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We solve some higher-order boundary value problems by the optimal homotopy asymptotic
method (OHAM). The proposed method is capable to handle a wide variety of linear and
nonlinear problems effectively. The numerical results given byOHAMare comparedwith the exact
solutions and the solutions obtained by Adomian decomposition (ADM), variational iteration
(VIM), homotopy perturbation (HPM), and variational iteration decomposition method (VIDM).
The results show that the proposed method is more effective and reliable.

1. Introduction

In this paper, we consider a well-posed nth-order problem of the form

u(n) = ψ
(
u, u′, . . . , u(n−1)

)
+ φ(r), a < r < b, (1.1)

with boundary conditions: u(k)(a) = αi and u(k)(b) = βi, where k(< n) is a nonnegative integer,
αi and βi are real finite constants, and φ(r) is a continuous function on [a, b].

Such types of problems have been investigated by many authors [1, 2] due to
their mathematical importance and the potential for applications in hydrodynamic and
hydromagnetic stability. Fifth-order boundary value problems arise in the mathematical
modeling of viscoelastic flows. Sixth- and eighth-order differential equation govern physics
of some hydrodynamic stability problems. When an infinite horizontal layer of fluid is heated
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from below and is subject to the action of rotation, instability sets in. When this instability is
as ordinary convection, the ordinary differential equation is sixth order; when the instability
sets in as overstability, it is modeled by an eighth-order ordinary differential equation. If an
infinite horizontal layer of fluid is heated from below, with the supposition that a uniform
magnetic field is also applied across the fluid in the same direction as gravity and the fluid
is subject to the action of rotation, instability sets in. When instability sets in as ordinary
convection, it is modeled by tenth-order boundary value problem.

So for the solution of these problems is concerned, many methods appeared in litera-
ture. The recent analytic methods are Adomian decomposition method (ADM) [3–5], varia-
tional iteration method (VIM) [6], homotopy perturbation method (HPM) [7–9], homotopy
analysis method (HAM) [10, 11], differential transform method (DTM) [12], and so forth.
Classical perturbation methods are based on the assumptions of small or large parameters,
and they cannot produce a general form of an approximate solution. The nonperturbation
methods like ADM andDTM can deal strongly with nonlinear problems, but the convergence
region of their series solution is generally small. TheHPM,which is an elegant combination of
homotopy and perturbation technique, overcomes the restrictions of small or large parame-
ters in the problems. It deals with a wide variety of nonlinear problems effectively. Recently,
Marinca et al. [13–17] introduced OHAM for approximate solution of nonlinear problems
of thin film flow of a fourth-grade fluid down a vertical cylinder. In their work, they have
used this method to understand the behavior of nonlinear mechanical vibration of electrical
machine. They also used the same method for the solution of nonlinear equations arising
in the steady-state flow of a fourth-grade fluid past a porous plate and for the solution of
nonlinear equation arising in heat transfer. This method is straight forward, reliable, and
explicitly defined. It provides a convenient way to control the convergence of the series
solution and allows adjustment of convergence region where it is needed.

Fifth- and sixth-order linear and nonlinear problems were solved by Wazwaz [18, 19],
while using decomposition method. Noor et al. [20–25] investigated these type of problems
using variational iteration method (VIM), homotopy perturbation method (HPM), and
variational iteration decomposition method (VIDM). Modified variational iteration method
(MVIM) and iterative method (ITM) were used by Mohyud-Din et al. [26, 27] for such type
of problems. Kasi Viswanadham and Murali Krishna [28] used Quintic B-Spline Galerkin
method for fifth-order boundary value problems. Siraj-ul-Islam et al. [29, 30] used numerical
scheme for the solution of fifth- and sixth-order boundary value problems.

Recently, Ali et al. [31, 32] used OHAM for the solution of multipoint boundary
value problems and twelfth-order boundary value problems. We use OHAM to find the ap-
proximate analytic solution of some higher-order BVPs. The results of OHAM are compared
with those of exact solution, and the errors are compared with the existing results. This paper
is organized as follows: Section 2 is devoted to the analysis of the proposed method. Some
numerical examples are presented in Section 3. In Section 4, we concluded by discussing
results of the numerical simulation using Mathematica.

2. Method Analysis for Two-Point Boundary Value Problems

Consider the differential equation

Lu = N u + φ, (2.1)
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along with boundary conditions:

B

(
u,
∂u

∂r

)
= 0, (2.2)

where L is linear, N is a nonlinear, and B is a boundary operator. φ is a known function
which is continues for r : r ∈ Ω. According to OHAM, we can construct a homotopy defined
by

(
1 − p)L(

u
(
r; p

)) − h
(
p
)[

L
(
u
(
r; p

)) − N
(
u
(
r; p

)) − φ(r)] = 0, (2.3)

where p ∈ [0, 1] is an embedding parameter, and h(p) is a nonzero auxiliary function for p /= 0
and h(0) = 0. Equation (2.3) satisfies

Lu = 0, for p = 0, Lu = N u + φ, for p = 1. (2.4)

The solution, u(r, 0) = v0(r), of Lu = 0 traces the solution curve u(r) of (2.1), continuously as
p approaches to 1, where v0 is the solution of the zeroth-order problem, that will come in the
next few lines.

The auxiliary function h(p) is chosen in the form (it is a commonly used form)

h
(
p
)
=

m∑
i=1

piCi, (2.5)

where Ci: i = 1, 2, . . . , m are the convergence controlling constants which are to be deter-
mined.Wewill use this function unless otherwise stated. The auxiliary function can be chosen
in a variety of ways, as reported by Marinca et al. [13–17]. We will use some other forms of
h(p) as well.

To get an approximate solution, we expand u(r, p) in Taylor’s series about p in the
following manner:

u
(
r; p

)
= v0(r) +

∞∑
m=1

vm(r, C1, C2, . . . , Cm)pm. (2.6)

Substituting (2.5) and (2.6) into (2.3) and equating the coefficient of like powers of p, we
obtain the following linear equations which can be integrated directly.

Zeroth-order problem:

Lv0 = 0, B

(
v0,

∂v0
∂n

)
= 0. (2.7)

First-order problem:

Lv1 = (1 + C1)Lv0 − C1
(
N0v0 − φ

)
, B

(
v1,

∂v1
∂n

)
= 0. (2.8)
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Second-order problem:

Lv2 = (1 + C1)Lv1 − C1N1(v0, v1) + C2
(
Lv0 − N0v0 − φ

)
, B

(
v2,

∂v2
∂n

)
= 0. (2.9)

Though we can construct higher-order problems easily, solutions upto the second-order
problems are enough to produce excellent results.

If the series (2.6) is convergent at p = 1, then the approximate solution in our case is,

ũ(r) = v(r) = v0(r) + v1(r, C1) + v2(r, C1, C2). (2.10)

By substituting (2.10) into (2.1), the resulting residual is

R(r, C1, C2) = L(ũ(r)) − N (ũ(r)) − φ(r). (2.11)

If R = 0, ũwill be the exact solution. Otherwise, we minimize R over domain of the problem.
To find the optimal values of Ci which minimizes R, many methods can be applied [13–17].
We follow two methods: the method of least squares and the Galerekin’s method. According
to the method of least squares, we first construct the functional

J(C1, C2) =
∫b

a

R2dr, (2.12)

and then minimizing it, we have

∂J

∂C1
=
∂J

∂C2
= 0. (2.13)

According to the Galerekin’s method, we solve the following system for C1 and C2:

∫b

a

R
∂ũ

∂C1
dr = 0,

∫b

a

R
∂ũ

∂C2
dr = 0. (2.14)

Knowing C1 and C2, the approximate solution is well determined.

3. Some Numerical Examples

Example 3.1 (fifth-order linear). Consider the following problem:

y(v)(x) = y − 15ex − 10xex, 0 < x < 1, (3.1)

with boundary conditions

y(0) = 0, y′(0) = 1, y′′(0) = 0, y(1) = 0, y′(1) = −e. (3.2)

The exact solution of this problem is y(x) = x(1 − x)ex.
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We choose the auxiliary function as h(p) = p(C1 +C2x). Plugging in this value in (2.3)
of Section 2, we obtain the following linear problems which can be integrated directly.

Zeroth-order problem:

y
(5)
0 (x) = 0,

y0(0) = 0, y′
0(0) = 0, y′′

0(0) = 0, y0(1) = 0, y′
0(1) = −e.

(3.3)

First-order problem:

y
(5)
1 (x,C1, C2) = 5ex(3 + 2x)(C1 + C2x) − (C1 + C2x)y0(x),

y1(0) = 0, y′
1(0) = 0, y′′

1(0) = 0, y1(1) = 0, y′
1(1) = 0.

(3.4)

Second-order problem:

y
(5)
2 (x,C1, C2) = (1 + C1 + C2x)y

(5)
1 (x,C1, C2) − (C1 + C2x)y1(x,C1, C2),

y2(0) = 0, y′
2(0) = 0, y′′

2(0) = 0, y2(1) = 0, y′
2(1) = 0.

(3.5)

Adding up the solutions of these problems, the second-order approximate solution,

ỹ(x) = y0(x) + y1(x,C1, C2) + y2(x,C1, C2) +O
(
x15

)
, (3.6)

is determined by knowing the optimal values of the auxiliary constants, C1 and C2. Using
Galerkin’s method, we obtain C1 = −1.000245451, C2 = 0.000124615.

By considering these values, (3.6) becomes

ỹ(x) = x − 0.5x3 − 0.333333x4 − 0.125x5 − 0.0333333x6 − 0.00694444x7

− 0.00119049x8 − 0.000173601x9 − 0.0000220495x10 − 2.48013 × 10−6x11

− 2.50501 × 10−7x12 − 2.27501 × 10−8x13 − 2.0326 × 10−9x14 +O
(
x15

)
.

(3.7)

Numerical results of the solution (3.7) are displayed in Table 1.

Example 3.2 (another fifth-order linear). Consider the following problem:

y(5)(x) + xy(x) = 19xCos(x) − 2x3 Cos(x) − 41 Sin(x) + 2x2 Sin(x), (3.8)
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Table 1: It shows comparison of the solutions obtained by OHAM (3.7), ADM [18], HPM [20], VIM [22],
ITM [24], and VIHPM [21]. From the numerical results, it is clear that OHAM ismore efficient and accurate.

x Exact sol. OHAM sol. E∗ (3.7) E∗ (ADM) E∗ (HPM) E∗ (VIM) E∗ (ITM) E∗ (VIHPM)
0.0 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.099465383 0.099465383 −1E − 12 −3E − 11 −3E − 11 −3E − 11 −3E − 11 −3E − 11
0.2 0.195424441 0.195424441 −7E − 12 −2E − 10 −2E − 10 −2E − 10 −2E − 10 −2E − 10
0.3 0.28347035 0.28347035 − 1E − 11 −4E − 10 −4E − 10 −4E − 10 −4E − 10 −4E − 10
0.4 0.358037927 0.358037927 −1E − 11 −8E − 10 −8E − 10 −8E − 10 −8E − 10 −8E − 10
0.5 0.412180318 0.412180318 −8E − 12 −1E − 9 −1E − 9 −1E − 9 −1E − 9 −1E − 9
0.6 0.437308512 0.437308512 3E − 14 −2E − 9 −2E − 9 −2E − 9 −2E − 9 −2E − 9
0.7 0.422888068 0.422888068 6E − 12 −2E − 9 −2E − 9 −2E − 9 −2E − 9 −2E − 9
0.8 0.356086548 0.356086548 2E − 12 −2E − 9 −2E − 9 −2E − 9 −2E − 9 −2E − 9
0.9 0.221364280 0.221364280 −3E − 11 −1E − 9 −1E − 9 −1E − 9 −1E − 9 −1E − 9
1.0 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
E∗ = exact – approximate.

with boundary conditions

y(−1) = y(1) = Cos(1),

y′(−1) = y′(1) = −4Cos(1) + Sin(1),

y′′(−1) = 3Cos(1) − 8 Sin(1).

(3.9)

Exact solution of this problem is y(x) = (2x2 − 1)Cos(x).
Considering the second-order solution ỹ(x) = y0(x)+y1(x,C1)+y2(x,C1, C2)+O(x13),

we use the method of least squares to obtain C1 = 0.9940605306, C2 = −3.9762851376.
Having these values, our solution in this case is

ỹ(x) = −0.999978 + 2.49992x2 − 1.04155x4 + 0.0846365x6 − 0.00276866x8

+ 0.0000420239x10 + 3.38286 × 10−7x12 +O
(
x13

)
.

(3.10)

Numerical results of the solution (3.10) are displayed in Table 2.

Example 3.3 ([33] fifth-order nonlinear). Consider the following problem:

y(v)(x) = y3(x)e−x, 0 < x < 1, (3.11)

with boundary conditions

y(0) = 1, y′(0) = 1/2, y′′(0) = 1/4, y(1) = e1/2, y′(1) =
1

2e1/2
. (3.12)

The exact solution for this problem is y(x) = ex/2.
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Table 2: Themaximum absolute error as reported in [28] is 1.8775×10−5, while in our case, it is 8.5757×10−8.

x Exact sol. OHAM sol. (3.10) E∗ (3.10)
−1.0 0.540302306 0.540302301 3.90E − 9
−0.8 0.195077879 0.195077879 8.44E − 9
−0.6 −0.231093972 −0.231094010 3.74E − 8
−0.4 −0.626321476 −0.626321543 6.70E − 8
−0.2 −0.901661252 −0.901661334 8.22E − 8
0.0 −1.000000000 −1.000000086 8.58E − 8
0.2 −0.901661252 −0.901661334 8.22E − 8
0.4 −0.626321476 −0.626321543 6.70E − 8
0.6 −0.231093972 −0.231094010 3.74E − 8
0.8 0.195077879 0.195077879 8.44E − 9
1.0 0.540302306 0.540302301 3.90E − 9
E∗ = exact − approximate.

We consider the second-order solution, ỹ(x) = y0(x)+y1(x,C1)+y2(x,C1, C2)+O(x15).
Using Galerkin’s procedure in Section 2, we obtain the following values:

C1 = 0.010868466, C2 = −0.029423113. (3.13)

The second-order approximate solution is

ỹ(x) = 1 +
x

2
+
x2

8
+ 0.0205993x3 + 0.0030533x4 + 0.0000630671x5 + 5.2556 × 10−6x6

+ 3.754 × 10−7x7 + 2.29401 × 10−8x8 + 1.74892 × 10−9x9 − 3.2692 × 10−11x10

− 1.48596 × 10−12x11 − 6.20243 × 10−14x12 − 2.58495 × 10−15x13

+ 2.75287 × 10−17x14 +O
(
x15

)
.

(3.14)

Numerical results of the solution (3.14) are displayed in Table 3.

Example 3.4 (sixth-order nonlinear). Consider the following problem:

y(vi)(x) = exy2(x), 0 < x < 1, (3.15)

with boundary conditions

y(0) = 1, y′(0) = 1, y′′(0) = 1, y(1) = e−1, y′(1) = −e−1, y′′(1) = e−1.
(3.16)

The exact solution is y(x) = e−x.
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Table 3

x Exact solution OHAM sol. (3.14) E∗ (3.14) E∗ (DTM [33])
0.0 0.00000 0.0000 0.0000 0.0000
0.1 1.105170918 1.105170919 −9.2E − 10 1.0E − 9
0.2 1.221402758 1.221402763 −5.0E − 9 2.0E − 9
0.3 1.349858808 1.349858818 −1.1E − 8 1.0E − 8
0.4 1.491824698 1.491824713 −1.5E − 8 2.0E − 8
0.5 1.648721271 1.648721287 −1.6E − 8 3.1E − 8
0.6 1.822118800 1.822118814 −1.4E − 8 3.7E − 8
0.7 2.013752707 2.013752717 −9.9E − 9 4.1E − 8
0.8 2.225540928 2.225540934 −5.6E − 9 3.1E − 8
0.9 2.459603111 2.459603112 −1.1E − 9 1.4E − 8
1.0 2.718281828 2.718281824 0.000 0.000
E∗ = exact – approximate.

For this problem, we take the auxiliary function h(p) = p(C1 + C2e
−x),

ỹ(x) = y0(x) + y1(x,C1, C2) + y2(x,C1, C2) +O
(
x13

)
. (3.17)

Using Galerkin’s method, we obtain C1 = 0.41243798998, C2 = 0.0014069149.
OHAM solution in this case is

ỹ(x) = 1 − 0.999999994x +
x2

2
− 0.166666775x3 +

x4

24
− 0.008332465x5

+ 0.001387441x6 − 0.000197784x7 + 0.000025071x8 − 3.002 × 10−6x9

+ 2.918 × 10−7x10 − 6.7 × 10−9x11 − 2.257 × 10−9x12 + 1.806 × 10−10x13

− 1.974 × 10−11x14 +O
(
x15

)
.

(3.18)

Numerical results of the solution (3.18) are displayed in Table 4.

Example 3.5 (eighth-order nonlinear). Consider the following problem:

y(viii)(x) = e−xy2(x), 0 < x < 1, (3.19)

with boundary conditions

y′(0) = 1, y′(0) = 1, y′′(0) = 1, y′′′(0) = 1,

y(1) = e, y′(1) = e, y′′(1) = e.
(3.20)
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Table 4: It shows comparison of the OHAM solution (3.18)with the exact solution and the errors obtained
by decomposition method (ADM) [19], homotopy perturbation method (HPM) [24], and the variational
iteration method [22]. It is clear from the results that the method we applied is more efficient and accurate
than the other methods.

x Exact solution OHAM sol (3.18) E∗ (3.18) E∗ (ADM) E∗ (HPM) E∗ (VIM)
0.0 1 1 0 0 0 0
0.1 0.904837418 0.904837418 −4.82E − 10 −1.2E − 4 −1.2E − 4 −1.2E − 4
0.2 0.818730753 0.818730753 −4.92E − 10 −2.3E − 4 −2.3E − 4 −2.3E − 4
0.3 0.740818221 0.740818221 −2.37E − 11 −3.2E − 4 −3.2E − 4 −3.2E − 4
0.4 0.670320046 0.670320046 5.11E − 10 −3.8E − 4 −3.8E − 4 −3.8E − 4
0.5 0.60653066 0.60653066 6.42E − 10 −4.0E − 4 −4.0E − 4 −4.0E − 4
0.6 0.548811636 0.548811636 2.02E − 10 −3.9E − 4 −3.9E − 4 −3.9E − 4
0.7 0.496585304 0.496585304 −5.37E − 10 −3.3E − 4 −3.3E − 4 −3.3E − 4
0.8 0.449328964 0.449328965 −1.02E − 09 −2.4E − 4 −2.4E − 4 −2.4E − 4
0.9 0.40656966 0.40656966 −8.23E − 10 −1.2E − 4 −1.2E − 4 −1.2E − 4
1.0 0.367879441 0.367879441 −2.05E − 12 2.0E − 9 2.0E − 9 2.0E − 9
E∗ = exact − approximate.

Considering the second-order solution ỹ(x) = y0(x) + y1(x,C1) + y2(x,C1, C2) + O(x13), the
following values of the convergence controlling constants are obtained by using Galerkin’s
method:

C1 = −1.451894673 × 10−11, C2 = −0.000647581. (3.21)

The approximate solution in this case is

ỹ(x) = 1 + x + 0.5x2 + 0.166667x3 + 0.0416275x4 + 0.00884857x5 + 0.00117027x6

+ 0.00033161x7 + 1.6061 × 10−8x8 + 1.78456 × 10−9x9 + 1.78456 × 10−10x10

+ 1.62233 × 10−11x11 + 1.3494 × 10−12x12 +O
(
x13

)
.

(3.22)

If the method of least squares is used to determine C’s, we have then

C1 = 1.793 × 10−8, C2 = −1.001347284. (3.23)

The approximate solution in this case is

ỹ(x) = 1 + x + 0.5x2 + 0.166667x3 + 0.0416667x4 + 0.00833313x5 + 0.00138918x6

+ 0.000198233x7 + 0.000024835x8 + 2.75944 × 10−6x9 + 2.75944 × 10−7x10

+ 2.50859 × 10−8x11 + 2.08656 × 10−9x12 +O
(
x13

)
.

(3.24)
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Table 5

x Exact OHAM sol. E∗ (3.22) E∗ (3.24) E∗ (3.26) E∗ ([25])
0.0 1 1 0 0 0 0
0.1 1.105170918 1.105170915 2.60E − 9 −3.5E − 12 1.39E − 16 1.27E − 5
0.2 1.221402758 1.221402732 2.62E − 8 −3.5E − 11 5.32E − 16 2.43E − 5
0.3 1.349858808 1.349858729 7.86E − 8 −1.1E − 10 1.48E − 15 3.35E − 5
0.4 1.491824698 1.491824562 1.36E − 7 −1.8E − 10 3.36E − 15 3.94E − 5
0.5 1.648721271 1.648721109 1.61E − 7 −2.2E − 10 2.28E − 14 4.16E − 5
0.6 1.822118800 1.822118662 1.39E − 7 −1.9E − 10 2.21E − 13 3.96E − 5
0.7 2.013752707 2.013752625 8.22E − 8 −1.1E − 10 1.64E − 12 3.38E − 5
0.8 2.225540928 2.225540900 2.80E − 8 −2.8E − 11 9.36E − 12 2.45E − 5
0.9 2.459603111 2.459603108 2.84E − 9 4.1E − 11 4.36E − 11 1.29E − 5
1.0 2.718281828 2.718281828 1.14E − 13 1.8E − 10 1.73E − 10 1.00E − 9
E∗ = exact − approximate.

Let us use the auxiliary function h(p) = p(C1 +C2e
−x) and consider the second-order solution

ỹ(x) = y0(x) + y1(x,C1, C2) + y2(x,C1, C2) +O
(
x13

)
. (3.25)

Using Galerkin’s method, we obtain C1 = −0.9993171458, C2 = −0.0012314995.
The OHAM solution in this case is

ỹ(x) = 1 + x +
x2

2!
+
x3

3!
+ 0.041666667x4 + 0.008333333x5 + 0.001388889x6

+ 1.984 × 10−4x7 + 2.480 × 10−5x8 + 2.756 × 10−6x9 + 2.756 × 10−7x10

+ 2.505 × 10−8x11 + 2.088 × 10−9x12 +O
(
x13

)
.

(3.26)

Numerical results of the solutions (3.22), (3.24), and (3.26) are displayed in Table 5.

Example 3.6 (nineth-order linear). Consider the following problem:

y(9)(x) = y(x) − 9ex, (3.27)

with boundary conditions

y(0) = 1, y′(0) = 0, y′′(0) = −1, y′′′(0) = −2, y′′′′(0) = −3,
y(1) = 0, y′(1) = −e, y′′(1) = −2e, y′′′(1) = −3e.

(3.28)

Exact solution is y(x) = (1 − x)ex.
For this linear problem, we take h(p) = p(C1 + C2x), and according to the rest of the

procedure of OHAM, the second-order solution, ỹ(x) = y0(x) + y1(x,C1, C2) + y2(x,C1, C2) +
O(x13), is determined by the values ofCi: i = 1, 2. Following the Galerkin’s method, we obtain
C1 = −1, C2 = 0, for a = 0 and b = 1.
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Table 6

x Exact OHAM sol. E∗ (3.29) E∗ ([27])
0.0 1 1 0.0000 0.0000
0.1 0.994653826 0.994653826 1.03E − 16 −2.0E − 10
0.2 0.977122206 0.977122206 1.33E − 16 −2.0E − 10
0.3 0.944901165 0.944901165 −2.12E − 16 −2.0E − 10
0.4 0.895094818 0.895094818 −1.30E − 14 −2.0E − 10
0.5 0.824360635 0.824360635 −2.44E − 13 −2.0E − 10
0.6 0.728847520 0.728847520 −2.64E − 12 −6.0E − 10
0.7 0.604125812 0.604125812 −1.97E − 11 −1.0E − 09
0.8 0.445108186 0.445108186 −1.13E − 10 −2.0E − 09
0.9 0.245960311 0.245960311 −5.26E − 10 −3.4E − 09
1.0 0.0000 2.09E − 09 −2.09E − 09 0.000
E∗ = exact − approximate.

The second-order approximate solution is

y(x) = 1 − x2

2
− x3

3
− x4

4
− 0.03333333333x5 − 0.0069444444x6 − 0.0011904762x7

− 0.0001736111x8 − 0.00002204586x9 − 2.48016 × 10−6x10 − 2.50521 × 10−7x11

− 2.29644 × 10−8x12 +O
(
x13

)
.

(3.29)

Numerical results of the solution (3.29) are displayed in Table 6.

Example 3.7 (tenth-order nonlinear). Consider the following problem:

y(X)(x) = e−xy2(x), 0 < x < 1,

y(0) = 1, y′(0) = 1, y′′(0) = 1, y′′′(0) = 1, y(iv)(0) = 1,

y(1) = e, y′(1) = e, y′′(1) = e, y′′′(1) = e, y(iv)(1) = e.

(3.30)

We consider the second-order solution ỹ(x) = y0(x) + y1(x,C1) + y2(x,C1, C2) +O(x13).
To find the values of Ci, we apply the Galarkin’s method. So solving the system

∫b

a

R
∂ṽ

∂C1
dr = 0,

∫b

a

R
∂ṽ

∂C2
dr = 0, (3.31)

we have C1 = 0, C2 = −1.023966086.
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Table 7

x Exact OHAM sol. E∗ (3.32) E∗ ([27])
0.0 1 1 0 0
0.1 1.105170918 1.105170918 8.12E − 17 −1.41E − 6
0.2 1.221402758 1.221402758 2.18E − 18 −2.69E − 6
0.3 1.349858808 1.349858808 −2.84E − 18 −3.70E − 6
0.4 1.491824698 1.491824698 7.95E − 16 −4.35E − 6
0.5 1.648721271 1.648721271 1.91E − 14 −4.58E − 6
0.6 1.822118800 1.822118800 2.15E − 13 −4.36E − 6
0.7 2.013752707 2.013752707 1.63E − 12 −3.71E − 6
0.8 2.225540928 2.225540928 9.33E − 12 −2.69E − 6
0.9 2.459603111 2.459603111 4.36E − 11 −1.42E − 6
1.0 2.718281828 2.718281828 1.73E − 10 2.00E − 9
E∗ = exact − approximate.

In this case, the approximate solution is

ỹ(x) = 1 + x +
x2

2
+
x3

6
+
x4

24
+ 0.008333323x5 + 0.00138894x6 + 0.000198312x7

+ 0.000024898x8 + 2.712 × 10−6x9 + 2.8218 × 10−7x10 + 2.5652 × 10−8x11

+ 2.1377 × 10−9x12 +O
(
x13

)
.

(3.32)

Numerical results of the solution (3.32) are displayed in Table 7.

4. Conclusions

In this paper, we have used OHAM to find the approximate analytic solution to higher-
order two-point boundary value problems in finite domain. It is observed that the method
is explicit, effective, and reliable. It works well for higher-order problems and represents the
fastest convergence as well as a remarkable low error. The OHAM also provides us with
a very simple way to control and adjust the convergence of the series solution using the
auxiliary constants Ci’s which are optimally determined. Furthermore, by using different
forms of the auxiliary function, more accuracy can be obtained. It has been also observed
that for determining the optimal values of C’s, the performance of both the least squares and
the Galerkin’s method is problem dependent. One can select one of these twowhich best suits
the problem solution.
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[13] V. Marinca, N. Herişanu, and I. Nemeş, “Optimal homotopy asymptotic method with application to
thin film flow,” Central European Journal of Physics, vol. 6, no. 3, pp. 648–653, 2008.

[14] N. Herisanu, V. Marinca, T. Dordea, and G. Madescu, “A new analytical approach to nonlinear
vibration of an electric machine,” Proceedings of the Romanian Academy, vol. 9, no. 3, 2008.
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