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Let R be an n by n nontrivial real symmetric involution matrix, that is, R = R−1 = RT /= In. An n × n

complex matrix A is termed R-conjugate if A = RAR, where A denotes the conjugate of A. We
give necessary and sufficient conditions for the existence of the Hermitian R-conjugate solution
to the system of complex matrix equations AX = C andXB = D and present an expression of
the Hermitian R-conjugate solution to this system when the solvability conditions are satisfied.
In addition, the solution to an optimal approximation problem is obtained. Furthermore, the least
squares Hermitian R-conjugate solution with the least norm to this system mentioned above is
considered. The representation of such solution is also derived. Finally, an algorithm and numerical
examples are given.

1. Introduction

Throughout, we denote the complexm × nmatrix space by C
m×n, the realm × nmatrix space

by R
m×n, and the set of all matrices in R

m×n with rank r by R
m×n
r . The symbols I,A,AT ,A∗, A†,

and ‖A‖ stand for the identity matrix with the appropriate size, the conjugate, the transpose,
the conjugate transpose, the Moore-Penrose generalized inverse, and the Frobenius norm of
A ∈ C

m×n, respectively. We use Vn to denote the n× n backward matrix having the elements 1
along the southwest diagonal and with the remaining elements being zeros.

Recall that an n × n complex matrix A is centrohermitian if A = VnAVn. Centro-
hermitian matrices and related matrices, such as k-Hermitian matrices, Hermitian Toeplitz
matrices, and generalized centrohermitian matrices, appear in digital signal processing and
others areas (see, [1–4]). As a generalization of a centrohermitianmatrix and relatedmatrices,
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Trench [5] gave the definition of R-conjugate matrix. A matrix A ∈ C
n×n is R-conjugate if

A = RAR, where R is a nontrivial real symmetric involution matrix, that is, R = R−1 = RT and
R/= In. At the same time, Trench studied the linear equation Az = w for R-conjugate matrices
in [5], where z,w are known column vectors.

Investigating the matrix equation

AX = B (1.1)

with the unknownmatrixX being symmetric, reflexive, Hermitian-generalized Hamiltonian,
and repositive definite is a very active research topic [6–14]. As a generalization of (1.1), the
classical system of matrix equations

AX = C, XB = D (1.2)

has attracted many author’s attention. For instance, [15] gave the necessary and sufficient
conditions for the consistency of (1.2), [16, 17] derived an expression for the general solution
by using singular value decomposition of a matrix and generalized inverses of matrices,
respectively. Moreover, many results have been obtained about the system (1.2)with various
constraints, such as bisymmetric, Hermitian, positive semidefinite, reflexive, and generalized
reflexive solutions (see, [18–28]). To our knowledge, so far there has been little investigation
of the Hermitian R-conjugate solution to (1.2).

Motivated by the work mentioned above, we investigate Hermitian R-conjugate
solutions to (1.2). We also consider the optimal approximation problem

∥
∥
∥X̂ − E

∥
∥
∥ = min

X∈SX

‖X − E‖, (1.3)

where E is a given matrix in C
n×n and SX the set of all Hermitian R-conjugate solutions to

(1.2). In many cases the system (1.2) has not Hermitian R-conjugate solution. Hence, we need
to further study its least squares solution, which can be described as follows: Let RHC

n×n

denote the set of all Hermitian R-conjugate matrices in C
n×n:

SL =
{

X | min
X∈RHCn×n

(

‖AX − C‖2 + ‖XB −D‖2
)}

. (1.4)

Find X̃ ∈ C
n×n such that

∥
∥
∥X̃

∥
∥
∥ = min

X∈SL

‖X‖. (1.5)

In Section 2, we present necessary and sufficient conditions for the existence of the
Hermitian R-conjugate solution to (1.2) and give an expression of this solution when the
solvability conditions are met. In Section 3, we derive an optimal approximation solution to
(1.3). In Section 4, we provide the least squares Hermitian R-conjugate solution to (1.5). In
Section 5, we give an algorithm and a numerical example to illustrate our results.
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2. R-Conjugate Hermitian Solution to (1.2)

In this section, we establish the solvability conditions and the general expression for the
Hermitian R-conjugate solution to (1.2).

We denote RC
n×n and RHC

n×n the set of all R-conjugate matrices and Hermitian R-
conjugate matrices, respectively, that is,

RC
n×n =

{

A | A = RAR
}

,

HRC
n×n =

{

A | A = RAR,A = A∗
}

,

(2.1)

where R is n × n nontrivial real symmetric involution matrix.
Chang et al. in [29] mentioned that for nontrivial symmetric involution matrix R ∈

R
n×n, there exist positive integer r and n × n real orthogonal matrix [P, Q] such that

R =
[

P, Q
]

⎡

⎣

Ir 0

0 −In−r

⎤

⎦

⎡

⎣

PT

QT

⎤

⎦, (2.2)

where P ∈ R
n×r , Q ∈ R

n×(n−r). By (2.2),

RP = P, RQ = −Q, PTP = Ir , QTQ = In−r , PTQ = 0, QTP = 0. (2.3)

Throughout this paper, we always assume that the nontrivial symmetric involution
matrix R is fixed which is given by (2.2) and (2.3). Now, we give a criterion of judging a
matrix is R-conjugate Hermitian matrix.

Theorem 2.1. A matrix K ∈ HRC
n×n if and only if there exists a symmetric matrix H ∈ R

n×n such
that K = ΓHΓ∗, where

Γ =
[

P, iQ
]

, (2.4)

with P,Q being the same as (2.2).

Proof. If K ∈ HRC
n×n, then K = RKR. By (2.2),

K = RKR =
[

P, Q
]

⎡

⎣

Ir 0

0 −In−r

⎤

⎦

⎡

⎣

PT

QT

⎤

⎦K
[

P, Q
]

⎡

⎣

Ir 0

0 −In−r

⎤

⎦

⎡

⎣

PT

QT

⎤

⎦, (2.5)
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which is equivalent to

⎡

⎣

PT

QT

⎤

⎦K
[

P, Q
]

=

⎡

⎣

Ir 0

0 −In−r

⎤

⎦

⎡

⎣

PT

QT

⎤

⎦K
[

P, Q
]

⎡

⎣

Ir 0

0 −In−r

⎤

⎦.

(2.6)

Suppose that

⎡

⎣

PT

QT

⎤

⎦K
[

P, Q
]

=

⎡

⎣

K11 K12

K21 K22

⎤

⎦. (2.7)

Substituting (2.7) into (2.6), we obtain

⎡

⎣

K11 K12

K21 K22

⎤

⎦ =

⎡

⎣

Ir 0

0 −In−r

⎤

⎦

⎡

⎣

K11 K12

K21 K22

⎤

⎦

⎡

⎣

Ir 0

0 −In−r

⎤

⎦ =

⎡

⎣

K11 −K12

−K21 K22

⎤

⎦. (2.8)

Hence, K11 = K11, K12 = −K12, K21 = −K21, K22 = K22, that is, K11, iK12, iK21, K22 are real
matrices. If we denote M = iK12, N = −iK21, then by (2.7)

K =
[

P, Q
]

⎡

⎣

K11 K12

K21 K22

⎤

⎦

⎡

⎣

PT

QT

⎤

⎦ =
[

P, iQ
]

⎡

⎣

K11 M

N K22

⎤

⎦

⎡

⎣

PT

−iQT

⎤

⎦. (2.9)

Let Γ = [P, iQ], and

H =

⎡

⎣

K11 M

N K22

⎤

⎦. (2.10)

Then, K can be expressed as ΓHΓ∗, where Γ is unitary matrix and H is a real matrix. By
K = K∗

ΓHTΓ∗ = K∗ = K = ΓHΓ∗, (2.11)

we obtain H = HT .
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Conversely, if there exists a symmetric matrix H ∈ R
n×n such that K = ΓHΓ∗, then it

follows from (2.3) that

RKR = RΓHΓ∗R = R
[

P, iQ
]

H

⎡

⎣

PT

−iQT

⎤

⎦R =
[

P, −iQ]

H

⎡

⎣

PT

iQT

⎤

⎦ = ΓHΓ∗ = K,

K∗ = ΓHTΓ∗ = ΓHΓ∗ = K,

(2.12)

that is, K ∈ HRC
n×n.

Theorem 2.1 implies that an arbitrary complex Hermitian R-conjugate matrix is equiv-
alent to a real symmetric matrix.

Lemma 2.2. For any matrix A ∈ C
m×n, A = A1 + iA2, where

A1 =
A +A

2
, A2 =

A −A

2i
. (2.13)

Proof. For any matrix A ∈ C
m×n, it is obvious that A = A1 + iA2, where A1, A2 are defined

as (2.13). Now, we prove that the decomposition A = A1 + iA2 is unique. If there exist B1, B2

such that A = B1 + iB2, then

A1 − B1 + i(B2 −A2) = 0. (2.14)

It follows from A1, A2, B1, andB2 are real matrix that

A1 = B1, A2 = B2. (2.15)

Hence, A = A1 + iA2 holds, where A1, A2 are defined as (2.13).

By Theorem 2.1, for X ∈ HRC
n×n, we may assume that

X = ΓYΓ∗, (2.16)

where Γ is defined as (2.4) and Y ∈ R
n×n is a symmetric matrix.

Suppose that AΓ = A1 + iA2 ∈ C
m×n, CΓ = C1 + iC2 ∈ C

m×n, Γ∗B = B1 + iB2 ∈ C
n×l, and

Γ∗D = D1 + iD2 ∈ C
n×l, where

A1 =
AΓ +AΓ

2
, A2 =

AΓ −AΓ
2i

, C1 =
CΓ + CΓ

2
, C2 =

CΓ − CΓ
2i

,

B1 =
Γ∗B + Γ∗B

2
, B2 =

Γ∗B − Γ∗B
2i

, D1 =
Γ∗D + Γ∗D

2
, D2 =

Γ∗D − Γ∗D
2i

.

(2.17)
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Then, system (1.2) can be reduced into

(A1 + iA2)Y = C1 + iC2, Y (B1 + iB2) = D1 + iD2, (2.18)

which implies that

⎡

⎣

A1

A2

⎤

⎦Y =

⎡

⎣

C1

C2

⎤

⎦, Y
[

B1, B2
]

=
[

D1, D2
]

. (2.19)

Let

F =

⎡

⎣

A1

A2

⎤

⎦, G =

⎡

⎣

C1

C2

⎤

⎦, K =
[

B1, B2
]

,

L =
[

D1, D2
]

, M =

⎡

⎣

F

KT

⎤

⎦, N =

⎡

⎣

G

LT

⎤

⎦.

(2.20)

Then, system (1.2) has a solution X inHRC
n×n if and only if the real system

MY = N (2.21)

has a symmetric solution Y in R
n×n.

Lemma 2.3 (Theorem 1 in [7]). Let A ∈ R
m×n. The SVD of matrix A is as follows

A = U

⎡

⎣

Σ 0

0 0

⎤

⎦V T , (2.22)

where U = [U1, U2] ∈ R
m×m and V = [V1, V2] ∈ R

n×n are orthogonal matrices, Σ = diag(σ1, . . . ,
σr), σi > 0 (i = 1, . . . , r), r = rank(A), U1 ∈ R

m×r , V1 ∈ R
n×r . Then, (1.1) has a symmetric

solution if and only if

ABT = BAT, UT
2B = 0. (2.23)

In that case, it has the general solution

X = V1Σ−1UT
1B + V2V

T
2 B

TU1Σ−1V T
1 + V2GVT

2 , (2.24)

where G is an arbitrary (n − r) × (n − r) symmetric matrix.

By Lemma 2.3, we have the following theorem.
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Theorem 2.4. Given A ∈ C
m×n, C ∈ C

m×n, B ∈ C
n×l, and D ∈ C

n×l. Let A1, A2, C1,
C2,B1, B2, D1, D2, F, G, K, L, M, andN be defined in (2.17), (2.20), respectively. Assume that
the SVD of M ∈ R

(2m+2l)×n is as follows

M = U

⎡

⎣

M1 0

0 0

⎤

⎦V T , (2.25)

where U = [U1, U2] ∈ R
(2m+2l)×(2m+2l) and V = [V1, V2] ∈ R

n×n are orthogonal matrices, M1 =
diag(σ1, . . . , σr), σi > 0 (i = 1, . . . , r), r = rank(M), U1 ∈ R

(2m+2l)×r , V1 ∈ R
n×r . Then, system

(1.2) has a solution in HRC
n×n if and only if

MNT = NMT, UT
2N = 0. (2.26)

In that case, it has the general solution

X = Γ
(

V1M
−1
1 UT

1N + V2V
T
2 N

TU1M
−1
1 V T

1 + V2GVT
2

)

Γ∗, (2.27)

where G is an arbitrary (n − r) × (n − r) symmetric matrix.

3. The Solution of Optimal Approximation Problem (1.3)

When the set SX of all Hermitian R-conjugate solution to (1.2) is nonempty, it is easy to verify
SX is a closed set. Therefore, the optimal approximation problem (1.3) has a unique solution
by [30].

Theorem 3.1. GivenA ∈ C
m×n, C ∈ C

m×n, B ∈ C
n×l, D ∈ C

n×l, E ∈ C
n×n, and E1 = (1/2)(Γ∗EΓ+

Γ∗EΓ). Assume SX is nonempty, then the optimal approximation problem (1.3) has a unique solution
X̂ and

X̂ = Γ
(

V1M
−1
1 UT

1N + V2V
T
2 N

TU1M
−1
1 V T

1 + V2V
T
2 E1V2V

T
2

)

Γ∗. (3.1)

Proof. Since SX is nonempty,X ∈ SX has the form of (2.27). By Lemma 2.2, Γ∗EΓ can bewritten
as

Γ∗EΓ = E1 + iE2, (3.2)

where

E1 =
1
2

(

Γ∗EΓ + Γ∗EΓ
)

, E2 =
1
2i

(

Γ∗EΓ − Γ∗EΓ
)

. (3.3)
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According to (3.2) and the unitary invariance of Frobenius norm

‖X − E‖ =
∥
∥
∥Γ

(

V1M
−1UT

1N + V2V
T
2 N

TU1M
−1V T

1 + V2GVT
2

)

Γ∗ − E
∥
∥
∥

=
∥
∥
∥

(

E1 − V1M
−1UT

1N − V2V
T
2 N

TU1M
−1V T

1 − V2GVT
2

)

+ iE2

∥
∥
∥.

(3.4)

We get

‖X − E‖2 =
∥
∥
∥E1 − V1M

−1UT
1N − V2V

T
2 N

TU1M
−1V T

1 − V2GVT
2

∥
∥
∥

2
+ ‖E2‖2. (3.5)

Then, minX∈SX‖X − E‖ is consistent if and only if there exists G ∈ R
(n−r)×(n−r) such that

min
∥
∥
∥E1 − V1M

−1UT
1N − V2V

T
2 N

TU1M
−1V T

1 − V2GVT
2

∥
∥
∥. (3.6)

For the orthogonal matrix V

∥
∥
∥E1 − V1M

−1UT
1N − V2V

T
2 N

TU1M
−1V T

1 − V2GVT
2

∥
∥
∥

2

=
∥
∥
∥V T (E1 − V1M

−1UT
1N − V2V

T
2 N

TU1M
−1V T

1 − V2GVT
2 )V

∥
∥
∥

2

=
∥
∥
∥V T

1

(

E1 − V1M
−1UT

1N
)

V1

∥
∥
∥

2
+
∥
∥
∥V T

1 (E1 − V1M
−1UT

1N)V2

∥
∥
∥

2

+
∥
∥
∥V T

2

(

E1 − V2V
T
2 N

TU1M
−1V T

1

)

V1

∥
∥
∥

2
+
∥
∥
∥V T

2

(

E1 − V2GVT
2

)

V2

∥
∥
∥.

(3.7)

Therefore,

min
∥
∥
∥E1 − V1M

−1UT
1N − V2V

T
2 N

TU1M
−1V T

1 − V2GVT
2

∥
∥
∥ (3.8)

is equivalent to

G = V T
2 E1V2. (3.9)

Substituting (3.9) into (2.27), we obtain (3.1).

4. The Solution of Problem (1.5)

In this section, we give the explicit expression of the solution to (1.5).

Theorem 4.1. Given A ∈ C
m×n, C ∈ C

m×n, B ∈ C
n×l, and D ∈ C

n×l. Let A1, A2, C1, C2,
B1, B2, D1, D2, F, G, K, L, M, and N be defined in (2.17), (2.20), respectively. Assume that the
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SVD of M ∈ R
(2m+2l)×n is as (2.25) and system (1.2) has not a solution in HRC

n×n. Then, X ∈ SL

can be expressed as

X = ΓV

⎡

⎣

M−1
1 UT

1NV1 M−1
1 UT

1NV2

V T
2 N

TU1M
−1
1 Y22

⎤

⎦V TΓ∗, (4.1)

where Y22 ∈ R
(n−r)×(n−r) is an arbitrary symmetric matrix.

Proof. It yields from (2.17)–(2.21) and (2.25) that

‖AX − C‖2 + ‖XB −D‖2 = ‖MY −N‖2

=

∥
∥
∥
∥
∥
∥

U

⎡

⎣

M1 0

0 0

⎤

⎦V TY −N

∥
∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥

⎡

⎣

M1 0

0 0

⎤

⎦V TYV −UTNV

∥
∥
∥
∥
∥
∥

2

.

(4.2)

Assume that

V TYV =

⎡

⎣

Y11 Y12

Y21 Y22

⎤

⎦, Y11 ∈ R
r×r , Y22 ∈ R

(n−r)×(n−r). (4.3)

Then, we have

‖AX − C‖2 + ‖XB −D‖2

=
∥
∥
∥M1Y11 −UT

1NV1

∥
∥
∥

2
+
∥
∥
∥M1Y12 −UT

1NV2

∥
∥
∥

2

+
∥
∥
∥UT

2NV1

∥
∥
∥

2
+
∥
∥
∥UT

2NV2

∥
∥
∥

2
.

(4.4)

Hence,

min
(

‖AX − C‖2 + ‖XB −D‖2
)

(4.5)

is solvable if and only if there exist Y11, Y12 such that

∥
∥
∥M1Y11 −UT

1NV1

∥
∥
∥

2
= min,

∥
∥
∥M1Y12 −UT

1NV2

∥
∥
∥

2
= min .

(4.6)
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It follows from (4.6) that

Y11 = M−1
1 UT

1NV1,

Y12 = M−1
1 UT

1NV2.
(4.7)

Substituting (4.7) into (4.3) and then into (2.16), we can get that the form of elements in SL is
(4.1).

Theorem 4.2. Assume that the notations and conditions are the same as Theorem 4.1. Then,

∥
∥
∥X̃

∥
∥
∥ = min

X∈SL

‖X‖ (4.8)

if and only if

X̃ = ΓV

⎡

⎣

M−1
1 UT

1NV1 M−1
1 UT

1NV2

V T
2 N

TU1M
−1
1 0

⎤

⎦V TΓ∗. (4.9)

Proof. In Theorem 4.1, it implies from (4.1) that minX∈SL‖X‖ is equivalent to X has the
expression (4.1)with Y22 = 0. Hence, (4.9) holds.

5. An Algorithm and Numerical Example

Base on the main results of this paper, we in this section propose an algorithm for finding the
solution of the approximation problem (1.3) and the least squares problem with least norm
(1.5). All the tests are performed by MATLAB 6.5 which has a machine precision of around
10−16.

Algorithm 5.1. (1) Input A ∈ C
m×n, C ∈ C

m×n, B ∈ C
n×l, D ∈ C

n×l.
(2) Compute A1, A2, C1, C2, B1, B2, D1, D2, F, G, K, L, M, andN by (2.17) and

(2.20).
(3) Compute the singular value decomposition of M with the form of (2.25).
(4) If (2.26) holds, then input E ∈ C

n×n and compute the solution X̂ of problem (1.3)
according (3.1), else compute the solution X̃ to problem (1.5) by (4.9).

To show our algorithm is feasible, we give two numerical example. Let an nontrivial
symmetric involution be

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.1)
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We obtain [P, Q] in (2.2) by using the spectral decomposition of R, then by (2.4)

Γ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 0 i 0

0 1 0 0

0 0 0 i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.2)

Example 5.2. Suppose A ∈ C
2×4, C ∈ C

2×4, B ∈ C
4×3, D ∈ C

4×3, and

A =

⎡

⎣

3.33 − 5.987i 45i 7.21 −i

0 −0.66i 7.694 1.123i

⎤

⎦,

C =

⎡

⎣

0.2679 − 0.0934i 0.0012 + 4.0762i −0.0777 − 0.1718i −1.2801i

0.2207 −0.1197i 0.0877 0.7058i

⎤

⎦,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 + 12i 2.369i 4.256 − 5.111i

4i 4.66i 8.21 − 5i

0 4.83i 56 + i

2.22i −4.666 7i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0616 + 0.1872i −0.0009 + 0.1756i 1.6746 − 0.0494i

0.0024 + 0.2704i 0.1775 + 0.4194i 0.7359 − 0.6189i

−0.0548 + 0.3444i 0.0093 − 0.3075i −0.4731 − 0.1636i

0.0337i 0.1209 − 0.1864i −0.2484 − 3.8817i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(5.3)

We can verify that (2.26) holds. Hence, system (1.2) has an Hermitian R-conjugate solution.
Given

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

7.35i 8.389i 99.256 − 6.51i −4.6i

1.55 4.56i 7.71 − 7.5i i

5i 0 −4.556i −7.99

4.22i 0 5.1i 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.4)
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Applying Algorithm 5.1, we obtain the following:

X̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.5597 0.0194i 2.8705 0.0002i

−0.0194i 9.0001 0.2005i −3.9997

2.8705 −0.2005i −0.0452 7.9993i

−0.0002i −3.9997 −7.9993i 5.6846

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.5)

Example 5.2 illustrates that we can solve the optimal approximation problem with
Algorithm 5.1 when system (1.2) have Hermitian R-conjugate solutions.

Example 5.3. LetA, B, andC be the same as Example 5.2, and letD in Example 5.2 be changed
into

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0616 + 0.1872i −0.0009 + 0.1756i 1.6746 + 0.0494i

0.0024 + 0.2704i 0.1775 + 0.4194i 0.7359 − 0.6189i

−0.0548 + 0.3444i 0.0093 − 0.3075i −0.4731 − 0.1636i

0.0337i 0.1209 − 0.1864i −0.2484 − 3.8817i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.6)

We can verify that (2.26) does not hold. By Algorithm 5.1, we get

X̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.52 2.2417i 0.4914 0.3991i

−2.2417i 8.6634 0.1921i −2.8232

0.4914 −0.1921i 0.1406 1.3154i

−0.3991i −2.8232 −1.3154i 6.3974

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.7)

Example 5.3 demonstrates that we can get the least squares solution with Algo-
rithm 5.1 when system (1.2) has not Hermitian R-conjugate solutions.
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