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Let X and Y be vector spaces. We show that a function f : X → Y with f(0) = 0 satisfies
Δf(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ X, if and only if there exist functions C : X × X ×
X → Y , B : X × X → Y and A : X → Y such that f(x) = C(x, x, x) + B(x, x) +
A(x) for all x ∈ X, where the function C is symmetric for each fixed one variable and is
additive for fixed two variables, B is symmetric bi-additive, A is additive and Δf(x1, . . . , xn) =
∑n

k=2(
∑k

i1=2
∑k+1

i2=i1+1 · · ·
∑n

in−k+1=in−k+1)f(
∑n

i=1,i /= i1 ,...,in−k+1 xi −
∑n−k+1

r=1 xir ) + f(
∑n

i=1 xi) − 2n−2
∑n

i=2(f(x1 +
xi) + f(x1 − xi)) + 2n−1(n − 2)f(x1) (n ∈ N, n ≥ 3) for all x1, . . . , xn ∈ X. Furthermore, we solve the
stability problem for a given function f satisfying Δf(x1, . . . , xn) = 0, in the Menger probabilistic
normed spaces.

1. Introduction and Preliminaries

Menger [1] introduced the notion of a probabilistic metric space in 1942 and since then
the theory of probabilistic metric spaces has developed in many directions [2]. The idea of
Menger was to use distribution functions instead of nonnegative real numbers as values of
the metric. The notion of a probabilistic metric space corresponds to situations when we do
not know exactly the distance between two points, but we know probabilities of possible
values of this distance. A probabilistic generalization of metric spaces appears to be interest in
the investigation of physical quantities and physiological thresholds. It is also of fundamental
importance in probabilistic functional analysis. Probabilistic normed spaces were introduced
by Sherstnev in 1962 [3] by means of a definition that was closely modelled on the theory of
(classical) normed spaces and used to study the problem of best approximation in statistics.
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In the sequel, we will adopt the usual terminology, notation and conventions of the theory of
probabilistic normed spaces as in [2, 4–6, 6, 7, 7–18].

Throughout this paper, let Δ+ be the space of distribution functions, that is,

Δ+ := {F : R ∪ {−∞,∞} −→ [0, 1] : F is left-continuous,

nondecreasing on R, F(0) = 0, F(+∞) = 1
}
,

(1.1)

and the subset D+ ⊆ Δ+ is the set:

D+ =
{
F ∈ Δ+ : l−F(+∞) = 1

}
, (1.2)

where, l−f(x) denotes the left limit of the function f at the point x. The space Δ+ is partially
ordered by the usual point-wise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t)
for all t ∈ R. The maximal element for Δ+ in this order is the distribution function given by

ε0(t) =

⎧
⎨

⎩

0, if t ≤ 0,

1, if t > 0.
(1.3)

Definition 1.1 (see [2]). A mapping T : [0, 1]×[0, 1] → [0, 1] is a continuous triangular norm
(briefly, a continuous t-norm) if T satisfies the following conditions:

(1) T is commutative and associative;

(2) T is continuous;

(3) T(a, 1) = a for all a ∈ [0, 1];

(4) T(a, b) ≤ T(c, d)whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norms are TP (a, b) = ab, TM(a, b) = min(a, b).
Recall (see [19, 20]) that if T is a t-norm and {xn} is a given sequence of numbers in [0, 1],
Tn
i=1xi is defined recurrently by

Tn
i=1xi =

⎧
⎨

⎩

x1, if n = 1,

T
(
Tn−1
i=1 xi, xn

)
, if n ≥ 2.

(1.4)

T∞
i=n+1xi is defined as T∞

i=1xn+i.

Definition 1.2. A Menger probabilistic normed space (briefly, Menger PN-space) is a
triple (X,Λ, T) where, X is a vector space, T is a continuous t-norm, and Λ is a mapping
from X into D+ such that the following conditions hold:

(PN1) Λx(0) = 0 for all x ∈ X;

(PN2) Λx(t) = ε0(t) for all t > 0 if and only if x = 0;

(PN3) Λαx(t) = Λx(t/|α|) for all x ∈ X, α/= 0 and all t > 0;

(PN4) Λx+y(t + s) ≥ T(Λx(t),Λy(s)) for all x, y ∈ X and all t, s ≥ 0.
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Clearly, every Menger PN-space is probabilistic metric space having a metrizable
uniformity on X if supa<1T(a, a) = 1.

Definition 1.3. Let (X,Λ, T) be a Menger PN-space.

(i) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and λ > 0,
there exists positive integer N such that Λxn−x(ε) > 1 − λ whenever n ≥ N.

(ii) A sequence {xn} in X is called Cauchy sequence if, for every ε > 0 and λ > 0, there
exists positive integer N such that Λxn−xm(ε) > 1 − λ whenever n ≥ m ≥ N.

(iii) A Menger PN-space (X,Λ, T) is said to be complete if and only if every Cauchy
sequence in X is convergent to a point in X.

Theorem 1.4. If (X,Λ, T) is a Menger PN-space and {xn} is a sequence such that xn → x, then
limn→∞Λxn(t) = Λx(t).

The concept of stability of a functional equation arises when one replaces a
functional equation by an inequality which acts as a perturbation of the equation. The
first stability problem concerning group homomorphisms was raised by Ulam [21] in 1940
and affirmatively solved by Hyers [22]. The result of Hyers was generalized by Aoki [23]
for approximate additive function and by Rassias [24] for approximate linear functions
by allowing the difference Cauchy equation ‖f(x + y) − f(x) − f(y)‖ to be controlled by
ε(‖x‖p + ‖y‖p). Taking into consideration a lot of influence of Ulam, Hyers, and Rassias on
the development of stability problems of functional equations, the stability phenomenon that
was proved by Rassias is called the Hyers-Ulam-Rassias stability. In 1994, a generalization of
Rassias’ theorem was obtained by Găvruţa [25], who replaced ε(‖x‖p + ‖y‖p) by a general
control function ϕ(x, y). The functional equation,

f(x1 + x2) + f(x1 − x2) = 2f(x1) + 2f(x2), (1.5)

is related to symmetric biadditive function and is called a quadratic functional equation and
every solution of the quadratic equation (1.5) is said to be a quadratic function. For more
details about the results concerning such problems, the reader is referred to [26–28].

The functional equation,

f(2x1 + x2) + f(2x1 − x2) = 2f(x1 + x2) + 2f(x1 − x2) + 12f(x1), (1.6)

is called the cubic functional equation, since the function f(x) = cx3 is its solution. Every
solution of the cubic functional equation is said to be a cubic mapping. The stability results
for the cubic functional equation were proved by Jun and Kim [29].

Eshaghi Gordji and Khodaei [30] have established the general solution and investi-
gated the Hyers-Ulam-Rassias stability for a mixed type of cubic, quadratic, and additive
functional equations, with f(0) = 0,

f(x1 + kx2) + f(x1 − kx2) = k2f(x1 + x2) + k2f(x1 − x2) + 2
(
1 − k2

)
f(x1) (1.7)

in quasi-Banach spaces, where k is nonzero integer numbers with k /= ±1. It is easy to see that
the function f(x) = ax + bx2 + cx3 is a solution of the functional equation (1.7), see [31, 32].
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The stability of different functional equations in probabilistic normed spaces, RN-spaces, and
fuzzy normed spaces has been studied in [6, 7, 33–37].

Now, we introduce the new mixed type of cubic, quadratic, and additive functional
equation in n-variables as follows:

n∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

· · ·
n∑

in−k+1=in−k+1

)

f

⎛

⎝
n∑

i=1,i /= i1,...,in−k+1

xi −
n−k+1∑

r=1

xir

⎞

⎠ + f

(
n∑

i=1

xi

)

= 2n−2
n∑

i=2

(
f(x1 + xi) + f(x1 − xi)

) − 2n−1(n − 2)f(x1),

(1.8)

where n ≥ 3 and f(0) = 0. As a special case, if n = 3 in (1.8), then (1.8) reduces to

2∑

i1=2

3∑

i2=i1+1

f

⎛

⎝
3∑

i=1,i /= i1,i2

xi −
2∑

r=1

xir

⎞

⎠ +
3∑

i1=2

f

⎛

⎝
3∑

i=1,i /= i1

xi − xi1

⎞

⎠ + f

(
3∑

i=1

xi

)

= 2
3∑

i=2

(
f(x1 + xi) + f(x1 − xi)

) − 22f(x1),

(1.9)

that is,

f(x1 − x2 − x3) + f(x1 − x2 + x3) + f(x1 + x2 − x3) + f(x1 + x2 + x3)

= 2
(
f(x1 + x2) + f(x1 − x2) + f(x1 + x3) + f(x1 − x3)

) − 4f(x1).
(1.10)

The main purpose of this paper is to prove the stability for (1.8), in Menger probabilistic
normed spaces.

2. Results in Menger Probabilistic Normed Spaces

We start our work with a general solution for the mixed functional equation (1.8) and then
investigate the stability of this equation in Menger PN-space.

Theorem 2.1. Let X and Y be vector spaces. A function f : X → Y with f(0) = 0 satisfies (1.8)
for all x1, . . . , xn ∈ X if and only if there exist functions C : X × X × X → Y , B : X × X → Y and
A : X → Y such that f(x) = C(x, x, x) + B(x, x) + A(x) for all x ∈ X, where the function C is
symmetric for each fixed one variable and is additive for fixed two variables, B is symmetric biadditive
and A is additive.

Proof. If there exists a function C that is symmetric for each fixed one variable and is additive
for fixed two variables, B is biadditive, and A is additive, then by a simple computation one
can show that the functions x 
→ C(x, x, x), x 
→ B(x, x), and x 
→ A(x) satisfy the functional
equation (1.8). Therefore, the function f satisfies (1.8).
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Conversely, let f with f(0) = 0 satisfies (1.8). Hence, according to (1.8), we get

2∑

i1=2

3∑

i2=i1+1

· · ·
n∑

in−1=in−2+1

f

⎛

⎝
n∑

i=1,i /= i1,...,in−1

xi −
n−1∑

r=1

xir

⎞

⎠

+
3∑

i1=2

4∑

i2=i1+1

· · ·
n∑

in−2=in−3+1

f

⎛

⎝
n∑

i=1,i /= i1,...,in−2

xi −
n−2∑

r=1

xir

⎞

⎠

+ · · · +
n∑

i1=2

f

⎛

⎝
n∑

i=1,i /= i1

xi − xi1

⎞

⎠ + f

(
n∑

i=1

xi

)

= 2n−2
n∑

i=2

(
f(x1 + xi) + f(x1 − xi)

) − 2n−1(n − 2)f(x1)

(2.1)

for all x1, . . . , xn ∈ X. Setting xi = 0 (i = 4, . . . , n) in (2.1), we have

f(x1 − x2 − x3) +
(
(n − 3)f(x1 − x2 − x3) + f(x1 − x2 + x3) + f(x1 + x2 − x3)

)

+

((
n − 3

2

)

f(x1 − x2 − x3) +

(
n − 3

n − 4

)

f(x1 − x2 + x3) +

(
n − 3

n − 4

)

f(x1 + x2 − x3)

+

(
n − 3

n − 3

)

f(x1 + x2 + x3)

)

+

((
n − 3

3

)

f(x1 − x2 − x3) +

(
n − 3

n − 5

)

f(x1 − x2 + x3) +

(
n − 3

n − 5

)

f(x1 + x2 − x3)

+

(
n − 3

n − 4

)

f(x1 + x2 + x3)

)

+ · · ·

+

((
n − 3

n − 3

)

f(x1 − x2 − x3) +

(
n − 3

1

)

f(x1 − x2 + x3) +

(
n − 3

1

)

f(x1 + x2 − x3)

+

(
n − 3

2

)

f(x1 + x2 + x3)

)

+
(
f(x1 − x2 + x3) + f(x1 + x2 − x3) + (n − 3)f(x1 + x2 + x3)

)
+ f(x1 + x2 + x3)

= 2n−2
3∑

i=2

(
f(x1 + xi) + f(x1 − xi)

) − 2n−1f(x1),

(2.2)
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that is,

(

1 +
n−3∑

�=1

(
n − 3

�

))
(
f(x1 − x2 − x3) + f(x1 − x2 + x3) + f(x1 + x2 − x3) + f(x1 + x2 + x3)

)

= 2n−2
(
f(x1 + x2) + f(x1 − x2) + f(x1 + x3) + f(x1 − x3)

) − 2n−1f(x1)
(2.3)

for all x1, x2, x3 ∈ X. On the other hand, we have the relation:

1 +
n−3∑

�=1

(
n − 3

�

)

=
n−3∑

i=0

(
n − 3

�

)

= 2n−3 (2.4)

for all n ≥ 3. Hence, we obtain from (2.3) and (2.4) that

f(x1 − x2 − x3) + f(x1 − x2 + x3) + f(x1 + x2 − x3) + f(x1 + x2 + x3)

= 2
(
f(x1 + x2) + f(x1 − x2) + f(x1 + x3) + f(x1 − x3)

) − 4f(x1)
(2.5)

for all x1, x2, x3 ∈ X. Replacing x3 by x2 in (2.5), one gets

f(x1 + 2x2) + f(x1 − 2x2) = 4f(x1 + x2) + 4f(x1 − x2) − 6f(x1) (2.6)

for all x1, x2 ∈ X. Therefore, f satisfies (1.7) for k = 2. By Theorem 2.3 of [30], there exist
an additive function A : X → Y , symmetric biadditive function B : X × X → Y , and
C : X × X × X → Y such that f(x) = C(x, x, x) + B(x, x) + A(x) for all x ∈ X, where the
functionC is symmetric for each fixed one variable and is additive for fixed two variables.

From now on, let X be a real linear space and let (Y,Λ, T) be a complete Menger PN-
space. For convenience, we use the following abbreviation for a given function f : X → Y :

Δf(x1, . . . , xn) =
n∑

k=2

(
k∑

i1=2

k+1∑

i2=i1+1

· · ·
n∑

in−k+1=in−k+1

)

f

⎛

⎝
n∑

i=1,i /= i1,...,in−k+1

xi −
n−k+1∑

r=1

xir

⎞

⎠

+ f

(
n∑

i=1

xi

)

− 2n−2
n∑

i=2

(
f(x1 + xi) + f(x1 − xi)

)
+ 2n−1(n − 2)f(x1)

(2.7)

for all x1, . . . , xn ∈ X.

Theorem 2.2. Let ξ : Xn → D+ (n ∈ N, n ≥ 3 and ξ(x1, . . . , xn) is denoted by ξx1,...,xn) be a function
such that

lim
m→∞

ξ2mx1,...,2mxn

(
22mt

)
= 1 (2.8)
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for all x1, . . . , xn ∈ X, t > 0 and

lim
m→∞

T∞
�=1

(
ξ0,...,0,2m+�−1x,2m+�−1x

(
22m+�+n−2t

))
= 1 (2.9)

for all x ∈ X and t > 0. Suppose that an even function f : X → Y with f(0) = 0 satisfies the
inequality:

ΛΔf(x1,...,xn)(t) ≥ ξx1,...,xn(t) (2.10)

for all x1, . . . , xn ∈ X and t > 0. Then, there exists a unique quadratic functionQ : X → Y such that

Λf(x)−Q(x)(t) ≥ T∞
�=1

(
ξ0,...,0,2�−1x,2�−1x

(
2�+n−2t

))
(2.11)

for all x ∈ X and t > 0.

Proof. Setting xi = 0 (i = 1, . . . , n − 2) and xn−1 = xn = x in (2.10) and then use f(0) = 0, we
obtain that

Λ(
1+
∑n−3

�=1

(
n−3
�

))
(f(2x)+f(−2x))−2n−1(f(x)+f(−x))(t) ≥ ξ0,...,0,x,x(t) (2.12)

for all x ∈ X and t > 0. By using evenness of f and the relation 1 +
∑n−3

�=1
(
n−3
�

)
=
∑n−3

i=0
(
n−3
�

)
=

2n−3, we get

Λ2n−2f(2x)−2nf(x)(t) ≥ ξ0,...,0,x,x(t) (2.13)

for all x ∈ X and t > 0. So,

Λf(2x)/22−f(x)(t) ≥ ξ0,...,0,x,x(2nt) ≥ ξ0,...,0,x,x
(
2n−1t

)
(2.14)

for all x ∈ X and t > 0, which implies that

Λf(2�+1x)/22(�+1)−f(2�x)/22� (t) ≥ ξ0,...,0,2�x,2�x
(
2n+2�t

)
(2.15)
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for all x ∈ X, t > 0 and � ∈ N. It follows from (2.15) and (PN4) that

Λf(22x)/24−f(x)(t)

≥ T

(

Λf(22x)/24−f(2x)/22
(
t

2

)

,Λf(2x)/22−f(x)

(
t

2

))

≥ T
(
ξ0,...,0,2x,2x

(
2n+1t

)
, ξ0,...,0,x,x

(
2n−1t

))

≥ T
(
ξ0,...,0,2x,2x(2nt), ξ0,...,0,x,x

(
2n−1t

))
,

Λf(23x)/26−f(x)(t)

≥ T

(

Λf(23x)/26−f(2x)/22
(
t

2

)

,Λf(2x)/22−f(x)

(
t

2

))

≥ T

(

T

(

Λf(23x)/26−f(22x)/24
(
t

4

)

,Λf(22x)/24−f(2x)/22
(
t

4

))

,Λf(2x)/22−f(x)

(
t

2

))

≥ T
(
T
(
ξ0,...,0,22x,22x

(
2n+2t

)
, ξ0,...,0,2x,2x(2nt)

)
, ξ0,...,0,x,x

(
2n−1t

))

≥ T
(
T
(
ξ0,...,0,22x,22x

(
2n+1t

)
, ξ0,...,0,2x,2x(2nt)

)
, ξ0,...,0,x,x

(
2n−1t

))

= T
(
ξ0,...,0,x,x

(
2n−1t

)
, T
(
ξ0,...,0,2x,2x(2nt), ξ0,...,0,22x,22x

(
2n+1t

)))

= T
(
T
(
ξ0,...,0,x,x

(
2n−1t

)
, ξ0,...,0,2x,2x(2nt)

)
, ξ0,...,0,22x,22x

(
2n+1t

))

(2.16)

for all x ∈ X and t > 0. Thus,

Λf(2mx)/22m−f(x)(t) ≥ Tm
�=1

(
ξ0,...,0,2�−1x,2�−1x

(
2�+n−2t

))
(2.17)

for all x ∈ X and t > 0. In order to prove the convergence of the sequence {f(2mx)/22m}, we
replace x with 2m

′
x in (2.17) to find that

Λf(2m+m′x)/22(m+m′)−f(2m′x)/22m′ (t) ≥ Tm
�=1

(
ξ0,...,0,2m′+�−1x,2m′+�−1x

(
22m

′+�+n−2t
))

(2.18)

for all x ∈ x and t > 0. Since the right-hand side of the inequality tends to 1 as m′ and m tend
to infinity, the sequence {f(2mx)/22m} is a Cauchy sequence. Therefore, one can define the
function Q : X → Y by Q(x) := limm→∞(1/22m)f(2mx) for all x ∈ X. Now, if we replace
x1, . . . , xn with 2mx1, . . . , 2mxn in (2.10), respectively, it follows that

ΛΔf(2mx1,...,2mxn)/22m(t) ≥ ξ2mx1,...,2mxn

(
22mt

)
(2.19)

for all x1, . . . , xn ∈ x and t > 0. By letting m → ∞ in (2.19), we find that ΛΔQ(x1,...,xn)(t) = 1 for
all t > 0, which implies that ΔQ(x1, . . . , xn) = 0 thus Q satisfies (1.8). Hence, by Theorem 2.1
(see [30, Lemma 2.1]), the function Q : X → Y is quadratic.

To prove (2.11), take the limit as m → ∞ in (2.17).



Abstract and Applied Analysis 9

Finally, to prove the uniqueness of the quadratic function Q subject to (2.11), let
us assume that there exists a quadratic function Q′ which satisfies (2.11). Since Q(2mx) =
22mQ(x) and Q′(2mx) = 22mQ′(x) for all x ∈ X and m ∈ N, from (2.11), it follows that

ΛQ(x)−Q′(x)(t)

= ΛQ(2mx)−Q′(2mx)

(
22mt

)

≥ T
(
ΛQ(2mx)−f(2mx)

(
22m−1t

)
,Λf(2mx)−Q′(2mx)

(
22m−1t

))

≥ T
(
T∞
�=1

(
ξ0,...,0,2m+�−1x,2m+�−1x

(
22m+�+n−2t

))
, T∞

�=1

(
ξ0,...,0,2m+�−1x,2m+�−1x

(
22m+�+n−2t

)))

(2.20)

for all x ∈ X and t > 0. By letting m → ∞ in (2.20), we find that Q = Q′.

Theorem 2.3. Let ξ : Xn → D+ be a function such that

lim
m→∞

T
(
ξ2mx1,...,2mxn(2

mt), ξ2mx1,...,2mxn

(
2m−4t

))
= 1 (2.21)

for all x1, . . . , xn ∈ X, t > 0 and

lim
m→∞

T∞
�=1

(
T
(
ξ2m+�x,2m+�−1x,2m+�−1x,0,...,0,

(
2m+n−5t

)
, ξ2m+�−1x,2m+�−1x,2m+�−1x,0,...,0

(
2m+n−7t

)))
= 1

(2.22)

for all x ∈ X and t > 0. Suppose that an odd function f : X → Y satisfies (2.10) for all x1, . . . , xn ∈ X
and t > 0. Then, there exists a unique additive function A : X → Y such that

Λf(2x)−8f(x)−A(x)(t) ≥ T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
2n−4t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
2n−6t

)))
(2.23)

for all x ∈ X and t > 0.

Proof. Setting x1 = x2 = x3 = x and xi = 0 (i = 4, . . . , n) in (2.10), we obtain

Λ∑n−3
�=0

(
n−3
�

)
(f(3x)+2f(x)+f(−x))−2n−1f(2x)+2n−1f(x)(t) ≥ ξx,x,x,0,...,0(t) (2.24)

for all x ∈ X and t > 0. By using oddness of f and the relation
∑n−3

i=0
(
n−3
�

)
= 2n−3, we lead to

Λf(3x)−4f(2x)+5f(x)(t) ≥ ξx,x,x,0,...,0
(
2n−3t

)
(2.25)

for all x ∈ X and t > 0. Putting x1 = 2x, x2 = x3 = x and xi = 0 (i = 4, . . . , n) in (2.10), we have

Λ∑n−3
�=0

(
n−3
�

)
(f(4x)+2f(2x))−2n−2(2f(3x)+2f(x))+2n−1f(2x)(t) ≥ ξ2x,x,x,0,...,0(t) (2.26)
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for all x ∈ X and t > 0. So

Λf(4x)−4f(3x)+6f(2x)−4f(x)(t) ≥ ξ2x,x,x,0,...,0
(
2n−3t

)
(2.27)

for all x ∈ X and t > 0. It follows from (2.25), (2.27), and (PN4) that

Λf(4x)−10f(2x)+16f(x)(t) ≥ T
(
ξ2x,x,x,0,...,0

(
2n−4t

)
, ξx,x,x,0,...,0

(
2n−6t

))
(2.28)

for all x ∈ X and t > 0. Let g : X → Y be a function defined by g(x) := f(2x) − 8f(x) for all
x ∈ X. From (2.28), we conclude that

Λg(2x)/2−g(x)(t) ≥ T
(
ξ2x,x,x,0,...,0

(
2n−3t

)
, ξx,x,x,0,...,0

(
2n−5t

))

≥ T
(
ξ2x,x,x,0,...,0

(
2n−4t

)
, ξx,x,x,0,...,0

(
2n−6t

)) (2.29)

for all x ∈ X and t > 0, which implies that

Λg(2�+1x)/2�+1−g(2�x)/2� (t) ≥ T
(
ξ2�+1x,2�x,2�x,0,...,0

(
2�+n−3t

)
, ξ2�x,2�x,2�x,0,...,0

(
2�+n−5t

))
(2.30)

for all x ∈ X, t > 0 and � ∈ N. It follows from (2.30) and (PN4) that

Λg(22x)/22−g(x)(t) ≥ T

(

Λg(22x)/22−g(2x)/2

(
t

2

)

,Λg(2x)/2−g(x)

(
t

2

))

≥ T
(
T
(
ξ22x,2x,2x,0,...,0

(
2n−3t

)
, ξ2x,2x,2x,0,...,0

(
2n−5t

))
,

T
(
ξ2x,x,x,0,...,0

(
2n−4t

)
, ξx,x,x,0,...,0

(
2n−6t

)))

≥ T
(
T
(
ξ22x,2x,2x,0,...,0

(
2n−4t

)
, ξ2x,2x,2x,0,...,0

(
2n−6t

))
,

T
(
ξ2x,x,x,0,...,0

(
2n−4t

)
, ξx,x,x,0,...,0

(
2n−6t

)))
,

Λg(23x)/23−g(x)(t) ≥ T

(

Λg(23x)/23−g(2x)/2

(
t

2

)

,Λg(2x)/2−g(x)

(
t

2

))

≥ T

(

T

(

Λg(23x)/23−g(22x)/22
(
t

4

)

,Λg(22x)/22−g(2x)/2

(
t

4

))

,Λg(2x)/2−g(x)

(
t

2

))

≥ T
(
T
(
T
(
ξ23x,22x,22x,0,...,0

(
2n−3t

)
, ξ22x,22x,22x,0,...,0

(
2n−5t

))
,
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T
(
ξ22x,2x,2x,0,...,0

(
2n−4t

)
, ξ2x,2x,2x,0,...,0

(
2n−6t

)))
,

T
(
ξ2x,x,x,0,...,0

(
2n−4t

)
, ξx,x,x,0,...,0

(
2n−6t

)))

≥ T
(
T
(
T
(
ξ23x,22x,22x,0,...,0

(
2n−4t

)
, ξ22x,22x,22x,0,...,0

(
2n−6t

))
,

T
(
ξ22x,2x,2x,0,...,0

(
2n−4t

)
, ξ2x,2x,2x,0,...,0

(
2n−6t

)))
,

T
(
ξ2x,x,x,0,...,0

(
2n−4t

)
, ξx,x,x,0,...,0

(
2n−6t

)))

= T
(
T
(
T
(
ξ2x,x,x,0,...,0

(
2n−4t

)
, ξx,x,x,0,...,0

(
2n−6t

))
,

T
(
ξ22x,2x,2x,0,...,0

(
2n−4t

)
, ξ2x,2x,2x,0,...,0

(
2n−6t

)))
,

T
(
ξ23x,22x,22x,0,...,0

(
2n−4t

)
, ξ22x,22x,22x,0,...,0

(
2n−6t

)))

(2.31)

for all x ∈ X and t > 0. Thus,

Λg(2mx)/2m−g(x)(t) ≥ Tm
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
2n−4t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
2n−6t

)))
(2.32)

for all x ∈ X and t > 0. In order to prove the convergence of the sequence {g(2mx)/2m}, we
replace x with 2m

′
x in (2.32) to find that

Λg(2m+m′x)/2m+m′ −g(2m′x)/2m′ (t)

≥ Tm
�=1

(
T
(
ξ2m′+�x,2m′+�−1x,2m′+�−1x,0,...,0

(
2m

′+n−4t
)
, ξ2m′+�−1x,2m′+�−1x,2m′+�−1x,0,...,0

(
2m

′+n−6t
))) (2.33)

for all x ∈ X and t > 0. Since the right-hand side of the inequality tends to 1 as m′ and m
tend to infinity, the sequence {g(2mx)/2m} is a Cauchy sequence. Therefore, one can define
the function A : X → Y by A(x) := limm→∞(1/2m)g(2mx) for all x ∈ X. Now, if we replace
x1, . . . , xn with 2mx1, . . . , 2mxn in (2.10), respectively, it follows that

ΛΔg(2mx1,...,2mxn)/2m(t) = ΛΔf(2m+1x1,...,2m+1xn)/2m−8(Δf(2mx1,...,2mxn)/2m)(t)

≥ T

(

ΛΔf(2m+1x1,...,2m+1xn)/2m

(
t

2

)

,ΛΔf(2mx1,...,2mxn)/2m−3

(
t

2

))

≥ T
(
ξ2m+1x1,...,2m+1xn

(
2m−1t

)
, ξ2mx1,...,2mxn

(
2m−4t

))

(2.34)

for all x1, . . . , xn ∈ X and t > 0. By lettingm → ∞ in (2.34), we find that ΛΔA(x1,...,xn)(t) = 1 for
all t > 0, which implies ΔA(x1, . . . , xn) = 0, thus A satisfies (1.8). Hence, by Theorem 2.1 (see
[30, Lemma 2.2]) the function A : X → Y is additive.

To prove (2.23), take the limit as m → ∞ in (2.32).
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Finally, to prove the uniqueness of the additive function A subject to (2.23), let us
assume that there exists a additive function A′ which satisfies (2.23). Since A(2mx) = 2mA(x)
and A′(2mx) = 2mA′(x) for all x ∈ X and m ∈ N, from (2.23), it follows that

ΛA(x)−A′(x)(t)

= ΛA(2mx)−A′(2mx)(2mt) ≥ T
(
ΛA(2mx)−g(2mx)

(
2m−1t

)
,Λg(2mx)−A′(2mx)

(
2m−1t

))

≥ T
(
T∞
�=1

(
T
(
ξ2m+�x,2m+�−1x,2m+�−1x,0,...,0,

(
2m+n−5t

)
, ξ2m+�−1x,2m+�−1x,2m+�−1x,0,...,0

(
2m+n−7t

)))
,

T∞
�=1

(
T
(
ξ2m+�x,2m+�−1x,2m+�−1x,0,...,0,

(
2m+n−5t

)
, ξ2m+�−1x,2m+�−1x,2m+�−1x,0,...,0

(
2m+n−7t

))))

(2.35)

for all x ∈ X and t > 0. By letting m → ∞ in (2.35), we find that A = A′.

Theorem 2.4. Let ξ : Xn → D+ be a function such that

lim
m→∞

T
(
ξ2mx1,...,2mxn

(
23mt

)
, ξ2mx1,...,2mxn

(
23m−2t

))
= 1 (2.36)

for all x1, . . . , xn ∈ X, t > 0 and

lim
m→∞

T∞
�=1

(
T
(
ξ2m+�x,2m+�−1x,2m+�−1x,0,...,0,

(
23m+2�+n−5t

)
, ξ2m+�−1x,2m+�−1x,2m+�−1x,0,...,0

(
23m+2�+n−7t

)))
= 1

(2.37)

for all x ∈ X and t > 0. Suppose that an odd function f : X → Y satisfies (2.10) for all x1, . . . , xn ∈ X
and t > 0. Then, there exists a unique cubic function C : X → Y such that

Λf(2x)−2f(x)−C(x)(t) ≥ T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
22�+n−4t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
22�+n−6t

)))

(2.38)

for all x ∈ X and t > 0.

Proof. Similar to proof of Theorem 2.3, we obtain (2.28) for all x ∈ X and t > 0. Let h : X → Y
be a function defined by h(x) := f(2x) − 2f(x) for all x ∈ X. Therefore, (2.28) implies that

Λh(2x)/23−h(x)(t) ≥ T
(
ξ2x,x,x,0,...,0

(
2n−1t

)
, ξx,x,x,0,...,0

(
2n−3t

))

≥ T
(
ξ2x,x,x,0,...,0

(
2n−2t

)
, ξx,x,x,0,...,0

(
2n−4t

)) (2.39)

for all x ∈ X and t > 0, which implies that

Λh(2�+1x)/23(�+1)−h(2�x)/23� (t) ≥ T
(
ξ2�+1x,2�x,2�x,0,...,0

(
23�+n−1t

)
, ξ2�x,2�x,2�x,0,...,0

(
23�+n−3t

))
(2.40)



Abstract and Applied Analysis 13

for all x ∈ X, t > 0, and � ∈ N. It follows from (2.40) and (PN4) that

Λh(2mx)/23m−h(x)(t) ≥ Tm
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
22�+n−4t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
22�+n−6t

)))
(2.41)

for all x ∈ X and t > 0. In order to prove the convergence of the sequence {h(2mx)/23m}, we
replace x with 2m

′
x in (2.41) to find that

Λh(2m+m′x)/23(m+m′)−h(2m′x)/23m′ (t)

≥ Tm
�=1

(
T
(
ξ2m′+�x,2m′+�−1x,2m′+�−1x,0,...,0

(
23m

′+2�+n−4t
)
, ξ2m′+�−1x,2m′+�−1x,23m′+�−1x,0,...,0

(
23m

′+2�+n−6t
)))

(2.42)

for all x ∈ x and t > 0. Since the right-hand side of the inequality tends to 1 as m′ and m
tend to infinity, the sequence {h(2mx)/23m} is a Cauchy sequence. Therefore, one can define
the function C : X → Y by C(x) := limm→∞(1/23m)h(2mx) for all x ∈ X. Now, if we replace
x1, . . . , xn with 2mx1, . . . , 2mxn in (2.10), respectively, it follows that

ΛΔh(2mx1,...,2mxn)/23m(t) ≥ T
(
ξ2m+1x1,...,2m+1xn

(
23m−1t

)
, ξ2mx1,...,2mxn

(
23m−2t

))
(2.43)

for all x1, . . . , xn ∈ x and t > 0. By letting m → ∞ in (2.43), we find that ΛΔC(x1,...,xn)(t) = 1
for all t > 0, which implies ΔC(x1, . . . , xn) = 0, thus C satisfies (1.8). Hence, by Theorem 2.1
(see [30, Lemma 2.2]), the function C : X → Y is cubic. The rest of the proof is similar to the
proof of Theorem 2.3.

Theorem 2.5. Let ξ : Xn → D+ be a function satisfies (2.21) for all x1, . . . , xn ∈ X, t > 0 and
(2.22) for all x ∈ X and t > 0. Suppose that an odd function f : X → Y satisfies (2.10) for all
x1, . . . , xn ∈ X and t > 0. Then, there exists a unique additive function A : X → Y and a unique
cubic function C : X → Y such that

Λf(x)−A(x)−C(x)(t)

≥ T
(
T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.2n−4t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.2n−6t

)))
,

T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.22�+n−4t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.22�+n−6t

))))

(2.44)

for all x ∈ X and t > 0.

Proof. By Theorems 2.3 and 2.4, there exist an additive function A0 : X → Y and a cubic
function C0 : X → Y such that

Λf(2x)−8f(x)−A0(x)(t) ≥ T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
2n−4t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
2n−6t

)))
,

Λf(2x)−2f(x)−C0(x)(t) ≥ T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
22�+n−4t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
22�+n−6t

)))

(2.45)



14 Abstract and Applied Analysis

for all x ∈ X and t > 0. It follows from (2.45) that

Λf(x)+(1/6)A0(x)−(1/6)C0(x)(t) ≥ T
(
Λf(2x)−8f(x)−A0(x)(3t),Λf(2x)−2f(x)−C0(x)(3t)

)
(2.46)

for all x ∈ X and t > 0. Thus, we obtain (2.44) by letting A(x) = −(1/6)A0(x) and C(x) =
(1/6)C0(x) for all x ∈ X.

To prove the uniqueness property of A and C, let A′, C′ : X → Y be another additive
and cubic functions satisfying (2.44). Let A = A −A′ and C = C − C′. So,

ΛA(x)+C(x)(t)

≥ T

(

Λf(x)−A(x)−C(x)

(
t

2

)

,Λf(x)−A′(x)−C′(x)

(
t

2

))

≥ T
(
T
(
T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.2n−5t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.2n−7t

)))
,

T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.22�+n−5t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.22�+n−7t

))))
,

T
(
T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.2n−5t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.2n−7t

)))
,

T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.22�+n−5t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.22�+n−7t

)))))

(2.47)

for all x ∈ X and t > 0, then (2.47) implies that

ΛA(2mx)/23m+C(2mx)/23m(t)

≥ T
(
T
(
T∞
�=1

(
T
(
ξ2m+�x,2m+�−1x,2m+�−1x,0,...,0

(
3.23m+n−5t

)
, ξ2m+�−1x,2m+�−1x,2m+�−1x,0,...,0

(
3.23m+n−7t

)))
,

T∞
�=1

(
T
(
ξ2m+�x,2m+�−1x,2m+�−1x,0,...,0

(
3.23m+2�+n−5t

)
,

ξ2m+�−1x,2m+�−1x,2m+�−1x,0,...,0

(
3.23m+2�+n−7t

))))
,

T
(
T∞
�=1

(
T
(
ξ2m+�x,2m+�−1x,2m+�−1x,0,...,0

(
3.23m+n−5t

)
, ξ2m+�−1x,2m+�−1x,2m+�−1x,0,...,0

(
3.23m+n−7t

)))
,

T∞
�=1

(
T
(
ξ2m+�x,2m+�−1x,2m+�−1x,0,...,0

(
3.23m+2�+n−5t

)
,

ξ2m+�−1x,2m+�−1x,2m+�−1x,0,...,0

(
3.23m+2�+n−7t

)))))

(2.48)

for all x ∈ X and t > 0. Since the right-hand side of the inequality tends to 1 as m tends to
infinity, thus limm→∞A(2mx)/23m + C(2mx)/23m = 0 for all x ∈ X, which implies that C = 0.
So, from (2.47), we lead to A = 0.

Now, we are ready to prove the main theorem concerning the stability results for (1.8),
in Menger PN-space.
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Theorem 2.6. Let ξ : Xn → D+ be a function satisfies (2.8) and (2.21) for all x1, . . . , xn ∈ X, t > 0
and satisfies (2.9) and (2.22) for all x ∈ X and t > 0. Suppose that a function f : X → Y satisfies
(2.10) for all x1, . . . , xn ∈ X and t > 0. Furthermore, assume that f(0) = 0 in (2.10) for the case
f is even. Then, there exists a unique additive function A : X → Y , a unique quadratic function
Q : X → Y , and a unique cubic function C : X → Y satisfying

Λf(x)−A(x)−Q(x)−C(x)(t)

≥ T
[
T
(
T∞
�=1

(
ξ0,...,0,2�−1x,2�−1x

(
2�+n−3t

))
, T∞

�=1

(
ξ0,...,0,2�−1x,2�−1x

(
2�+n−3t

)))
,

T
(
T
(
T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.2n−5t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.2n−7t

)))
,

T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.22�+n−5t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.22�+n−7t

))))
,

T
(
T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.2n−5t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.2n−7t

)))
,

T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.22�+n−5t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.22�+n−7t

)))))]

(2.49)

for all x ∈ X and t > 0.

Proof. Let fe(x) = (1/2)(f(x) + f(−x)) for all x ∈ X. Then, fe(0) = 0,fe(−x) = fe(x) and

ΛΔfe(x1,...,xn)(t) = Λ(Δf(x1,...,xn)+Δf(−x1,...,−xn))/2(t) ≥ T
(
ΛΔf(x1,...,xn)(t),ΛΔf(−x1,...,−xn)(t)

)

≥ T(ξx1,...,xn(t), ξ−x1,...,−xn(t)) = T(ξx1,...,xn(t), ξx1,...,xn(t))
(2.50)

for all x1, . . . , xn ∈ X and t > 0. Hence, in view of Theorem 2.2, there exist a unique quadratic
function Q : X → Y such that

Λfe(x)−Q(x)(t) ≥ T
(
T∞
�=1

(
ξ0,...,0,2�−1x,2�−1x

(
2�+n−2t

))
, T∞

�=1

(
ξ0,...,0,2�−1x,2�−1x

(
2�+n−2t

)))
(2.51)

for all x ∈ X and t > 0. On the other hand, let fo(x) = (1/2)(f(x)− f(−x)) for all x ∈ X. Then,
fo(0) = 0, fo(−x) = −fo(x) and by using the above method, from Theorem 2.5, there exist a
unique additive function A : X → Y and a unique cubic function C : X → Y such that

Λfo(x)−A(x)−C(x)(t)

≥ T
(
T
(
T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.2n−4t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.2n−6t

)))
,

T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.22�+n−4t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.22�+n−6t

))))
,

T
(
T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.2n−4t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.2n−6t

)))
,

T∞
�=1

(
T
(
ξ2�x,2�−1x,2�−1x,0,...,0

(
3.22�+n−4t

)
, ξ2�−1x,2�−1x,2�−1x,0,...,0

(
3.22�+n−6t

)))))

(2.52)

for all x ∈ X and t > 0. Hence, (2.49) follows from (2.51) and (2.52).
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