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The structural acoustic problem considered in this study is the nonlinear resonant frequencies of a
rectangular tube with one open end, one flexible end, and four rigid side walls A multiacoustic
single structural modal formulation is derived from two coupled partial differential equations
which represent the large amplitude structural vibration of the flexible end and acoustic pressure
induced within the tube. The results obtained from the harmonic balance and homotopy
perturbation approaches verified each other. The effects of vibration amplitude, aspect ratio, the
numbers of acoustic modes and harmonic terms, and so forth, on the first two resonant natural
frequencies, are examined.

1. Introduction

Over the past decades, many researchers worked on linear structural-acoustic research works
(e.g., [1–7]) and nonlninear structural vibration problems (e.g., [8–15]), separately. The
structural-acoustic problem of rectangular tube (or similar problems) has been studied for
many years in various studies. So far, only few research works about structural-acoustics
have adopted the assumption of large amplitude vibration [16–20]. Few classical solutions
for nonlinear structural-acoustic problems have been developed to date, although there are
many approaches available for solving nonlinear governing differential equation (e.g., [21–
30]. In the study reported in this paper, the homotopy perturbation and harmonic balance
methods are used and assessed. It is because these twomethods were employed to determine
the large amplitude free vibration of beams and nonlinear oscillators in previous studies
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and agreed well with the other published results [31]. The results obtained from these two
methods verified each other. In finite element and other numerical approaches for solving
the problems of nonlinear structural vibrations (e.g., [32–35]), it is necessary for setting a set
of residual equations or global matrix equations and then solving them for the eigenvalue
solutions. All these approaches require a significant effort as an eigenvalue problem. The
present study uses the multiacoustic and single structural mode approach to develop the
classical solutions which do not require a significant amount of computational effort and
preprocessing inputs.

2. Theory

2.1. Governing Equations

In Figure 1, the acoustic pressure within the rectangular tube induced by the flexible end is
given by the following homogeneous wave equation [1]:

∇2P − 1
C2

a

∂2P

∂τ2
= 0, (2.1)

where P = the pressure within the tube; τ = time; Ca = sound speed.
The boundary conditions are given by

∂P

∂x
= 0, at x = 0 and a, (2.2a)

∂P

∂y
= 0, at y = 0 and b, (2.2b)

P = 0, at z = 0, (2.2c)

∂P

∂z
= −ρa ∂

2wl(t)

∂τ2
ϕ
(
x, y

)
, at z = l, (2.2d)

where wl(τ) = A cos(ωτ) = flexible plate vibration response; ϕ(x, y) = vibration mode
shape = sin(π/a) sin(π/b); ρa = air density; A = displacement amplitude (or displacement
at time = 0); ω = vibration frequency.

According to [1], the general multiacoustic mode solution of (2.1) is

P =
U∑

u

V∑

v

[
Luv sinh

(
μuvz

)
+Nuv cosh

(
μuvz

)]
cos

(uπx
a

)
cos

(vπy
b

)
cos(ωτ), (2.3)

where μuv =
√
(uπ/a)2 + (vπ/b)2 − (ω/Ca)

2; u and v = 0, 2, 4, . . . are the acoustic mode
numbers;U and V are the last acoustic mode numbers; Luv andNuv are unknown coefficients
to be determined by the boundary conditions.
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Figure 1: The rectangular tube with one open end, one flexible end, and four rigid side walls.

Applying the boundary condition (2.2c) to (2.3) gives

Nuv = 0. (2.4)

Then applying the boundary condition (2.2d) to (2.3) gives

∂P

∂z
=

U∑

u

V∑

v

Luvμuv cosh
(
μuvl

)
cos

(uπx
a

)
cos

(vπy
b

)
cos(ωτ) at z = l

= −ρa ∂
2A cos(ωτ)

∂τ2
ϕ
(
x, y

)
= ρaω

2A cos(ωτ)ϕ
(
x, y

)

=⇒ Luv = ρaω
2 αuv

αcos

A

μuv cosh
(
μuvl

) ,

(2.5)

where αuv =
∫b
0

∫a
0 ϕ(x, y) cos(uπx/a) cos

(
vπy/b

)
dx dy;

αcos =
∫b

0

∫a

0

[
cos

(uπx
a

)
cos

(vπy
b

)]2
dx dy. (2.6)
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Therefore, the acoustic pressure and modal acoustic pressure force acting on the flexible end
at z = l are given by

Pl = ρaω
2

U∑

u

V∑

v

αuv

αcos

tanh
(
μuvl

)

μuv
cos

(uπx
a

)
cos

(vπy
b

)
A cos(ωτ), (2.7a)

Fl =

∫b
0

∫a
0 Plϕ

(
x, y

)
dx dy

αϕ
= ρaω

2
U∑

u

V∑

v

α2
uv

αcosαϕ

tanh
(
μuvl

)

μuv
A cos(ωτ), (2.7b)

where αϕ =
∫b
0

∫a
0 ϕ(x, y)

2dx dy.
According to the approach from Chu and Herrmann [15], the governing equation for

the large amplitude vibration of a flexible plate is given by

ρ
d2wl

dτ2
+ ρω2

swl + βw3
l = 0, (2.8a)

where ρ = the panel surface density; ωs =
√
Et2/12ρ(1 − ν2)[(π/a)2 + (π/b)2] = the funda-

mental linear resonant frequency of the plate; β = (Eh/12(1 − ν2))(γ/a4) is the nonlinear
stiffness coefficient that is due to the large amplitude vibration; E is the Young’s modulus of
the plate; γ = 3π4[((3/4) − (ν2/4))(1 + r4) + νr2]; r = a/b is the aspect ratio; ν is Poisson’s
ratio; and t = the plate thickness.

Consider the modal acoustic pressure in (2.7b) on the plate. Equation (2.8a) is
modified and given by

ρ
d2wl

dτ2
+ ρω2

swl + βw3
l = Fl. (2.8b)

2.2. Harmonic Balance Method

Consider the structural vibration response in terms of harmonic terms [20]:

wl =
H∑

h

Ah cos(hωτ), (2.9a)

where Ah is the amplitude of the hth harmonic response; h = 1, 3, . . .H; and H is the last
harmonic order number; A =

∑H
h Ah.

Then, the modal acoustic pressure force at z = l in (2.7b) is revised and also consists of
higher harmonic terms.

Fl(t) = ρa
H∑

h

U∑

u

V∑

v

(hω)2α2
uv

αcosαϕ

tanh
(
μuv,hl

)

μuv,h
Ah cos(hωτ), (2.9b)

where μuv,h =
√
(uπ/a)2 + (vπ/b)2 − (hω/Ca)

2.
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Similarly, (2.8a) is revised and given by

ρ
d2wl

dτ2
+ ρω2

swl + βw3
l = ρa

H∑

h

U∑

u

V∑

v

(hω)2α2
uv

αcosαϕ

tanh
(
μuv,hl

)

μuv,h
Ah cos(hωτ)

=⇒

− ρ(hω)2Ah + ρω2
sAh + βGh(A1, A3 . . . AH) = ρa(hω)2

U∑

u

V∑

v

α2
uv

αcosαϕ

tanh
(
μuv,hl

)

μuv,h
Ah,

(2.10)

where Gh is a set of functions which contains A1, A3, . . . AH .
IfH = 1, then

G1(A1) =
3
4
A3

1. (2.11)

Consider the harmonic balance for H = 1 and ignore the higher harmonic terms in (2.10).
Then, the following equation is obtained:

−ρ(ω)2A1 + ρω2
sA1 + β

3
4
A3

1 = ρa(ω)2
U∑

u

V∑

v

α2
uv

αcosαϕ

tanh
(
μuv,1l

)

μuv,1
A1. (2.12)

IfH = 5, then

G1(A1, A3, A5) =
3
4
A3

1 +
3
4
A2

1A3 +
3
2
A2

3A1 +
3
2
A2

5A1 +
3
4
A2

3A5 +
3
2
A1A3A5, (2.13a)

G3(A1, A3, A5) =
3
4
A3

3 +
1
4
A3

1 +
3
2
A2

1A3 +
3
2
A2

5A3 +
3
4
A2

1A5 +
3
2
A1A3A5, (2.13b)

G5(A1, A3, A5) =
3
4
A3

5 +
3
2
A2

1A5 +
3
4
A2

1A3 +
3
4
A2

3A1 +
3
2
A2

3A5. (2.13c)

Consider the harmonic balance forH = 1, 3, 5 and ignore the higher harmonic terms in (2.10).
Then, the following three equations are obtained:

−ρ(ω)2A1 + ρω2
sA1 + βG1(A1, A3 . . . AH) = ρa(ω)2

U∑

u

V∑

v

α2
uv

αcosαϕ

tanh
(
μuv,1l

)

μuv,1
A1, (2.14a)

−ρ(3ω)2A3 + ρω2
sA3 + βG3(A1, A3 . . . AH) = ρa(3ω)2

U∑

u

V∑

v

α2
uv

αcosαϕ

tanh
(
μuv,3l

)

μuv,3
A3, (2.14b)

−ρ(5ω)2A5 + ρω2
sA5 + βG5(A1, A3 . . . AH) = ρa(5ω)2

U∑

u

V∑

v

α2
uv

αcosαϕ

tanh
(
μuv,5l

)

μuv,5
A5. (2.14c)
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According to (2.9a), one more equation is obtained:

A = A1 +A3 +A5. (2.14d)

Note that A is the initial modal displacement which is a known parameter. Thus, there are
four unknowns A1, A3, A5, and ω in (2.14a)–(2.14d). The resonant frequency ω is obtained
by solving the four equations.

2.3. Homotopy Perturbation Method

Consider the free large amplitude vibration of a flexible panel and the corresponding
governing equation

d2wl

dτ2
+ω2

swl + β′wl
3 = 0, (2.15)

where β′ = β/ρ.
Using the homotopy perturbation approach [29, 30], equation (2.15) can be linearized

and construct the following homotopy (note that there are some alternative ways of
constructing the homotopy equation, e.g., [36]):

d2wl

dτ2
+ω2wl + q

(
ω2

swl −ω2wl + β′w3
l

)
= 0, (2.16a)

wl = wl,0 + qwl,1 + · · · , (2.16b)

where q ∈ [0, 1]. wl,0 and wl,1 are the linear and first order approximate terms. Their initial
conditions and approximate forms are given by

wl,0 = A;
dwl,0

dτ
= 0, at τ = 0, (2.17a)

wl,1 = 0;
dwl,1

dτ
= 0, at τ = 0, (2.17b)

wl,0 = A cos(ωt), (2.17c)

wl,1 = B

(
cos(ωτ) − 1

3
cos(3ωτ)

)
, (2.17d)

whereω is the approximate natural frequency of the nonlinear system.A and E and vibration
amplitudes of the wl,0 and wl,1, respectively.
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Substituting (2.16b) into (2.16a), collecting terms of the same power of q, gives

d2wl,0

dτ2
+ω2wl,0 = 0, (2.18a)

d2wl,1

dτ2
+ω2wl,1 + β′w3

l,0 +
(
ω2

s −ω2
)
wl,0 = 0. (2.18b)

According to [37], the variational formulation is given by

J(wl,1) =
∫2π/ω

0

{

−1
2

(
dwl,1

dτ

)2

+ω2w2
l,1 +

(
ω2

s −ω2
)
wl,0wl,1 + β′w3

l,0wl,1

}

dτ = 0. (2.19)

Consider ∂J/∂B = 0 and ∂J/∂ω = 0. Then, the resonant frequency is given by

ω2
o −ω2

s −
3
4
β′A2 = 0

=⇒ ωo =

√

ω2
s +

3
4
β′A2 ,

(2.20)

where ωo is the resonant frequency of the large amplitude vibration.
Now consider the modal acoustic pressure force acting on the panel in (2.7b). Equation

(2.18a) can be rewritten and given by

d2wl,0

dτ2
+ω2

owl,0 = Fl

=⇒ −ρω2A + ρω2
sA + β

3
4
A3 = ρa(ω)2

U∑

u

V∑

v

α2
uv

αcosαϕ

tanh
(
μuvl

)

μuv
A.

(2.21)

Equation (2.21) is exactly the same as (2.12), which is developed from the harmonic balance
method.

3. Results and Discussions

In this numerical study, the first two resonant frequencies of the rectangular tube with a
flexible end are considered and obtained by solving (2.10) and (2.21). The material properties
of the flexible end or (flexible panel at z = l) are as follows: Young’s modulus = 7.1 ×
1010 N/m2, Poisson’s ratio = 0.3, and mass density = 2700 kg/m3. The dimensions of the tube
are 0.2m × 0.2m × 1.0m. The panel thickness is 1mm. The linear 1st structural resonant
frequencies of the panel (not mounted to the tube end), ωs = 121.878Hz. The first nine
acoustic modes (i.e., u = 0, 2, 4; v = 0, 2, 4) and first three harmonic terms (i.e.,H = 1, 3, 5) are
employed in the convergence study. Tables 1(a) and 1(b) the harmonic term convergence for
various amplitudes. The four acoustic modes (i.e., u = 0, 2; v = 0, 2) are used in the cases in
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Table 1: (a) Harmonic term convergence for various amplitudes (1st resonant frequency). (b) Harmonic
term convergence for various amplitudes (2nd resonant frequency).

(a)

Homotopy perturbation No. of harmonic terms = 1 2 3
A/t = 0.2 ω/ωs = 0.64348 0.64348 0.64347 0.64347
0.6 0.66140 0.66140 0.66094 0.66091
1 0.67759 0.67759 0.67641 0.67619
1.4 0.68721 0.68721 0.68580 0.68530

(b)

Homotopy perturbation No. of harmonic terms = 1 2 3
A/t = 0.2 ω/ωs = 1.07786 1.07786 1.07784 1.07784
0.6 1.19539 1.19539 1.1936 1.19356
1 1.40661 1.40661 1.4005 1.40024
1.4 1.66715 1.66715 1.65219 1.6600

Table 2: (a) Acoustic mode convergence for various amplitudes (1st resonant frequency). (b) Acoustic
mode convergence for various amplitudes (2nd resonant frequency).

(a)

No. of acoustic modes = 1 4 9
A/t = 0.2 0.64363 0.64348 0.64348
0.6 0.66148 0.66140 0.66139
1 0.67762 0.67759 0.67759
1.4 0.68723 0.68721 0.68721

(b)

No. of acoustic modes = 1 4 9
A/t = 0.2 1.07985 1.07786 1.07781
0.6 1.19770 1.19539 1.19534
1 1.40935 1.40661 1.40655
1.4 1.67018 1.66715 1.66709

Tables 1(a) and 1(b). As aforementioned in (2.12) and (2.21), the linear resonant frequencies
obtained from the homotopy perturbation method and the harmonic balance method with
one harmonic term are exactly the same. It can be seen that the effect of the 3rd harmonic
term on the first two resonant frequencies can be ignored. The solutions with the first two
harmonic terms can achieve 3-digit accuracy. Tables 2(a) and 2(b) present the results of the
acoustic mode convergence studies for various vibration amplitudes. One harmonic term
(i.e., H = 1) is used in the cases in Tables 2(a) and 2(b). It can be seen that the effect of the
higher acoustic modes (i.e., u = 4, 6 . . . ; v = 4, 6 . . .) on the first two resonant frequencies can
be ignored. The solutions with the four acoustic modes can achieve 3-digit accuracy.

In Figures 2(a) and 2(b), the vibration amplitude ratio, A/h, is plotted against the
frequency ratio for various panel thicknesses, t = 0.5, 0.6, and 0.7mm, and first two resonant
frequencies.

The material properties and the other dimensions are the same as those considered in
Tables 1(a) and 1(b). The linear 1st structural resonant frequencies of the three panels (not
mounted to the tube end) in Figures 2(a) and 2(b) are ωs = 60.939, 73.127, and 85.315Hz
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Figure 2: (a) The vibration amplitude ratio versus the 1st nonlinear resonant frequency (t = 0.5, 0.6,
0.7mm). (b) The vibration amplitude ratio versus the 2nd nonlinear resonant frequency (t = 0.5, 0.6,
0.7mm).

for t = 0.5, 0.6, and 0.7mm, respectively. Note that these three linear structural resonant
frequencies are lower than the linear 1st acoustic resonant frequency of the tube with one
rigid end and one open end (i.e., ωa = 85.75Hz). Generally, the resonant frequencies in all
cases are monotonically increasing with the amplitude ratio. In Figure 2(a), the 1st nonlinear
resonant frequencies are much smaller than the corresponding linear 1st structural resonant
frequencies when the amplitude ratio is small. In Figure 2(b), the 2nd nonlinear resonant
frequencies are always higher than the 1st linear acoustic resonant frequency of the tube with
one rigid end and one open end. According to a comparison between the three curves, the
differences between the 1st nonlinear resonant frequencies of the three cases in Figure 2(a)
are getting small for large amplitude ratio. On the contrary, the differences between the 2nd
nonlinear resonant frequencies of the three cases in Figure 2(b) are getting large for large
amplitude ratio.

In Figures 3(a) and 3(b), the vibration amplitude ratio, A/h, is plotted against the
frequency ratio for various panel thicknesses, t = 0.8, 0.9, and 1.0mm, and first two resonant
frequencies. The linear 1st structural resonant frequencies of the three panels (not mounted to
the tube end) in Figures 3(a) and 3(b) are ωs = 97.503, 109.69, and 121.878Hz for t = 0.8, 0.9,
and 1.0mm respectively. Note that these three linear structural resonant frequencies are
higher than the 1st linear acoustic resonant frequency of the tube with one rigid end and one
open end. Although the curves in Figures 3(a) and 3(b) show similar trends in Figures 2(a)
and 2(b), there are some other observations found. According to a comparison between the
curves in Figures 2(a) and 3(a), the differences between the 1st nonlinear resonant frequencies
in Figure 3(a) are obviously smaller than those in Figure 2(a) for all amplitude ratios. In
Figure 3(b), the differences between the 2nd nonlinear resonant frequencies are quite constant
for all amplitude ratios, while the differences between the 2nd nonlinear resonant frequencies
in Figure 2(b) are getting large for large amplitude ratio.

In Figures 4(a) and 4(b), the 1st and 2nd nonlinear resonant frequencies are plotted
against ωs/ωa, for various vibration amplitude ratios (where ωs = the linear 1st structural
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Figure 3: (a) The vibration amplitude ratio versus the 1st nonlinear resonant frequency (t = 0.8, 0.9, 1mm).
(b) The vibration amplitude ratio versus the 2nd nonlinear resonant frequency (t = 0.8, 0.9, 1mm).

resonant frequency of the panel, not mounted to the tube end; ωa = the linear 1st acoustic
resonant frequency of the tube with one rigid end and one open end). In Figure 4(a), it can
be seen that the 1st nonlinear resonant frequencies of all cases are always below ωa and
getting close to it, whenωs/ωa is increasing. Similar to the observation in Figure 4(a), the 2nd
nonlinear resonant frequencies of all cases in Figure 4(b) are always below 3ωa and getting
close to it, whenωs/ωa is increasing. Besides, it can be seen that the 2nd nonlinear resonant of
all cases always higher than a certain frequency and converge to it when ωa is getting small.

In Figures 5(a) and 5(b), the vibration amplitude ratio, A/h, is plotted against the
frequency ratio for various aspect ratios, a/b = 1, 1.5, and 2mm, and first two resonant
frequencies. The 1st linear structural resonant frequencies of the three cases are kept the same.
It can be seen that the differences between the three curves are very small; and thus the effect
of aspect ratio is veryminimal on the nonlinear resonant frequencies of the structural acoustic
system.

4. Conclusions

This paper presents a multimode formulation, based on the classical nonlinear panel and
homogeneous wave equations, for the nonlinear vibrations of a flexible panel mounted to
an end of a rectangular tube. The first two resonant frequencies are obtained by solving the
multimode differential equations and using the harmonic balance method and homotopy
perturbation method. The solutions from the two methods are found to agree well with
each other. The convergence study shows the number of acoustic modes and harmonic terms
needed for an accurate result. The effects of vibration amplitude, panel thickness, aspect ratio,
and so forth have also been investigated. The main findings include the following: (1) if the
linear 1st structural resonant frequency of the panel is higher than the linear 1st acoustic
resonant frequency of the tube with one rigid end and one open end, the 1st nonlinear
resonant frequency of the structural-acoustic system is less sensitive to the panel thickness
than that of the rectangular tube, which the linear 1st structural resonant frequency of the
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Figure 4: (a) The 1st nonlinear resonant frequency versus ωs/ωa (A/t = 0.4, 0.8, 1.2mm). (b) The 2nd
nonlinear resonant frequency versus ωs/ωa (A/t = 0.4, 0.8, 1.2mm).
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Figure 5: (a) The vibration amplitude ratio versus the 1st nonlinear resonant frequency (a/b = 1.0, 1.5,
2.0). (b) The vibration amplitude ratio versus the 2nd nonlinear resonant frequency (a/b = 1.0, 1.5, 2.0).

panel is lower than the linear 1st acoustic resonant frequency; (2) if the linear 1st structural
resonant frequency of the panel is lower than the linear 1st acoustic resonant frequency of
the tube with one rigid end, the 2nd nonlinear resonant frequency of the structural-acoustic
system is less sensitive to the panel thickness for small amplitude ratio, andmore sensitive for
large amplitude ratio; and (3) in each case considered, the 1st nonlinear resonant frequency is
always lower than the linear 1st acoustic resonant frequency, and the 2nd nonlinear resonant
frequency is always higher than the 1st linear acoustic resonant frequency and lower than
2nd linear acoustic resonant frequency, respectively.
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