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The existence of positive solutions for Neumann boundary value problem of second-order
impulsive differential equations −u′′(t) + Mu(t) = f(t, u(t), t ∈ J , t /= tk , −Δu′|t=tk = Ik(u(tk)),
k = 1, 2, . . . , m, u′(0) = u′(1) = θ, in an ordered Banach space E was discussed by employing
the fixed point index theory of condensing mapping, where M > 0 is a constant, J = [0, 1],
f ∈ C(J×K,K), Ik ∈ C(K,K), k = 1, 2, . . . , m, andK is the cone of positive elements in E. Moreover,
an application is given to illustrate the main result.

1. Introduction

The theory of impulsive differential equations is a new and important branch of differential
equation theory, which has an extensive physical, chemical, biological, engineering back-
ground and realistic mathematical model, and hence has been emerging as an important area
of investigation in the last few decades; see [1]. Correspondingly, boundary value problems
of second-order impulsive differential equations have been considered by many authors, and
some basic results have been obtained; see [2–7]. But many of them obtained extremal solu-
tions bymonotone iterative technique coupledwith themethod of upper and lower solutions;
see [2–4]. The research on positive solutions is seldom and most in real space R; see [5–7].

In this paper, we consider the existence of positive solutions to the second-order impul-
sive differential equation Neumann boundary value problem in an ordered Banach space E:

−u′′(t) +Mu(t) = f(t, u(t)), t ∈ J, t /= tk,

−Δu′|t=tk = Ik(u(tk)), k = 1, 2, . . . , m,

u′(0) = u′(1) = θ,

(1.1)
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where M > 0 is a constant, f ∈ C(J × E, E), J = [0, 1]; 0 < t1 < t2 < · · · < tm < 1; Ik ∈ C(E, E)
is an impulsive function, k = 1, 2, . . . , m. Δu′|t=tk denotes the jump of u′(t) at t = tk, that is,
Δu′|t=tk = u′(t+

k
) − u′(t−

k
), where u′(t+

k
) and u′(t−

k
) represent the right and left limits of u′(t) at

t = tk, respectively.
In the special case where E = R

+ = [0,+∞), Ik = 0, k = 1, 2, . . . , m, NBVP (1.1) has
been proved to have positive solutions; see [8, 9]. Motivated by the aforementioned facts, our
aim is to study the positive solutions for NBVP (1.1) in a Banach space by fixed point index
theory of condensing mapping. Moreover, an application is given to illustrate the main result.
As far as we know, no work has been done for the existence of positive solutions for NBVP
(1.1) in Banach spaces.

2. Preliminaries

Let E be an ordered Banach space with the norm ‖ · ‖ and partial order ≤, whose positive
cone K = {x ∈ E | x ≥ θ} is normal with normal constant N. Let J = [0, 1]; 0 = t0 < t1 <
t2 < · · · < tm < tm+1 = 1; Jk = [tk−1, tk ], k = 1, 2, . . . , m + 1, J ′ = J \ {t1, t2, . . . , tm}. Let
PC1(J, E) = {u ∈ C(J, E) | u′(t) is continuous at t /= tk, and left continuous at t = tk, and
u′(t+

k
) exists, k = 1, 2, . . . , m}. Evidently, PC1(J, E) is a Banach space with the norm ‖u‖PC1 =

max{‖u(t)‖C, ‖u′‖PC}, where ‖u‖C = supt∈J‖u(t)‖, ‖u′‖PC = supt∈J‖u′(t)‖; see [2]. An abstract
function u ∈ PC1(J, E) ∩ C2(J ′, E) is called a solution of NBVP (1.1) if u(t) satisfies all the
equalities of (1.1).

Let C(J, E) denote the Banach space of all continuous E-value functions on interval
J with the norm ‖u‖C = supt∈J‖u(t)‖. Let α(·) denote the Kuratowski measure of non-
compactness of the bounded set. For the details of the definition and properties of the
measure of noncompactness, see [10, 11]. For any B ⊂ C(J, E) and t ∈ J , set B(t) =
{u(t) | u ∈ B} ⊂ E. If B is bounded in C(J, E), then B(t) is bounded in E, and α(B(t)) ≤
α(B).

Now, we first give the following lemmas in order to prove our main results.

Lemma 2.1 (see [12]). Let B ⊂ C(J, E) be equicontinuous. Then α(B(t)) is continuous on J , and

α(B) = max
t∈J

α(B(t)) = α(B(J)). (2.1)

Lemma 2.2 (see [13]). Let B = {un} ⊂ C(J, E) be a bounded and countable set. Then α(B(t)) is
Lebesgue integral on J , and

α

({∫
J

un(t)dt | n ∈ N

})
≤ 2
∫
J

α(B(t))dt. (2.2)

Lemma 2.3 (see [14]). Let D ⊂ E be bounded. Then there exists a countable set D0 ⊂ D, such that
α(D) ≤ 2α(D0).
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To prove our main results, for any h ∈ C(J, E), we consider the Neumann boundary
value problem (NBVP) of linear impulsive differential equation in E:

−u′′(t) +Mu(t) = h(t), t ∈ J ′,

−Δu′|t=tk = yk, k = 1, 2, . . . , m,

u′(0) = u′(1) = θ,

(2.3)

where M > 0, yk ∈ E, k = 1, 2, . . . , m.

Lemma 2.4. For any h ∈ C(J, E), M > 0, and yk ∈ E, k = 1, 2, . . . , m, the linear NBVP (2.3) has
a unique solution u ∈ PC1(J, E) ∩ C2(J ′, E) given by

u(t) =
∫1

0
G(t, s)h(s)ds +

m∑
k=1

G(t, tk)yk, (2.4)

where

G(t, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cosh
√
M(1 − t) cosh

√
Ms√

M sinh
√
M

, 0 ≤ s ≤ t ≤ 1,

cosh
√
Mt cosh

√
M(1 − s)√

M sinh
√
M

, 0 ≤ t < s ≤ 1.

(2.5)

Proof. Suppose that u(t) is a solution of (2.3); then

u′′(t) −Mu(t) = −h(t),
[
e−2

√
Mt
(
e
√
Mtu(t)

)′]′
= −Me−

√
Mtu(t) + e−

√
Mtu′′(t) = −e−

√
Mth(t).

(2.6)

Let y(t) = e−2
√
Mt(e

√
Mtu(t))

′
; then

y′(t) = −e−
√
Mth(t), Δy|t=tk = −e−

√
Mtkyk. (2.7)

Integrating (2.7) from 0 to t1, we have

y(t1) − y(0) = −
∫ t1

0
e−

√
Msh(s)ds. (2.8)

Again, integrating (2.7) from t1 to t, where t ∈ (t1, t2], then

y(t) = y
(
t+1
) − ∫ t

t1

e−
√
Msh(s)ds = y(0) −

∫ t

0
e−

√
Msh(s)ds − e−

√
Mt1y1. (2.9)
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Repeating the aforementioned procession, for t ∈ J , we have

y(t) = y(0) −
∫ t

0
e−

√
Msh(s)ds −

∑
0<tk<t

e−
√
Mtkyk. (2.10)

Hence,

(
e
√
Mtu(t)

)′
= e2

√
Mt

(
y(0) −

∫ t

0
e−

√
Msh(s)ds −

∑
0<tk<t

e−
√
Mtkyk

)
. (2.11)

For t ∈ J , integrating (2.11) from 0 to t, we have

u(t) = e−
√
Mt

(
u(0) +

∫ t

0
e2

√
Msy(0)ds −

∫ t

0
e2

√
Ms

∫s

0
e−

√
Mτh(τ)dτ ds

−
∫ t

0
e2

√
Ms
∑

0<tk<s

e−
√
Mtkykds

)

= e−
√
Mt

{
u(0) +

1

2
√
M

[
y(0)

(
e2

√
Mt − 1

)
− e2

√
Mt

∫ t

0
e−

√
Msh(s)ds

+
∫ t

0
e
√
Msh(s)ds −

∑
0<tk<t

(
e2

√
Mt − e2

√
Mtk
)
e−

√
Mtkyk

]}
.

(2.12)

Notice that y(0) =
√
Mu(0) + u′(0); thus, for t ∈ J , we have

u(t) =
1

2
√
M

[
e−

√
Mt2

√
Mu(0) +

(√
Mu(0) + u′(0)

)
e
√
Mt

−
(√

Mu(0) + u′(0)
)
e−

√
Mt + e−

√
Mt

∫ t

0
e
√
Msh(s)ds

−e
√
Mt

∫ t

0
e−

√
Msh(s)ds −

∑
0<tk<t

(
e2

√
Mt − e2

√
Mtk
)
e−

√
M(t+tk)yk

]

=
1

2
√
M

[(√
Mu(0) − u′(0)

)
e−

√
Mt +

(√
Mu(0) + u′(0)

)
e
√
Mt
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+ e−
√
Mt

∫ t

0
e
√
Msh(s)ds − e

√
Mt

∫ t

0
e−

√
Msh(s)ds

−
∑

0<tk<t

(
e
√
M(t−tk) yk − e

√
M(tk−t)yk

)]
,

(2.13)

u′(t) =
1
2

[
−
(√

Mu(0) − u′(0)
)
e−

√
Mt +

(√
Mu(0) + u′(0)

)
e
√
Mt

− e−
√
Mt

∫ t

0
e
√
Msh(s)ds − e

√
Mt

∫ t

0
e−

√
Msh(s)ds

−
∑

0<tk<t

(
e
√
M(t−tk)yk + e−

√
M(t−tk)yk

)]
.

(2.14)

In view of that u′(0) = u′(1) = θ, we have

u(0) =
∫1

0

e
√
M(1−s) + e−

√
M(1−s)

√
M
(
e
√
M − e−

√
M
) h(s)ds + m∑

k=1

e
√
M(1−tk) + e−

√
M(1−tk)

√
M
(
e
√
M − e−

√
M
)

=
∫1

0

cosh
√
M(1 − s)√

M sinh
√
M

h(s)ds +
m∑
k=1

cosh
√
M(1 − tk)√

M sinh
√
M

yk.

(2.15)

Substituting (2.15) into (2.13), for t ∈ J , we obtain

u(t) =
∫ t

0

(
e
√
M(1−t) + e−

√
M(1−t)

)(
e
√
Ms + e−

√
Ms
)

2
√
M
(
e
√
M − e−

√
M
) h(s)ds

+
∑

0<tk<t

(
e
√
M(1−t) + e−

√
M(1−t)

)(
e
√
Mtk + e−

√
Mtk
)

2
√
M
(
e
√
M − e−

√
M
) yk

+
∫1

t

cosh
√
Mt cosh

√
M(1 − s)√

M sinh
√
M

h(s)ds

+
∑

t≤tk<1

cosh
√
Mt cosh

√
M(1 − tk)√

M sinh
√
M

yk

=
∫1

0
G(t, s)h(s)ds +

m∑
k=1

G(t, tk)yk.

(2.16)

Inversely, we can verify directly that the function u ∈ PC1(J, E) ∩ C2(J ′, E) defined by
(2.4) is a solution of the linear NBVP (2.3). Therefore, the conclusion of Lemma 2.4 holds.
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By (2.5), it is easy to verify that G(t, s) has the following property:

1√
M sinh

√
M

≤ G(t, s) ≤ cosh2√M√
M sinh

√
M

. (2.17)

Evidently, C(J, E) is also an ordered Banach space with the partial order ≤ reduced by
the positive cone C(J,K) = {u ∈ C(J, E) | u(t) ≥ θ, t ∈ J}. C(J,K) is also normal with the
same normal constant N.

Define an operator A : C(J,K) → C(J,K) as follows:

Au(t) =
∫1

0
G(t, s)f(s, u(s))ds +

m∑
k=1

G(t, tk)Ik(u(tk)). (2.18)

Clearly, A : C(J,K) → C(J,K) is continuous, and the positive solution of NBVP (1.1) is the
nontrivial fixed point of operator A. However, the integral operator A is noncompactness in
general Banach space. In order to employ the topological degree theory and the fixed point
theory of condensing mapping, there demands that the nonlinear f and impulsive function
Ik satisfy some noncompactness measure condition. Thus, we suppose the following.

(P0) For any R > 0, f(J ×KR) and Ik(KR) are bounded and

α
(
f(t,D)

) ≤ Lα(D), α(Ik(D)) ≤ Mkα(D), k = 1, 2, . . . , m, (2.19)

where KR = K ∩ B(θ, R), D ⊂ K is arbitrarily countable set, L > 0 and Mk ≥ 0 are counsants
and satisfy (4L/M) + (2cosh2 √

M
∑m

k=1 Mk/
√
M sinh

√
M) < 1.

Lemma 2.5. Suppose that condition (P0) is satisfied; then A : C(J,K) → C(J,K) is condensing.

Proof. Since A(B) is bounded and equicontinuous for any bounded and nonrelative compact
set B ⊂ C(J,K), by Lemma 2.3, there exists a countable set B1 = {un} ⊂ B, such that

α(A(B)) ≤ 2α(A(B1)). (2.20)

By assumption (P0) and Lemma 2.1,

α(A(B1)(t)) = α

({∫1

0
G(t, s)f(s, un(s))ds +

m∑
k=1

G(t, tk)Ik(un(tk))

})

≤ α

({∫1

0
G(t, s)f(s, un(s))ds

})
+ α

({
m∑
k=1

G(t, tk)Ik(un(tk))

})

≤ 2
∫1

0
G(t, s)α

(
f(s, B1(s))

)
ds +

m∑
k=1

G(t, tk)α(Ik(B1(tk)))
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≤ 2
∫1

0
G(t, s)Lα(B1(s))ds +

m∑
k=1

G(t, tk)Mkα(B1(tk))

≤ 2L
∫1

0
G(t, s)dsα(B1) +

m∑
k=1

MkG(t, tk)α(B1)

≤ 2L
M

α(B1) +
cosh2√M

∑m
k=1 Mk√

M sinh
√
M

α(B1)

=

(
2L
M

+
cosh2√M

∑m
k=1 Mk√

M sinh
√
M

)
α(B1).

(2.21)

Since A(B1) is equicontinuous, by Lemma 2.1, we have

α(A(B1)) = max
t∈J

α(A(B1)(t)) ≤
(

2L
M

+
cosh2√M

∑m
k=1 Mk√

M sinh
√
M

)
α(B1). (2.22)

Combining (2.20) and (P0), we have

α(A(B)) ≤ 2α(A(B1)) ≤
(

4L
M

+
2cosh2√M

∑m
k=1 Mk√

M sinh
√
M

)
α(B). (2.23)

Hence, A : C(J,K) → C(J,K) is condensing.

Let P be a cone in C(J,K) defined by

P = {u ∈ C(J,K) | u(t) ≥ σu(τ), ∀t, τ ∈ J}, (2.24)

where σ = 1/cosh2√M.

Lemma 2.6. For any f(J,K) ⊂ K, A(C(J,K)) ⊂ P .

Proof. For any u ∈ C(J,K), t, τ ∈ J , by (2.18) and the second inequality of (2.17), we have

A(u(τ)) =
∫1

0
G(τ, s)f(s, u(s))ds +

m∑
k=1

G(τ, tk)Ik(u(tk))

≤ cosh2√M√
M sinh

√
M

(∫1

0
f(s, u(s))ds +

m∑
k=1

Ik(u(tk))

)
.

(2.25)
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By this, (2.18), and the first inequality of (2.17), we have

A(u(t)) =
∫1

0
G(t, s)f(s, u(s))ds +

m∑
k=1

G(t, tk)Ik(u(tk))

≥ 1√
M sinh

√
M

(∫1

0
f(s, u(s))ds +

m∑
k=1

Ik(u(tk))

)

≥ σA(u(τ)).

(2.26)

Hence, A(C(J,K)) ⊂ P .
Thus, for any f(J,K) ⊂ K, A : P → P is condensing mapping; the positive solution

of NBVP (1.1) is equivalent to the nontrivial fixed point of A in P . For 0 < r < R < ∞, let
Pr = {u ∈ P | ‖u‖C < r}, and ∂Pr = {u ∈ P | ‖u‖C = r}, which is the relative boundary bound
of Pr in P . Denote that Pr,R = PR \ Pr ; then the fixed point of A in Pr,R is the positive solution
of NBVP (1.1). We will use the fixed point theory of condensing mapping to find the fixed
point of A in Pr,R.

LetX be a Banach space and let P ⊂ X be a cone inX. Assume thatΩ is a bounded open
subset of X and let ∂Ω be its bound. Let Q : P ∩Ω → P be a condensing mapping. If Qu/=u
for every u ∈ P ∩ ∂Ω, then the fixed point index i(Q,P ∩Ω, P) is defined. If i(Q,P ∩Ω, P)/= 0,
then Q has a fixed point in P ∩ Ω. As the fixed point index theory of completely continuous
mapping, see [10, 11], we have the following lemmas that are needed in our argument for
condensing mapping.

Lemma 2.7. Let Q : P → P be condensing mapping; if

u/=λAu, ∀u ∈ ∂Pr, 0 < λ ≤ 1, (2.27)

then i(Q,Pr, P) = 1.

Lemma 2.8. Let Q : P → P be condensing mapping; if there exists v0 ∈ P, v0 /= θ, such that

u −Au/= τv0, ∀u ∈ ∂Pr, τ ≥ 0, (2.28)

then i(Q,Pr, P) = 0.

3. Main Results

(P1) (i) There exist δ > 0, a, ak > 0, such that for all x ∈ Pδ and t ∈ J , f(t, x) ≤
ax, Ik(x) ≤ akx, and a + (

∑m
k=1 ak/σ

2) < M.
(ii) There exist b, bk > 0, h0 ∈ C(J,K), and yk ∈ K, such that for all x ∈ P and
t ∈ J , f(t, x) ≥ bx − h0(t), Ik(x) ≥ bkx − yk, and b + σ2∑m

k=1 bk > M.

(P2) (i) There exist δ > 0, b, bk > 0, such that for all x ∈ Pδ and t ∈ J , f(t, x) ≥ bx, Ik(x) ≥
bkx, and b + σ2∑m

k=1 bk > M.
(ii) There exist a, ak > 0, h0 ∈ C(J,K), and yk ∈ K, such that for all x ∈ P and
t ∈ J , f(t, x) ≤ ax + h0(t), Ik(x) ≤ akx + yk, and a + (

∑m
k=1 ak/σ

2) < M.
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Theorem 3.1. Let E be an ordered Banach space, whose positive coneK is normal, f ∈ C(J ×K,K),
and Ik ∈ C(K,K), k = 1, 2, . . . , m. Suppose that conditions (P0) and (P1) or (P2) are satisfied; then
the NBVP (1.1) has at least one positive solution.

Proof. We show, respectively, that the operatorA defined by (2.18) has a nontrivial fixed point
in two cases that (P1) is satisfied and (P2) is satisfied.

Case 1. Assume that (P1) is satisfied; let 0 < r < δ, where δ is the constant in condition (P1),
to prove that A satisfies

u/=λAu, ∀u ∈ ∂Pr, 0 < λ ≤ 1. (3.1)

If (3.1) is not true, then there exist u0 ∈ ∂Pr and 0 < λ0 ≤ 1, such that u0 = λ0Au0; by the
definition of A, u0(t) satisfies

−u′′
0(t) +Mu0(t) = λ0f(t, u0(t)), t ∈ J, t /= tk,

−Δu′
0|t=tk = λ0Ik(u0(tk)), k = 1, 2, . . . , m,

u′
0(0) = u′

0(1) = θ.

(3.2)

Integrating (3.2) from 0 to 1, using (i) of assumption (P1), we have

(M − a)
∫1

0
u0(t)dt ≤

m∑
k=1

aku0(tk). (3.3)

Since u0 ∈ P , for any t, s ∈ J , by the definition of P , we have u0(t) ≥ σu0(s), u0(tk) ≤
(1/σ)u0(s), and thus

σ(M − a)u0(s) ≤
∑m

k=1 ak

σ
u0(s), (3.4)

that is; (M − (a + (
∑m

k=1 ak/σ
2))) u0(s) ≤ θ. So we obtain that u0(s) ≤ θ in J , which contracts

with u0 ∈ ∂Pr . Hence (3.1) is satisfied; by Lemma 2.7, we have

i(A,Pr, P) = 1. (3.5)

Let e ∈ C(J,K), ‖e‖ = 1, v0(t) ≡ e, and obviously v0 ∈ P . We show that if R is large enough,
then

u −Au/= τv0, ∀u ∈ ∂PR, τ ≥ 0. (3.6)
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In fact, if there exist u0 ∈ ∂PR, τ0 ≥ 0 such that u0 − Au0 = τ0v0, then Au0 = u0 − τ0v0; by the
definition of A, u0(t) satisfies

−u′′
0(t) +Mu0(t) −Mτ0v0 = f(t, u0(t)), t ∈ J, t /= tk,

−Δu′
0|t=tk = Ik(u0(tk)), k = 1, 2, . . . , m,

u′
0(0) = u′

0(1) = θ.

(3.7)

By (ii) of assumption (P1), we have

−u′′
0(t) +Mu0(t) = f(t, u0(t)) +Mτ0v0 ≥ bu0(t) − h0(t), t ∈ J ′. (3.8)

Integrating on J and using (ii) of assumption (P1), we have

(b −M)
∫1

0
u0(t)dt +

m∑
k=1

bku0(tk) ≤
∫1

0
h0(t)dt +

m∑
k=1

yk. (3.9)

If b > M, for any t, s ∈ J , by the definition of P , we have u0(t) ≥ σu0(s); u0(tk) ≥ σu0(s); thus

(
σ(b −M) + σ

m∑
k=1

bk

)
u0(s) ≤

∫1

0
h0(t)dt +

m∑
k=1

yk. (3.10)

By σ(b −M) + σ
∑m

k=1 bk > 0 and the normality of cone K, we have

‖u0‖C ≤ N
(‖h0‖C +

∑m
k=1 ‖yk‖

)
σ(b −M) + σ

∑m
k=1 bk

� R1. (3.11)

If b ≤ M, then for any t, s ∈ J , by the definition of P , we have u0(t) ≤ (1/σ)u0(s), u0(tk) ≥
σu0(s); thus

(
(b −M)

σ
+ σ

m∑
k=1

bk

)
u0(s) ≤

∫1

0
h0(t)dt +

m∑
k=1

yk. (3.12)

By b + σ2∑m
k=1 bk > M, and the normality of K, we have

‖u0‖C ≤ N
(‖h0‖C +

∑m
k=1 ‖yk‖

)
((b −M)/σ) + σ

∑m
k=1 bk

� R2. (3.13)

Let R > max{R1, R2, r}; then (3.6) is satisfied; by Lemma 2.8, we have

i(A,PR, P) = 0. (3.14)
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Combining (3.5), (3.14), and the additivity of fixed point index, we have

i(A,Pr,R, P) = i(A,PR, P) − i(A,Pr, P) = −1/= 0. (3.15)

Therefore A has a fixed point in Pr,R, which is the positive solution of NBVP (1.1).

Case 2. Assume that (P2) is satisfied; let 0 < r < δ, where δ is the constant in condition (P2),
to proof that A satisfies

u −Au/= τv0, ∀u ∈ ∂Pr, τ ≥ 0, (3.16)

where v0(t) = e ∈ P, e /= θ. In fact, if there exists u0 ∈ ∂Pr and τ0 ≥ 0, such that u0−Au0 = τ0v0,
then u0 satisfies (3.7) and (i) of condition (P2), and we have

−u′′
0(t) +Mu0(t) = f(t, u0(t)) +Mτ0v0 ≥ bu0(t), t ∈ J ′. (3.17)

Integrating on J and using (i) of assumption (P2), we have

(b −M)
∫1

0
u0(t)dt +

m∑
k=1

bku0(tk) ≤ θ. (3.18)

If b > M, for any t, s ∈ J , by the definition of P , we have u0(t) ≥ σu0(s), u0(tk) ≥
σu0(s), for all t, s ∈ J , and thus

(
σ(b −M) + σ

m∑
k=1

bk

)
u0(s) ≤ θ. (3.19)

By σ(b −M) + σ
∑m

k=1 bk > 0, we obtain that u0(s) ≤ θ, which contracts with u0 ∈ ∂Pr . Hence
(3.16) is satisfied.

If b ≤ M, for any t, s ∈ J , by the definition of P , we have u0(t) ≤ (1/σ)u0(s), u0(tk) ≥
σu0(s), for all t, s ∈ J , and thus

(
1
σ
(b −M) + σ

m∑
k=1

bk

)
u0(s) ≤ θ. (3.20)

By b + σ2∑m
k=1 bk > M, we obtain that u0(s) ≤ θ, which contracts with u0 ∈ ∂Pr . Hence (3.16)

is satisfied.
Hence, by Lemma 2.8, we have

i(A,Pr, P) = 0. (3.21)

Next, we show that if R is large enough, then

u/=λAu, ∀u ∈ ∂PR, 0 < λ ≤ 1. (3.22)
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In fact, if there exists u0 ∈ ∂PR and 0 < λ0 ≤ 1 such that u0 = λ0Au0, then u0 satisfies (3.2).
Integrating (3.2) on J , and using (ii) of (P2), we have

(M − a)
∫1

0
u0(t)dt −

m∑
k=1

aku0(tk) ≤
∫1

0
h0(t)dt +

m∑
k=1

yk. (3.23)

For any t, s ∈ J , by the definition of P , we have u0(t) ≥ σu0(s), u0(tk) ≤ (1/σ)u0(s), for
all t, s ∈ J , and thus

(
σ(M − a) − 1

σ

m∑
k=1

ak

)
u0(s) ≤

∫1

0
h0(t)dt +

m∑
k=1

yk. (3.24)

By a + (
∑m

k=1 ak/σ
2) < M, we have

u0(s) ≤
∫1
0 h0(t)dt +

∑m
k=1 yk

σ(M − a) − (1/σ)
∑m

k=1 ak
. (3.25)

By the normality of K, we have

‖u0(s)‖ ≤
N
∥∥∥∫10 h0(t)dt +

∑m
k=1 yk

∥∥∥
σ(M − a) − (1/σ)

∑m
k=1 ak

. (3.26)

Thus

‖u0‖C ≤ N
(‖h0‖C +

∑m
k=1

∥∥yk

∥∥)
σ(M − a) − (1/σ)

∑m
k=1 ak

� R3. (3.27)

Let R > max{R3, r}; then (3.22) is satisfied; by Lemma 2.7, we have

i(A,PR, P) = 1. (3.28)

Combining (3.21), (3.28), and the additivity of fixed index, we have

i(A,Pr,R, P) = i(A,PR, P) − i(A,Pr, P) = 1. (3.29)

Therefore A has a fixed point in Pr,R, which is the positive solution of NBVP (1.1).

Remark 3.2. The conditions (P1) and (P2) are a natural extension of suplinear condition and
sublinear condition in Banach space E. Hence if Ik = θ, then Theorem 3.1 improves and
extends the main results in [8, 9].
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4. Example

We provide an example to illustrate our main result.

Example 4.1. Consider the following problem:

− ∂2

∂t2
w(t, x) +w(t, x) =

∫1

0
e(t−s)w2(s, x)ds +

1
100

w(t, x), t ∈ J ′, x ∈ I,

−Δ ∂

∂t
w(t, x)|t=1/2 = 1

100
w

(
1
2
, x

)
, x ∈ I,

∂

∂t
w(0, x) =

∂

∂t
w(1, x) = 0, x ∈ I,

(4.1)

where J = [0, 1], J ′ = J \ {1/2}, I = [0, T], and T > 0 is a constant.

Conclusion

Problem (4.1) has at least one positive solution.

Proof. Let E = C(I), and K = {w ∈ C(I) | w(x) ≥ 0, x ∈ I}; then E is a Banach space with
norm ‖w‖ = maxt∈I |w(x)|, and K is a positive cone of E. Let u(t) = w(t, ·); then the problem
(4.1) can be transformed into the form of NBVP (1.1), whereM = 1, f(t, u) =

∫1
0 e

(t−s)u2(s)ds+
(1/100)u(t), and I1(u(1/2)) = (1/100)u(1/2). Evidently C(J, E) is a Banach space with norm
‖u‖C = maxt∈J‖u(t)‖, and C(J,K) is positive cone of C(J, E). Let P = {u ∈ C(J,K) | u(t) ≥
σu(s), t, s ∈ J}, where σ = 1/cosh2 1; then P is a cone in C(J,K), and for any u ∈ P, t ∈ J ,
we have σ‖u‖C ≤ u(t) ≤ ‖u‖C.

Next, we will verify that the conditions (P0) and (P1) in Theorem 3.1 are satisfied.
It is easy to verify that for any R > 0, f(J ×KR) and I1(KR) are bounded. Let g(t, u) =∫1

0 e
(t−s)u2(s)ds; then g is completely continuous. So for any countable bounded set D ⊂ K,

we have

α
(
f(t,D)

) ≤ α
(
g(t,D)

)
+

1
100

α(D) =
1

100
α(D), α(I1(D)) =

1
100

α(D), (4.2)

and for L = 1/100, and M1 = 1/100, by simple calculations, (4L/M) + (2cosh2 √
M M1/√

M sinh
√
M) < 1. So condition (P0) is satisfied.

Let δ = 1/100; then for u ∈ Pδ, we have

f(t, u) ≤ δ
∫1
0 e

(t−s)ds

σ
u(t) +

1
100

u(t) ≤
(
δ(e − 1)

σ
+

1
100

)
u(t),

I1

(
u

(
1
2

))
=

1
100

u

(
1
2

)
≤ 1

100σ
u(t).

(4.3)

Let a = (δ(e−1)/σ)+(1/100), a1 = (1/100)σ; by simple calculations, we have a+(a1/σ
2) < 1.

So (i) of condition (P1) is satisfied.
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Let R = 100, for u ∈ P, ‖u‖C ≥ R; we have f(t, u) ≥ (1/2 σ2R + (1/100))u(t). For
u ∈ P , 0 ≤ ‖u‖C ≤ R, we have f(t, u) ≤ R2et + 1. Hence, let h0(t) = 10000et + 1, y1 = 0; then
for any u ∈ P , we have

f(t, u) ≥
(
1
2
σ2R +

1
100

)
u(t) − h0(t)

I1

(
u

(
1
2

))
≥ 1

100
σu(t).

(4.4)

Let b = (1/2)σ2R + (1/100), and b1 = (1/100)σ; by simple calculations, we have b + σ2b1 > 1,
so (ii) of condition (P1) is satisfied.

By Theorem 3.1, Problem (4.1) has at least one positive solution.
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