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We introduce a new iterative method for finding a common element of the set of fixed points
of a strictly pseudocontractive mapping, the set of solutions of a generalized mixed equilibrium
problem, and the set of solutions of a variational inequality problem for an inverse-strongly-
monotone mapping in Hilbert spaces and then show that the sequence generated by the proposed
iterative scheme converges weakly to a common element of the above three sets under suitable
control conditions. The results in this paper substantially improve, develop, and complement the
previous well-known results in this area.

1. Introduction

LetH be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C be a non-
empty closed convex subset ofH. Let B : C → H be a nonlinear mapping and ϕ : C → R be
a function, and Θ be a bifunction of C × C into R, where R is the set of real numbers.

Then, we consider the following generalized mixed equilibrium problem of finding
x ∈ C such that

Θ
(
x, y

)
+
〈
Bx, y − x

〉
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C, (1.1)

whichwas introduced by Peng and Yao [1] recently. The set of solutions of the problem (1.1) is
denoted by GMEP(Θ, ϕ, B). Here some special cases of the problem (1.1) are stated as follows.



2 Journal of Applied Mathematics

If ϕ = 0, then the problem (1.1) reduced the following generalized equilibrium prob-
lem (GEP) of finding x ∈ C such that

Θ
(
x, y

)
+
〈
Bx, y − x

〉 ≥ 0, ∀y ∈ C, (1.2)

which was studied by S. Takahashi and M. Takahashi [2]. The set of solutions of the problem
(1.2) is denoted by GEP(Θ, B).

If B = 0, then the problem (1.1) reduces the following mixed equilibrium problem of
finding x ∈ C such that

Θ
(
x, y

)
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C, (1.3)

which was studied by Ceng and Yao [3] (see also [4]). The set of solutions of the problem
(1.3) is denoted by MEP(Θ, ϕ).

If ϕ = 0 and B = 0, then the problem (1.1) reduces the following equilibrium problem
of finding x ∈ C such that

Θ
(
x, y

) ≥ 0, ∀y ∈ C. (1.4)

The set of solutions of the problem (1.4) is denoted by EP(Θ).
If ϕ = 0 and Θ(x, y) = 0 for all x, y ∈ C, the problem (1.1) reduces the following varia-

tional inequality problem of finding x ∈ C such that

〈
Bx, y − x

〉 ≥ 0, ∀y ∈ C. (1.5)

The set of solutions of the problem (1.5) is denoted by VI(C,B).
The problem (1.1) is very general in the sense that it includes, as special cases, fixed

point problems, optimization problems, variational inequality problems, minimax problems,
Nash equilibrium problems in noncooperative games, and others; see, for example, [3, 5–7].

The class of pseudocontractive mappings is one of the most important classes of map-
pings among nonlinear mappings. We recall that a mapping S : C → H is said to be k-strictly
pseudocontractive if there exists a constant k ∈ [0, 1) such that

∥∥Sx − Sy
∥∥2 ≤ ∥∥x − y

∥∥2 + k
∥∥(I − S)x − (I − S)y

∥∥2
, ∀x, y ∈ C. (1.6)

Note that the class of k-strictly pseudocontractive mappings includes the class of nonexpan-
sive mappings as a subclass. That is, S is nonexpansive (i.e., ‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C)
if and only if S is 0-strictly pseudocontractive. The mapping S is also said to be pseudo-
contractive if k = 1 and S is said to be strongly pseudocontractive if there exists a constant
λ ∈ (0, 1) such that S − λI is pseudocontractive. Clearly, the class of k-strictly pseudocon-
tractive mappings falls into the one between classes of nonexpansive mappings and pseudo-
contractive mappings. Also we remark that the class of strongly pseudocontractive mappings
is independent of the class of k-strictly pseudocontractive mappings (see [8, 9]). Recently,
many authors have been devoting the studies on the problems of finding fixed points to the
class of pseudocontractive mappings; see, for example, [10–15] and the references therein.
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Recently, in order to study the problems (1.1)–(1.5) coupled with the fixed point
problem, many authors have introduced some iterative schemes for finding a common
element of the set of the solutions of the problem (1.1)–(1.5) and the set of fixed points of
a countable family of nonexpansive mappings and have studied strong convergence of the
sequences generated by the proposed schemes; see [1–4, 16–18] and the references therein.
Also we refer to [19–21] for the problems (1.1), (1.3), and (1.5) combined to the fixed point
problem for nonexpansive semigroups and strictly pseudocontractrive mappings.

In this paper, inspired and motivated by [18, 22–27], we introduce a new iterative
method for finding a common element of the set of fixed points of a k-strictly pseudocontrac-
tive mapping, the set of solutions of a generalized mixed equilibrium problem (1.1), and the
set of solutions of the variational inequality problem (1.5) for an inverse-strongly monotone
mapping in a Hilbert space. We show that, under suitable conditions, the sequence generated
by the proposed iterative scheme converges weakly to a common element of the above three
sets. The results in this paper can be viewed as an improvement and complement of the recent
results in this direction.

2. Preliminaries and Lemmas

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. In the
following, we write xn ⇀ x to indicate that the sequence {xn} converges weakly to x. xn → x
implies that {xn} converges strongly to x. We denote by F(T) the set of fixed points of the
mapping T .

In a real Hilbert space H, we have

∥∥λx + (1 − λ)y
∥∥2 = λ‖x‖2 + (1 − λ)

∥∥y
∥∥2 − λ(1 − λ)

∥∥x − y
∥∥2 (2.1)

for all x, y ∈ H and λ ∈ R. For every point x ∈ H, there exists a unique nearest point in C,
denoted by PC(x), such that

‖x − PC(x)‖ ≤ ∥∥x − y
∥∥ (2.2)

for all y ∈ C. PC is called the metric projection of H onto C. It is well known that PC is nonex-
pansive and PC satisfies

〈
x − y, PC(x) − PC

(
y
)〉 ≥ ∥∥PC(x) − PC

(
y
)∥∥2 (2.3)

for every x, y ∈ H. Moreover, PC(x) is characterized by the properties:

∥∥x − y
∥∥2 ≥ ‖x − PC(x)‖2 +

∥∥y − PC(x)
∥∥2

,

u = PC(x) ⇐⇒ 〈
x − u, u − y

〉 ≥ 0 ∀x ∈ H, y ∈ C.
(2.4)

In the context of the variational inequality problem for a nonlinear mapping F, this implies
that

u ∈ VI(C, F) ⇐⇒ u = PC(u − λFu) for any λ > 0. (2.5)
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It is also well known that H satisfies the Opial condition, that is, for any sequence {xn} with
xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥ (2.6)

holds for every y ∈ H with y /=x.
A mapping F of C intoH is called α-inverse-strongly monotone if there exists a constant

α > 0 such that

〈
x − y, Fx − Fy

〉 ≥ α
∥
∥Fx − Fy

∥
∥2

, ∀x, y ∈ C. (2.7)

We know that if F = I − T , where T is a nonexpansive mapping of C into itself and I is the
identity mapping of H, then F is 1/2-inverse-strongly monotone and VI(C, F) = F(T). A
mapping F of C intoH is called strongly monotone if there exists a positive real number η such
that

〈
x − y, Fx − Fy

〉 ≥ η
∥∥x − y

∥∥2
, ∀x, y ∈ C. (2.8)

In such a case, we say F is η-strongly monotone. If F is η-strongly monotone and κ-Lipschit-
zian, continuous, that is, ‖Fx−Fy‖ ≤ L‖x−y‖ for all x, y ∈ C, then F is η/κ2-inverse-strongly
monotone. If F is an α-inverse-strongly monotone mapping of C into H, then it is obvious
that F is 1/α-Lipschitzian. We also have that for all x, y ∈ C and λ > 0,

∥∥(I − λF)x − (I − λF)y
∥∥2 =

∥∥(x − y
) − λ

(
Fx − Fy

)∥∥2

=
∥∥x − y

∥∥2 − 2λ
〈
x − y, Fx − Fy

〉
+ λ2

∥∥Fx − Fy
∥∥2

≤ ∥
∥x − y

∥∥2 + λ(λ − 2α)
∥
∥Fx − Fy

∥∥2
.

(2.9)

So, if λ ≤ 2α, then I − λF is a nonexpansive mapping of C intoH. The following result for the
existence of solutions of the variational inequality problem for inverse-strongly monotone
mappings was given in Takahashi and Toyoda [27].

Proposition 2.1. Let C be a bounded closed convex subset of a real Hilbert space and let F be an
α-inverse-strongly monotone mapping of C intoH. Then, VI(C, F) is nonempty.

A set-valued mapping Q : H → 2H is called monotone if for all x, y ∈ H, f ∈ Qx and
g ∈ Qy imply 〈x − y, f − g〉 ≥ 0. A monotone mapping Q : H → 2H is maximal if the graph
G(Q) ofQ is not properly contained in the graph of any othermonotonemapping. It is known
that a monotone mappingQ is maximal if and only if for (x, f) ∈ H ×H, 〈x−y, f −g〉 ≥ 0 for
every (y, g) ∈ G(Q) implies f ∈ Qx. Let F be an inverse-strongly monotone mapping of C
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into H and let NCv be the normal cone to C at v, that is, NCv = {w ∈ H : 〈v − u,w〉 ≥ 0,
for all u ∈ C}, and define

Qv =

⎧
⎨

⎩

Fv +NCv, v ∈ C,

∅, v /∈ C.
(2.10)

Then Q is maximal monotone and 0 ∈ Qv if and only if v ∈ VI(C, F); see [28, 29].
For solving the equilibrium problem for a bifunction Θ : C × C → R, let us assume

that Θ and ϕ satisfy the following conditions:
(A1) Θ(x, x) = 0 for all x ∈ C,
(A2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C,
(A3) for each x, y, z ∈ C,

lim
t↓0

Θ
(
tz + (1 − t)x, y

) ≤ Θ
(
x, y

)
, (2.11)

(A4) for each x ∈ C, y �→ Θ(x, y) is convex and lower semicontinuous,
(A5) for each y ∈ C, x �→ Θ(x, y) is weakly upper semicontiunuous,
(B1) for each x ∈ H and r > 0, there exist a bounded subset Dx ⊆ C and yx ∈ C such

that for any z ∈ C \Dx,

Θ
(
z, yx

)
+ ϕ

(
yx

) − ϕ(z) +
1
r

〈
yx − z, z − x

〉
< 0, (2.12)

(B2) C is a bounded set.
The following lemmas were given in [1, 5].

Lemma 2.2 (see [5]). Let C be a nonempty closed convex subset of H and Θ a bifunction of C × C
into R satisfying (A1)–(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

Θ
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C. (2.13)

Lemma 2.3 (see [1]). Let C be a nonempty closed convex subset of H. Let Θ be a bifunction form
C × C to R which satisfies (A1)–(A5) and ϕ : C → R a proper lower semicontinuous and convex
function. For r > 0 and x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C : Θ

(
z, y

)
+ ϕ

(
y
) − ϕ(z) +

1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C

}
(2.14)

for all z ∈ H. Assume that either (B1) or (B2) holds. Then, the following hold:
(1) for each x ∈ H, Tr(x)/= ∅,
(2) Tr is single-valued,
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(3) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

∥
∥Trx − Try

∥
∥2 ≤ 〈

Trx − Try, x − y
〉
, (2.15)

(4) F(Tr) = MEP(Θ, ϕ),
(5) MEP(Θ, ϕ) is closed and convex.

We also need the following lemmas for the proof of our main results.

Lemma 2.4 (see [30]). Let H be a real Hilbert space, let {αn} be a sequence of real numbers such
that 0 < a ≤ αn ≤ b < 1 for all n ≥ 1 and let {vn} and {wn} be sequences inH such that, for some c

lim sup
n→∞

‖vn‖ ≤ c, lim sup
n→∞

‖wn‖ ≤ c, lim sup
n→∞

‖αnvn + (1 − αn)wn‖ = c. (2.16)

Then limn→∞‖vn −wn‖ = 0.

Lemma 2.5 (see [27]). Let C be a nonempty closed convex subset of a real Hilbert spaces H and let
{xn} be a sequence inH. If

‖xn+1 − x‖ ≤ ‖xn − x‖, ∀x ∈ C, ∀n ≥ 1, (2.17)

then {PCxn} converges strongly to some z ∈ C, where PC stands for the metric projection of H onto
C.

Lemma 2.6 (see [31]). Let H be a Hilbert space, C a closed convex subset of H. If T is a k-strictly
pseudocontractive mapping on C, then the fixed point set F(T) is closed convex, so that the projection
PF(T) is well defined.

Lemma 2.7 (see [31]). Let H be a Hilbert space, C a closed convex subset of H, and T : C → H a
k-strictly pseudocontractive mapping. Define a mapping S : C → H by Sx = λx + (1 − λ)Tx for all
x ∈ C. Then, as λ ∈ [k, 1), S is a nonexpansive mapping such that F(S) = F(T).

3. Main Results

In this section, we introduce a new iterative scheme for finding a common point of the set
of fixed points of a k-strictly pseudocontractive mapping, the set of solutions of the problem
(1.1), and the set of solutions of the problem (1.5) for an inverse-strongly monotone mapping.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let Θ be a
bifunction from C × C to R satisfying (A1)–(A5) and ϕ : C → R a lower semicontinuous and
convex function. Let F, B be two α, β-inverse-strongly monotone mappings of C into H, respectively.
Let T be a k-strictly pseudocontractive mapping of C into itself for some k ∈ [0, 1) such that
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Ω1 := F(T)
⋂
GMEP(Θ, ϕ, B)

⋂
VI(C, F)/= ∅. Assume that either (B1) or (B2) holds. Let {xn} and

{un} be sequences generated by x1 ∈ C and

Θ
(
un, y

)
+
〈
Bxn, y − un

〉
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = S(αnxn + (1 − αn)PC(un − λnFun)), ∀n ≥ 1,

(3.1)

where S : C → C is a mapping defined by Sx = kx + (1 − k)Tx for x ∈ C, {αn} ⊂ [0, 1] and
{rn} ⊂ (0,∞). Assume that {αn} ⊂ [a, b] for some a, b ∈ (0, 1), λn ∈ [c, d] ⊂ (0, 2α) and rn ∈
[e, f] ⊂ (0, 2β). Then {xn} and {un} converge weakly to z ∈ Ω1, where z = limn→∞PΩ1(xn).

Proof. From now, we put zn = PC(un − λnFun).
We divide the proof into several steps.

Step 1. We show that {xn} is bounded. To this end, let p ∈ Ω1 := F(T)
⋂
GMEP(Θ, ϕ, B)

⋂

VI(C, F) and {Trn} be a sequence of mappings defined as in Lemma 2.3. Then, since F(S) =
F(T) by Lemma 2.7, p = Sp. Also, from (4) in Lemma 2.3 and (2.5), it follows that p = Trn(p −
rnBp) and p = PC(p − λnFp). From zn = PC(un − λnFun) and the fact that PC and I − λnF are
nonexpansive, it follows that

∥∥zn − p
∥∥ ≤ ∥∥(I − λnF)un − (I − λnF)p

∥∥ ≤ ∥∥un − p
∥∥. (3.2)

Also, by un = Trn(xn−rnBxn) ∈ C and the β-inverse-strongly monotonicity of B, we have with
rn ∈ (0, 2β),

∥∥un − p
∥∥2 ≤ ∥∥xn − rnBxn −

(
p − rnBp

)∥∥2

≤ ∥∥xn − p
∥∥2 − 2rn

〈
xn − p, Bxn − Bp

〉
+ r2n

∥∥Bxn − Bp
∥∥2

≤ ∥∥xn − p
∥∥2 + rn

(
rn − 2β

)∥∥Bxn − Bp
∥∥2

≤ ∥∥xn − p
∥∥2
,

(3.3)

that is, ‖un − p‖ ≤ ‖xn − p‖, and so

∥∥zn − p
∥∥ ≤ ∥∥xn − p

∥∥. (3.4)
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So, by using the convexity of ‖ · ‖2, (3.2) and (3.3), we have

∥
∥xn+1 − p

∥
∥2 =

∥
∥S(αnxn + (1 − αn)zn) − Sp

∥
∥2

≤ ∥
∥αn

(
xn − p

)
+ (1 − αn)

(
zn − p

)∥∥2

≤ αn

∥
∥xn − p

∥
∥2 + (1 − αn)

∥
∥zn − p

∥
∥2

≤ αn

∥
∥xn − p

∥
∥2 + (1 − αn)

(∥
∥xn − p

∥
∥2 + rn

(
rn − 2β

)∥∥Bxn − Bp
∥
∥2
)

≤ ∥
∥xn − p

∥
∥2 + (1 − b)e

(
f − 2β

)∥∥Bxn − Bp
∥
∥2

≤ ∥
∥xn − p

∥
∥2
.

(3.5)

So, there exists r ∈ R such that

r = lim
n→∞

∥∥xn − p
∥∥. (3.6)

Therefore, {xn} is bounded, and so are {un} and {zn} by (3.2) and (3.4). Moreover, from (3.5),
it follows that

(1 − b)e
(
2β − f

)∥∥Bxn − Bp
∥∥2 ≤ ∥∥xn − p

∥∥2 − ∥∥xn+1 − p
∥∥2
, (3.7)

which implies that

lim
n→∞

∥∥Bxn − Bp
∥∥ = 0. (3.8)

Step 2. We show that limn→∞‖xn − un‖ = 0. To this end, let p ∈ Ω1. Since Trn is firmly nonex-
pansive and un = Trn(xn − rnBxn), we have

∥∥un − p
∥∥2 =

∥∥Trn(xn − rnBxn) − Trn
(
p − rnBp

)∥∥2

≤ 〈
Trn(xn − rnBxn) − Trn

(
p − rnBp

)
, xn − rnBxn −

(
p − rnBp

)〉

=
〈
xn − rnBxn −

(
p − rnBp

)
, un − p

〉

=
1
2

{∥∥un − p
∥∥2 +

∥∥xn − rnBxn −
(
p − rnBp

)∥∥2
}

− 1
2

{∥∥xn − rnBxn −
(
p − rnBp

) − (
un − p

)∥∥2
}

≤ 1
2

{∥∥un − p
∥∥2 +

∥∥xn − p
∥∥2 − ∥∥xn − un − rn

(
Bxn − Bp

)∥∥2
}

≤ 1
2

{∥∥un − p
∥∥2 +

∥∥xn − p
∥∥2 − ‖xn − un‖2

+2rn
〈
Bxn − Bp, xn − un

〉 − r2n
∥∥Bxn − Bp

∥∥2
}
,

(3.9)



Journal of Applied Mathematics 9

and hence

∥
∥un − p

∥
∥2 ≤ ∥

∥xn − p
∥
∥2 − ‖xn − un‖2 + 2rn

〈
Bxn − Bp, xn − un

〉 − r2n
∥
∥Bxn − Bp

∥
∥2

≤ ∥
∥xn − p

∥
∥2 − ‖xn − un‖2 + 2rn

〈
Bxn − Bp, xn − un

〉

≤ ∥
∥xn − p

∥
∥2 − ‖xn − un‖2 + 2rn

∥
∥Bxn − Bp

∥
∥‖xn − un‖.

(3.10)

On the other hand, by using the convexity of ‖ · ‖2, (3.2) and (3.10), we obtain

∥
∥xn+1 − p

∥
∥2 =

∥
∥S(αnxn + (1 − αn)zn) − Sp

∥
∥2

≤ αn

∥
∥xn − p

∥
∥2 + (1 − αn)

∥
∥zn − p

∥
∥2

≤ αn

∥
∥xn − p

∥
∥2 + (1 − αn)

∥
∥un − p

∥
∥2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

[∥∥xn − p
∥∥2 − ‖xn − un‖2 + 2rn

∥∥Bxn − Bp
∥∥‖xn − un‖

]
,

(3.11)

and hence

(1 − b)‖xn − un‖2 ≤ (1 − αn)‖xn − un‖2

≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2 + 2rn
∥∥Bxn − Bp

∥∥‖xn − un‖

≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2 + 2f
∥∥Bxn − Bp

∥∥M1,

(3.12)

where M1 = sup{‖xn‖ + ‖un‖ : n ≥ 1}. Since limn→∞‖xn+1 − p‖2 = limn→∞‖xn − p‖2 and
limn→∞‖Bxn − Bp‖ = 0 in (3.8), we obtain

lim
n→∞

‖xn − un‖ = 0 (3.13)

and so is the limit of {Bxn − Bun} since B is Lipschitz.

Step 3. We show that limn→∞‖xn − Szn‖ = 0. Indeed, let p ∈ Ω1 and set r = limn→∞‖xn − p‖.
Being S nonexpansive and F(T) = F(S), from (3.4) we can write

∥∥Szn − p
∥∥ ≤ ∥∥zn − p

∥∥ ≤ ∥∥xn − p
∥∥, (3.14)

and hence lim supn→∞‖Szn − p‖ ≤ r. By (3.4), we also have

lim sup
n→∞

∥∥αn

(
xn − p

)
+ (1 − αn)

(
Szn − p

)∥∥ = lim sup
n→∞

[
αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥zn − p
∥∥]

≤ lim sup
n→∞

∥∥xn − p
∥∥ = lim

n→∞
∥∥xn − p

∥∥ = r.
(3.15)

By Lemma 2.4, we obtain limn→∞‖Szn − xn‖ = 0.
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Step 4. We show that limn→∞‖un − zn‖ = 0. Using zn = PC(un − λnFun), p = PC(p − λnFp), we
compute

∥
∥zn − p

∥
∥2 ≤ ∥

∥(un − λnFun) −
(
p − λnFp

)∥∥2

≤ ∥
∥un − p

∥
∥2 − 2λn

〈
un − p, Fun − Fp

〉
+ λ2n

∥
∥Fun − Fp

∥
∥2

≤ ∥
∥xn − p

∥
∥2 + λn(λn − 2α)

∥
∥Fun − Fp

∥
∥2
.

(3.16)

So, we get

∥
∥xn+1 − p

∥
∥2 =

∥
∥S(αnxn + (1 − αn)zn) − Sp

∥
∥2

≤ α
∥
∥xn − p

∥
∥2 + (1 − αn)

∥
∥zn − p

∥
∥2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥xn − p
∥∥2 + (1 − αn)λn(λn − 2α)

∥∥Fun − Fp
∥∥2

=
∥∥xn − p

∥∥2 + (1 − αn)λn(λn − 2α)
∥∥Fun − Fp

∥∥2
.

(3.17)

From conditions αn ∈ [a, b] ⊂ (0, 1) and λn ∈ [c, d] ⊂ (0, 2α), it follows that

(1 − b)c(2α − d)
∥∥Fun − Fp

∥∥2 ≤ (1 − αn)λn(2α − λn)
∥∥Fun − Fp

∥∥2

≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2
.

(3.18)

By r = limn→∞‖xn − p‖, we obtain

lim
n→∞

∥∥Fun − Fp
∥∥ = 0. (3.19)

On the other hand, using zn = PC(un − λnFun) and (2.3), we observe that

∥∥zn − p
∥∥2 =

∥∥PC(un − λnFun) − PC

(
p − λnFp

)∥∥2

≤ 〈
(un − λnFun) −

(
p − λnFp

)
, zn − p

〉

≤ 1
2

{∥∥un − p
∥∥2 +

∥∥zn − p
∥∥2 − ∥∥(un − zn) − λn

(
Fun − Fp

)∥∥2
}

≤ 1
2

{∥∥xn − p
∥∥2 +

∥∥zn − p
∥∥2 − ‖un − zn‖2

+2λn
〈
un − zn, Fun − Fp

〉 − λ2n
∥∥Fun − Fp

∥∥2
}
,

(3.20)

that is,

∥∥zn − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖un − zn‖2 + 2λn
〈
un − zn, Fun − Fp

〉

− λ2n
∥∥Fun − Fp

∥∥2
.

(3.21)
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Thus, by (3.21), we have

∥∥xn+1 − p
∥∥2 =

∥∥S(αnxn + (1 − αn)zn) − Sp
∥∥2

≤ αn

∥
∥xn − p

∥
∥2 + (1 − αn)

∥
∥zn − p

∥
∥2

≤ αn

∥
∥xn − p

∥
∥2 + (1 − αn)

∥
∥xn − p

∥
∥2 − (1 − αn)‖un − zn‖2

+ (1 − αn)2λn
〈
un − zn, Fun − Fp

〉 − λ2n
∥
∥Fun − Fp

∥
∥2
,

(3.22)

which implies that

(1 − b)‖un − zn‖2 ≤ (1 − αn)‖un − zn‖2

≤ ∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2 + 2d(1 − a)M2
∥∥Fun − Fp

∥∥,
(3.23)

where M2 = sup{‖zn‖ + ‖un‖ : n ≥ 1}. From limn→∞‖Fun − Fp‖ = 0 in (3.19) and r =
limn→∞‖xn − p‖, we conclude that limn→∞‖un − zn‖ = 0.

Step 5. We show that limn→∞‖xn − Sxn‖ = 0. Indeed, since

‖Sxn − xn‖ ≤ ‖Sxn − Sun‖ + ‖Sun − Szn‖ + ‖Szn − xn‖, (3.24)

by Step 2, Step 3, and Step 4, we have

lim
n→∞

‖xn − Sxn‖ = 0. (3.25)

Step 6. We show that any of its weak cluster point z of {xn} belongs in Ω1. In this case, there
exists a subsequence {xni} which converges weakly to z. By Step 2 and Step 4, without loss
of generality, we may assume that {zni} converges weakly to z ∈ C. Since

‖Szn − zn‖ ≤ ‖Szn − xn‖ + ‖xn − un‖ + ‖un − zn‖, (3.26)

from Step 2, Step 3, and Step 4, it follows that ‖Szn − zn‖ → 0 and Szni ⇀ z.
We will show that z ∈ Ω1. First we show that z ∈ F(S) = F(T). Assume that z /∈ F(S).

Since zni ⇀ z and Sz/= z, by the Opial condition, we obtain

lim inf
i→∞

‖zni − z‖ < lim inf
i→∞

‖zni − Sz‖

≤ lim inf
i→∞

(‖zni − Szni‖ + ‖Szni − Sz‖)

≤ lim inf
i→∞

‖zni − z‖,

(3.27)

which is a contradiction. Thus we have z ∈ F(S) = F(T).
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Next we prove that z ∈ VI(C, F). Let

Qv =

⎧
⎨

⎩

Fv +NCv, v ∈ C,

∅, v /∈ C,
(3.28)

where NCv is normal cone to C at v. We have already known that in this case the mapping
Q is maximal monotone, and 0 ∈ Qv if and only if v ∈ VI(C, F). Let (v,w) ∈ G(Q). Since
w − Fv ∈ NCv and zn ∈ C, we have

〈v − zn,w − Fv〉 ≥ 0. (3.29)

On the other hand, from zn = PC(un − λnFun), we have

〈v − zn, zn − (un − λnFun)〉 ≥ 0, (3.30)

that is,

〈
v − zn,

zn − un

λn
+ Fun

〉
≥ 0. (3.31)

Thus, we obtain

〈v − zni ,w〉 ≥ 〈v − zni , Fv〉

≥ 〈v − zni , Fv〉 −
〈
v − zni ,

zni − uni

λni

+ Funi

〉

= 〈v − zni , Fv − Fzni〉 + 〈v − zni , Fzni − Funi〉

−
〈
v − zni ,

zni − uni

λni

〉

≥ 〈v − zni , Fzni − Funi〉 −
〈
v − zni ,

zni − uni

λni

〉
.

(3.32)

Since ‖zn − un‖ → 0 in Step 4 and F is α-inverse-strongly monotone, it follows from (3.32)
that

〈v − z,w〉 ≥ 0, as i −→ ∞. (3.33)

Since Q is maximal monotone, we have z ∈ Q−10 and hence z ∈ VI(C, F).
Finally, we show that z ∈ GMEP(Θ, ϕ, B). By un = Srn(xn − rnBxn), we know that

Θ
(
un, y

)
+
〈
Bxn, y − un

〉
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C. (3.34)
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It follows from (A2) that

〈
Bxn, y − un

〉
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ Θ
(
y, un

)
, ∀y ∈ C. (3.35)

Hence

〈
Bxni , y − uni

〉
+ ϕ

(
y
) − ϕ(uni) +

1
rni

〈
y − uni , uni − xni

〉 ≥ Θ
(
y, uni

)
, ∀y ∈ C. (3.36)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)z. Since y ∈ C and z ∈ C, we have yt ∈ C
and hence Θ(yt, z) ≤ 0. So, from (3.36), we have

〈
yt − uni , Byt

〉 ≥ 〈
yt − uni , Byt

〉 − ϕ
(
yt

)
+ ϕ(uni) −

〈
yt − uni , Bxni

〉

−
〈
yt − uni ,

uni − xni

rni

〉
+ Θ

(
yt, uni

)

=
〈
yt − uni , Byt − Buni

〉
+
〈
yt − uni , Buni − Bxni

〉

− ϕ
(
yt

)
+ ϕ(uni) −

〈
yt − uni ,

uni − xni

rni

〉
+ Θ

(
yt, uni

)
.

(3.37)

Since ‖uni − xni‖ → 0 by Step 2, we have ‖Buni − Bxni‖ → 0 and ‖(uni − xni)/rni‖ ≤ ‖(uni −
xni)/e‖ → 0, that is, (uni − xni)/rni → 0. Also by ‖un − zn‖ → 0 in Step 4, we have uni ⇀ z.
Moreover, from the inverse-strongly monotonicity of B, we have 〈yt −uni , Byt −Buni〉 ≥ 0. So,
from (A4) and the weak lower semicontinuity of ϕ, if follows that

〈
yt − z, Byt

〉 ≥ −ϕ(yt

)
+ ϕ(z) + Θ

(
yt, z

)
as i −→ ∞. (3.38)

By (A1), (A4), and (3.38), we also obtain

0 = Θ
(
yt, yt

)
+ ϕ

(
yt

) − ϕ
(
yt

)

≤ tΘ
(
yt, y

)
+ (1 − t)Θ

(
yt, z

)
+ tϕ

(
yt

)
+ (1 − t)ϕ(z) − ϕ

(
yt

)

≤ t
[
Θ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

)]
+ (1 − t)

〈
yt − z, Byt

〉

= t
[
Θ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

)]
+ (1 − t)t

〈
y − z, Byt

〉
,

(3.39)

and hence

0 ≤ Θ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

)
+ (1 − t)

〈
y − z, Byt

〉
. (3.40)
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Letting t → 0 in (3.40), we have for each y ∈ C

Θ
(
z, y

)
+
〈
Bz, y − z

〉
+ ϕ

(
y
) − ϕ(z) ≥ 0. (3.41)

This implies that z ∈ GMEP(Θ, ϕ, B). Therefore, we have z ∈ Ω1.
Let {xnj} be another subsequence of {xn} such that xnj ⇀ z′. Then, we have z′ ∈ Ω1. If

z/= z′, from the Opial condition, we have

lim
n→∞

‖xn − z‖ = lim inf
i→∞

‖xni − z‖ < lim inf
i→∞

∥
∥xni − z′

∥
∥

= lim
n→∞

∥
∥xn − z′

∥
∥ = lim inf

j→∞

∥
∥
∥xnj − z′

∥
∥
∥

< lim inf
j→∞

∥∥∥xnj − z
∥∥∥ = lim

n→∞
‖xn − z‖.

(3.42)

This is a contradiction. So, we have z = z′. This implies that

xn ⇀ z ∈ Ω1. (3.43)

Also from Step 2, it follows that un ⇀ z ∈ Ω1.
Let wn = PΩ1(xn). Since z ∈ Ω1, we have

〈xn −wn,wn − z〉 ≥ 0. (3.44)

Since ‖xn+1 − p‖ ≤ ‖xn − p‖ for p ∈ Ω1, by Lemma 2.5, we have that {wn} converges strongly
to some z0 ∈ Ω1. Since {xn} converges weakly to z, we have

〈z − z0, z0 − z〉 ≥ 0. (3.45)

Therefore, we obtain

z = z0 = lim
n→∞

PΩ1(xn). (3.46)

This completes the proof.

As direct consequences of Theorem 3.1, we also obtain the following new weak
convergence theorems for the problems (1.2) and (1.3) and fixed point problem of a strict
pseudocontractive mapping.
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Corollary 3.2. LetH, C, Θ, B, and F be as in Theorem 3.1. Let T be a k-strictly pseudocontractive
mapping of C into itself for some k ∈ [0, 1) such that Ω2 := F(T)

⋂
GEP(Θ, B)

⋂
VI(C, F)/= ∅.

Assume that either (B1) or (B2) holds. Let {xn} and {un} be sequences generated by x1 ∈ C and

Θ
(
un, y

)
+
〈
Bxn, y − un

〉
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = S(αnxn + (1 − αn)PC(un − λnFun)), ∀n ≥ 1,

(3.47)

where S : C → C is a mapping defined by Sx = kx + (1 − k)Tx for x ∈ C, {αn} ⊂ [0, 1] and {rn} ⊂
(0,∞). Assume that {αn} ⊂ [a, b] for some a, b ∈ (0, 1), λn ∈ [c, d] ⊂ (0, 2α) and rn ∈ [e, f] ⊂
(0, 2β). Then {xn} and {un} converge weakly to z ∈ Ω2, where z = limn→∞PΩ2(xn).

Proof. Putting ϕ ≡ 0 in Theorem 3.1, we obtain the desired result.

Corollary 3.3. Let H, C, Θ, and B be as in Corollary 3.2. Let T be a k-strictly pseudocontractive
mapping of C into itself for some k ∈ [0, 1) such that Ω3 := F(T)

⋂
GEP(Θ, B)/= ∅. Assume that

either (B1) or (B2) holds. Let {xn} and {un} be sequences generated by x1 ∈ C and

Θ
(
un, y

)
+
〈
Bxn, y − un

〉
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = S(αnxn + (1 − αn)un), ∀n ≥ 1,

(3.48)

where S : C → C is a mapping defined by Sx = kx + (1 − k)Tx for x ∈ C, {αn} ⊂ [0, 1] and
{rn} ⊂ (0,∞). Assume that {αn} ⊂ [a, b] for some a, b ∈ (0, 1) and rn ∈ [e, f] ⊂ (0, 2β). Then {xn}
and {un} converge weakly to z ∈ Ω3, where z = limn→∞PΩ3(xn).

Proof. Putting F ≡ 0 in Corollary 3.2, we obtain the desired result.

Corollary 3.4. Let H, C, Θ, ϕ, and F be as in Theorem 3.1. Let T be a k-strictly pseudocontractive
mapping of C into itself for some k ∈ [0, 1) such that Ω4 := F(T)

⋂
MEP(Θ, ϕ)

⋂
VI(C, F)/= ∅.

Assume that either (B1) or (B2) holds. Let {xn} and {un} be sequences generated by x1 ∈ C and

Θ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = S(αnxn + (1 − αn)PC(un − λnFun)), ∀n ≥ 1,

(3.49)

where S : C → C is a mapping defined by Sx = kx + (1 − k)Tx for x ∈ C, {αn} ⊂ [0, 1] and {rn} ⊂
(0,∞). Assume that {αn} ⊂ [a, b] for some a, b ∈ (0, 1), λn ∈ [c, d] ⊂ (0, 2α) and rn ∈ [e, f] ⊂
(0,∞). Then {xn} and {un} converge weakly to z ∈ Ω4, where z = limn→∞PΩ4(xn).

Proof. Putting B ≡ 0 in Theorem 3.1, we obtain the desired result.
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Corollary 3.5. Let H, C, Θ and ϕ be as in Theorem 3.1. Let T be a k-strictly pseudocontractive
mapping of C into itself for some k ∈ [0, 1) such that Ω5 := F(T)

⋂
MEP(Θ, ϕ)/= ∅. Assume that

either (B1) or (B2) holds. Let {xn} and {un} be sequences generated by x1 ∈ C and

Θ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = S(αnxn + (1 − αn)un), ∀n ≥ 1,

(3.50)

where S : C → C is a mapping defined by Sx = kx + (1 − k)Tx for x ∈ C, {αn} ⊂ [0, 1] and
{rn} ⊂ (0,∞). Assume that {αn} ⊂ [a, b] for some a, b ∈ (0, 1) and rn ∈ [e, f] ⊂ (0,∞). Then {xn}
and {un} converge weakly to z ∈ Ω5, where z = limn→∞PΩ5(xn).

Proof. Putting F ≡ 0 in Corollary 3.4, we obtain the desired result.

Remark 3.6.

(1) As a new result for a new iterative scheme, Theorem 3.1 develops and complements
the corresponding results, which were obtained recently by many authors in
references and others; for example, see [22–24, 26]. In particular, even though F ≡ 0
in Theorem 3.1, Theorem 3.1 develops and complements Theorem 3.1 of Ceng et al.
[22] in the following aspects:

(a) the iterative scheme (3.1) in Theorem 3.1 is a new one different from those in
Theorem 3.1 of [22].

(b) the equilibrium problem in Theorem 3.1 of [22] is extended to the case of
generalized mixed equilibrium problem.

(2) We point out that our iterative schemes in Corollaries 3.2, 3.3, 3.4 and 3.5 are new
ones different from those in the literature (see [22–24, 26] and others in references).
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[7] S. D. Flåm and A. S. Antipin, “Equilibrium programming using proximal-like algorithms,”Mathema-
tical Programming, vol. 78, pp. 29–41, 1997.

[8] F. E. Browder, “Fixed-point theorems for noncompact mappings in Hilbert space,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 53, pp. 1272–1276, 1965.

[9] F. E. Browder and W. V. Petryshyn, “Construction of fixed points of nonlinear mappings in Hilbert
space,” Journal of Mathematical Analysis and Applications, vol. 20, pp. 197–228, 1967.

[10] G. L. Acedo and H.-K. Xu, “Iterative methods for strict pseudo-contractions in Hilbert spaces,” Non-
linear Analysis. Series A, vol. 67, no. 7, pp. 2258–2271, 2007.

[11] Y. J. Cho, S. M. Kang, and X. Qin, “Some results on k-strictly pseudo-contractive mappings in Hilbert
spaces,” Nonlinear Analysis. Series A, vol. 70, no. 5, pp. 1956–1964, 2009.

[12] J. S. Jung, “Strong convergence of iterative methods for k-strictly pseudo-contractive mappings in
Hilbert spaces,” Applied Mathematics and Computation, vol. 215, no. 10, pp. 3746–3753, 2010.

[13] J. S. Jung, “Some results on a general iterative method for k-strictly pseudo-contractive mappings,”
Fixed Point Theory and Applications, vol. 2011, 24 pages, 2011.

[14] G. Marino and H.-K. Xu, “Weak and strong convergence theorems for strict pseudo-contractions in
Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 329, no. 1, pp. 336–346, 2007.

[15] C. H. Morales and J. S. Jung, “Convergence of paths for pseudocontractive mappings in Banach
spaces,” Proceedings of the American Mathematical Society, vol. 128, no. 11, pp. 3411–3419, 2000.

[16] J. S. Jung, “Strong convergence of composite iterative methods for equilibrium problems and fixed
point problems,” Applied Mathematics and Computation, vol. 213, no. 2, pp. 498–505, 2009.

[17] J. S. Jung, “A new iteration method for nonexpansive mappings and monotone mappings in Hilbert
spaces,” Journal of Inequalities and Applications, vol. 2010, Article ID 251761, 16 pages, 2010.

[18] J. S. Jung, “A general composite iterative method for generalized mixed equilibrium problems, varia-
tional inequality problems and optimization problems,” Journal of Inequalities and Applications, vol.
2011, article 51, 2011.

[19] T. Chamnarnpan and P. Kumam, “A new iterative method for a common solution of a fixed points
for pseudo-contractive mappings and variational inequalities,” Fixed Point Theory and Applications. In
press.

[20] P. Katchang and P. Kumam, “A system ofmixed equilibrium problems, a general system of variational
inequaliity problems for relaxed cocoercive, and fixed point problems for nonexpansive semigroups
and strictly pseudo-contractivemappings,” Journal of AppliedMathematics, vol. 2012, Article ID 414831,
36 pages, 2012.

[21] P. Kumam, U. Hamphries, and P. Katchang, “Common solutions of generalized mixed equilibrium
problems, variational inclusions, and common fixed points for nonexpansive semigroups and strictly
pseudocontractive mappings,” Journal of Applied Mathematics, vol. 2011, Article ID 953903, 28 pages,
2011.

[22] L.-C. Ceng, S. Al-Homidan, Q. H. Ansari, and J.-C. Yao, “An iterative scheme for equilibrium
problems and fixed point problems of strict pseudo-contraction mappings,” Journal of Computational
and Applied Mathematics, vol. 223, no. 2, pp. 967–974, 2009.

[23] C. Jaiboon, P. Kumam, and U. W. Humphries, “Weak convergence theorem by an extragradient
method for variational inequality, equilibrium and fixed point problems,” Bulletin of the Malaysian
Mathematical Sciences Society, vol. 32, no. 2, pp. 173–185, 2009.

[24] A. Moudafi, “Weak convergence theorems for nonexpansive mappings and equilibrium problems,”
Journal of Nonlinear and Convex Analysis, vol. 9, no. 1, pp. 37–43, 2008.

[25] S. Plubtieng and P. Kumam, “Weak convergence theorem for monotone mappings and a countable
family of nonexpansive mappings,” Journal of Computational and Applied Mathematics, vol. 224, no. 2,
pp. 614–621, 2009.

[26] A. Tada andW. Takahashi, “Weak and strong convergence theorems for a nonexpansive mapping and
an equilibrium problem,” Journal of Optimization Theory and Applications, vol. 133, no. 3, pp. 359–370,
2007.

[27] W. Takahashi and M. Toyoda, “Weak convergence theorems for nonexpansive mappings and mono-
tone mappings,” Journal of Optimization Theory and Applications, vol. 118, no. 2, pp. 417–428, 2003.

[28] R. T. Rockafellar, “On the maximality of sums of nonlinear monotone operators,” Transactions of the
American Mathematical Society, vol. 149, pp. 75–88, 1970.



18 Journal of Applied Mathematics

[29] R. T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM Journal on Control
and Optimization, vol. 14, no. 5, pp. 877–898, 1976.

[30] J. Schu, “Weak and strong convergence to fixed points of asymptotically nonexpansive mappings,”
Bulletin of the Australian Mathematical Society, vol. 43, no. 1, pp. 153–159, 1991.

[31] H. Zhou, “Convergence theorems of fixed points for κ-strict pseudo-contractions in Hilbert spaces,”
Nonlinear Analysis. Series A, vol. 69, no. 2, pp. 456–462, 2008.


