm(t) − υ(t))2 + (υm(t − τ) − υ(t − τ))2. By inequality (5.17), we know that

there exist constants K and L such that

H(t, 2z(t), 2z(t − τ)) ≤ KH(t, z(t), z(t − τ)) + L, ∀(z(t), z(t − τ)) ∈ R
2. (5.51)
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By the convexity of the functionH on Q1, we obtain

H(t, υm − υ) ≤ 1
2
[H(t, 2υm) +H(t,−2υ)] ≤ K

2
(H(t, υm) +H(t,−υ)) + L. (5.52)

So by (I), we may choose a constant b large enough and fixed such that μ(Q1) is small enough
so that

∫

Q1

H(t, υm − υ)dt ≤ K

2

∫

Q1

(H(t, υm) +H(t,−υ))dt + Lμ(Q1) <
ε

3
. (5.53)

For the above chosen constant b, now choose δ small enough so that

∫

Qm
3

H(t, υm − υ)dt < ε

3
. (5.54)

For the chosen constants b and δ, let

κ = inf
|ω−z|≥δ, |z|≤b

[
H(t, ω) −H(t, z) −H ′

1(t, ω)(ω(t) − z(t)) −H ′
2(t, ω)(ω(t − τ) − z(t − τ))

]
.

(5.55)

Then κ > 0. Now

κμ
(
Qm

2

) ≤
∫

Qm
2

[
H(t, υm) −H(t, υ) −H ′

1(t, υ)(υm(t) − υ(t)) −H ′
2(t, υ)(υm(t − τ) − υ(t − τ))

]
dt

≤
∫2γτ

0

[
H(t, υm) −H(t, υ) −H ′

1(t, υ)(υm(t) − υ(t)) −H ′
2(t, υ)(υm(t − τ) − υ(t − τ))

]
dt.

(5.56)

Thus we have μ(Qm
2 ) → 0 as m → ∞. Hence, it is easy to see that

∫
Qm

2
H(t, υm) → 0 as

m → ∞.
By repeating the above argument on Q1, we conclude that there exists an n0 such that

whenm > n0, we have

∫

Qm
2

H(t, υm − υ)dt < ε

3
. (5.57)

From (5.53), (5.54), and (5.57), we obtain that

lim
m→∞

∫2γτ

0
H(t, υm − υ)dt = 0. (5.58)
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Corollary 5.7. υm = (υm(t), υm(t− τ)) → υ = (υ(t), υ(t− τ))(Lq([0, 2γτ]) ×Lq([0, 2γτ])) if and
only if

∫2γτ

0
H(t, υm − υ)dt = 0. (5.59)

Proof. (⇒). υm → υ implies that υm ⇀ υ (weakly). By inequality (5.17) and the
continuity of the composition operator, one gets H(t, υm) → H(t, υ) (L1([0, 2γτ])). That is,
∫2γτ
0 H(t, υm)dt →

∫2γτ
0 H(t, υ)dt. So, by Lemma 5.6, one obtains the conclusion.

(⇐). By Lemma 5.5, there exist constants B1 and B2 > 0 such that

∫2γτ

0
H(t, υ)dt ≥ B1

∫

|υ|≥δ
|υ|qdt + B2

∫

|υ|<δ
|υ|2dt

≥ B1

∫

|υ|≥δ
|υ|qdt + B2

(
2γτ

)2/(q−2)
(∫

|υ|<δ
|υ|qdt

)2/q

≥ Cδ min

⎧
⎨

⎩

∫2γτ

0
|υ|qdt,

(∫2γτ

0
|υ|qdt

)2/q
⎫
⎬

⎭
.

(5.60)

Choose δ small enough. Then Cδ > 0 is a constant and it is not difficult to see that the
conclusion is correct.

We next use the Maintain Pass Theorem to prove Theorem 5.1 in three steps.
(i) We show that J satisfies the P. S. condition in E. Let {υn = (υn(t), υn(t − τ))} ⊂ E,

and let the constants C1, C2 satisfy

C1 ≤ J(υn) ≤ C2,

J ′(υn) −→ θ.
(5.61)

That is, we want to show that {υn} has a convergent subsequence in E.
First, we show that {υn} is bounded. In fact, by

zm = Kυm +H ′(t, υm) − χm −→ θ,

C1 ≤ 1
2
〈Kυm, υm〉 +

∫2γτ

0
H(t, υm)dt ≤ C2,

(5.62)
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where zm = (zm(t), zm(t − τ)), υm = (υm(t), υm(t − τ)), χm = (χm(t), χm(t − τ)), we know that
there exists n(ε) > 0 for all ε > 0 such that the following inequality holds whenm ≥ m(ε):

∫2γτ

0
H(t, υm)dt − 1

2
[
H ′

1(t, υm)υm(t) +H
′
2(t, υm)υm(t − τ)

]

≤ C2 +
ε

2
(‖υm(t)‖Lq + ‖υm(t − τ)‖Lq) = C2 + ε‖υm(t)‖Lq .

(5.63)

On the other hand, by Lemmas 5.2 and 5.3, there exist constants α2, C3, C4 and C5

such that

H(t, ω) − 1
2
H ′

1(t, ω)ω(t) −
1
2
H ′

2(t, ω)ω(t − τ)

=
1
2
z(t)F ′

1(t, z(t), z(t − τ)) +
1
2
z(t − τ)F ′

2(t, z(t), z(t − τ)) − F(t, z(t), z(t − τ))

≥
(

1
2α2

− 1
)
F(t, z(t), z(t − τ)) − C3 ≥ m|z|1/α2

(
1
2α2

− 1
)
− C4

≥ |ω|q − C5,

(5.64)

where ω(t) = F ′
1(t, z(t), z(t − τ)), ω(t − τ) = F ′

2(t, z(t), z(t − τ)); z(t) = H ′
1(t, ω(t), ω(t − τ)),

z(t − τ) = H ′
2(t, ω(t), ω(t − τ)); |ω| =

√
ω2(t) +ω2(t − τ); |z| =

√
z2(t) + z2(t − τ).

So by (5.63) and (5.64), it is easy to see that

‖υm(t)‖Lq[0, 2γτ] = ‖υm(t − τ)‖Lq[0,2γτ] ≤ C6 (constant) (5.65)

That is, {υn} is bounded. We next show that {υn} has a convergent subsequence. Since
Lq[0, 2γτ] is a reflexive Banach space, there exists a subsequence of {υn} which is weakly
convergent in Lq[0, 2γτ]. We denote it by {υmk}, that is to say, υmk(t) ⇀ υ∗(t), υmk(t − τ) ⇀
υ∗(t − τ). On one hand, by the convexity of the functionH, we have

H(t, υ∗(t), υ∗(t − τ)) +H ′
1(t, υ

∗(t), υ∗(t − τ))(υmk(t) − υ∗(t))

+H ′
2(t, υ

∗(t), υ∗(t − τ))(υmk(t − τ) − υ∗(t − τ)) ≤ H(t, υmk(t), υmk(t − τ)).
(5.66)

So we have

∫2γτ

0
H(t, υ∗(t), υ∗(t − τ))dt ≤ lim

k→∞

∫2γτ

0
H(t, υmk(t), υmk(t − τ))dt. (5.67)
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On the other hand, by convexity of the functionH again, we obtain

H(t, υ∗(t), υ∗(t − τ)) ≥ H(t, υmk(t), υmk(t − τ)) +H ′
1(t, υmk(t), υmk(t − τ))(υ∗(t) − υmk(t))

+H ′
2(t, υmk(t), υmk(t − τ))(υ∗(t − τ) − υmk(t − τ))

= H(t, υmk(t), υmk(t − τ)) +
(−Kυmk + zmk + χmk

) · (υ∗ − υmk).
(5.68)

Since operators A and K are compact and (zmk(t), zmk(t − τ)) → θ, we have

lim
k→∞

∫2γτ

0
H(t, υmk(t), υmk(t − τ))dt ≤

∫2γτ

0
H(t, υ∗(t), υ∗(t − τ))dt. (5.69)

By (5.67), (5.69), and applying Lemma 5.6 and Corollary 5.7, it is not difficult to see
that

(υmk(t), υmk(t − 2τ)) −→ (υ∗(t), υ∗(t − τ)). (5.70)

(ii)We show that there exist constants ρ, r > 0, such that

J |∂Ωr ≥ ρ > 0, (5.71)

where ∂Ωr = {(υ(t), υ(t − τ)) ∈ Lq[0, 2γτ] × Lq[0, 2γτ] | ‖υ(t)‖Lq[0,2γτ] = ‖υ(t − τ)‖Lq[0,2γτ] = r}.
Let β = ‖K̂‖£(Lp,Lq). Choose δ > 0 such that the constantCδ is large enough and choose r

small enough so that when ‖υ(t)‖Lq = r, by Lemma 5.5, there exists constant C7 > 0 satisfying

Cδ

∫

|υ|<δ
|υ(t)|2dt − 4β

(∫

|υ|<δ
|υ(t)|qdt

)2/q

≥ C7

(∫

|υ|<δ
|υ(t)|qdt

)2/q

,

C′
δ

∫

|υ|≥δ
|υ(t)|qdt − 4β

(∫

|υ|≥δ
|υ(t)|qdt

)2/q

≥ C7

(∫

|υ|≥δ
|υ(t)|qdt

)2/q

,

(5.72)

where |υ| =
√
υ2(t) + υ2(t − τ).
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By (5.72) and inequalities

ac + bc ≤ (a + b)c ≤ 2c(ac + bc), (5.73)

where a, b > 0, and c > 1, we have

J(υ) =
1
2

〈
K̂(υ(t)), υ(t − τ)

〉
+
1
2

〈
K̂(υ(t − τ)), υ(t)

〉
+
∫2γτ

0
H(t, υ(t), υ(t − τ))

≥ −β
2
‖υ(t)‖2

Lq[0,2γτ] −
β

2
‖υ(t)‖2

Lq[0,2γτ]

+ Cδ

∫

|υ|<δ
|υ(t)|2dt + Cδ

∫

|υ|<δ
|υ(t − τ)|2dt + C′

δ

∫

|υ|≥δ

(√
υ2(t) + υ2(t − τ)

)q

dt

≥ −β
2
‖υ(t)‖2

Lq[0,2γτ] −
β

2
‖υ(t)‖2

Lq[0,2γτ] + Cδ

∫

|υ|<δ
|υ(t)|2dt

+ Cδ

∫

|υ|<δ
|υ(t − τ)|2dt + C′

δ

∫

|υ|≥δ
|υ(t)|qdt

≥ C7

⎡

⎣

(∫

|υ|<δ
|υ(t)|qdt

)2/q

+

(∫

|υ|≥δ
|υ(t)|qdt

)2/q
⎤

⎦ + Cδ

∫

|υ|<δ
|υ(t − τ)|2dt

≥ C7

22/q
‖υ(t)‖2

Lq[0,2γτ] =
C7

22/q
r2.

(5.74)

Thus (5.71) is true with ρ = (C7/22/q)r2.
(iii) It is obvious that J(θ) = 0, and J(υ) is an even function in υ.

Remark 5.8. Let υj(t) = sin(jπ/γτ)t, j = 1, 2, . . . . Then by

Aυj(t) = −
(
jπ

γτ

)2

sin
jπ

γτ
t, (5.75)

we have

K̂υj(t) = −
(
γτ

jπ

)2

sin
jπ

γτ
t. (5.76)

Hence, we obtain

K̂υj(t) = −
(
γτ

jπ

)2[
sin

2jπ
γ

cos
jπ

γτ
(t − 2τ) + cos

2jπ
γ

sin
jπ

γτ
(t − 2τ)

]
,

K̂υj(t − 2τ) = −
(
γτ

jπ

)2[
cos

2jπ
γ

sin
jπ

γτ
t − sin

2jπ
γ

cos
jπ

γτ
t

]
.

(5.77)
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Therefore, it is easy to see

J
(
υj
)
=

1
2

〈
K̂υj(t − 2τ), υj(t)

〉
+
1
2

〈
K̂υj(t), υj(t − 2τ)

〉
+
∫2γτ

0
H
(
t, υj

)
dt

= −1
2

(
γτ

jπ

)2

cos
2jπ
γ

[∫2γτ

0

∣∣υj(t)
∣∣2dt +

∫2γτ

0

∣∣υj(t − 2τ)
∣∣2dt

]

+
∫2γτ

0
H
(
t, υj

)
dt.

(5.78)

We may choose jk, such that cos 2jkπ/γ > 0. Let υjk(t) = sin(jkπ/γτ)t. By (5.78), we have

J
(
λυjk

) ≤ −λ1
2

(
γτ

jπ

)2

cos
2jπ
γ

[∫2γτ

0

∣∣φ(t)
∣∣2dt +

∫2γτ

0

∣∣φ(t − 2τ)
∣∣2dt

]

+
Cα2

m

∫2γτ

0

(√
φ2(t) + φ2(t − 2τ)

)q

dt + 2γτC2 −→ −∞, (λ −→ +∞).

(5.79)

From (i), (ii), (iii), and the Maintain Pass Theorem, we conclude that problem (4.16)
has at least one nontrivial 2γτ-periodic solution. Thus, Theorem 5.1 holds.

6. Example

In this section, we present a remark and an example to illustrate our main result.

Remark 6.1. For assumptions (A1) ∼ (A3), function F is a solution to the following partial
differential equation:

F ′
2(t, x1, x2) + F

′
1(t, x2, x3) = f(t, x1, x2, x3). (6.1)

In some special cases, F can be easily determined. For example, if there exist continuously
differential functions g, h ∈ C1(R2,R) such that (∂g/∂u)(u, v) = (∂h/∂v)(u, v) and
f(t, x1, x2, x3) = α(t)[g(x1, x2) + h(x2, x3)], where α(t) is continuously differentiable and τ-
periodic in t, then

F(t, x1, x2) = α(t)
[∫x1

0
h(s, x2)ds +

∫x2

0
g(0, s)ds

]
(6.2)

or

F(t, x1, x2) = α(t)
[∫x2

0
g(x1, s)ds +

∫x1

0
h(s, 0)ds

]
. (6.3)
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For example,
(1) if g(u, v) = u2−2uv−v2, h(u, v) = u2+2uv−v2 and f(t, x1, x2, x3) = cos(2τt/π)[x2

1−
2x1x2 + 2x22x3 − x2

3], then

F(t, x1, x2) = cos
2τt
π

[∫x2

0
g(x1, s)ds +

∫x1

0
h(s, 0)ds

]

= cos
2τt
π

[∫x2

0

(
x2
1 − 2x1s − s2

)
ds +

∫x1

0
s2ds

]

= cos
2τt
π

(
x2
1x2 − x1x2

2 −
1
3
x3
2 +

1
3
x3
1

)
;

(6.4)

(2) if g(u, v) = 2v cosu − u2 sinv, h(u, v) = 2u cosv − v2 sinu and f(t, x1, x2, x3) =
cos(2τt/π)[2x2 cosx1 − x2

1 sinx2 + 2x2 cosx3 − x2
3 sinx2], then

F(t, x1, x2) = cos
2τt
π

[∫x2

0
g(x1, s)ds +

∫x1

0
h(s, 0)ds

]

= cos
2τt
π

[∫x2

0

(
2s cosx1 − x2

1 sin s
)
ds +

∫x1

0
2sds

]

= cos
2τt
π

(
x2
2 cosx1 + x

2
1 cosx2

)
.

(6.5)

One can check easily that F satisfies assumption (A2).

Finally, as an application, we consider the following example.

Example 6.2. Consider the equation

x′′(t) + x′′2
(
2τt
π

)
x(t − τ)

[(
x2(t) + x2(t − τ)

)(p/2)−1
+
(
x2(t − τ) + x2(t − 2τ)

)(p/2)−1]
= 0,

(6.6)

with x(0) = 0, where p > 2. Then g(u, v) = pv(u2 + v2)(p/2)−1 and h(u, v) = pu(u2 + v2)(p/2)−1.
Moreover, g and h satisfy the condition (∂g/∂u)(u, v) = (∂h/∂v)(u, v). So we can

choose

F(t, x(t), x(t − τ)) = p
(
1 + sin2 2τt

π

)[∫x(t−τ)

0
s
(
x(t)2 + s2

)(p/2)−1
ds +

∫x(t)

0
sp/2ds

]

=
(
1 + sin2 2τt

π

)(
x(t)2 + x(t − τ)2

)p/2
.

(6.7)

It is obvious that assumptions (A1) ∼ (A3) and the following (A′
4) ∼ (A′

6) hold:
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(A′
4) x = (x(t), x(t− τ)) → F(t, x(t), x(t− τ)) is a continuously differentiable and strictly

convex function and also satisfies

F(t, 0, 0) = 0, F ′
1(t, 0, 0) = F

′
2(t, 0, 0) = 0 ∀t ∈ [

0, 2γτ
]
; (6.8)

(A′
5) for α2 = 1/p < 1/2, there exist constants M,C > 0, such that when |x| =√

x2(t) + x2(t − τ) ≥ C we have

F(t, x(t), x(t − τ)) ≤ α2
[
F ′
1(t, x(t), x(t − τ))x(t) + F ′

2(t, x(t), x(t − τ))x(t − τ)
]
,

F(t, x(t), x(t − τ)) ≤M|x|1/α2 ;
(6.9)

(A′
6)

lim
|x|→ 0

F(t, x(t), x(t − τ))
|x|2

= 0. (6.10)

Thus, (6.6) has at least one nontrivial weak 2γτ-periodic solution by Theorem 5.1.
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