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The degenerate reaction diffusion system has been applied to a variety of physical and engineering
problems. This paper is extended the existence of solutions from the quasimonotone reaction
functions (e.g., inhibitor-inhibitor mechanism) to the mixed quasimonotone reaction functions
(e.g., activator-inhibitor mechanism). By Schauder fixed point theorem, it is shown that the system
admits at least one positive solution if there exist a coupled of upper and lower solutions. This
result is applied to a Lotka-Volterra predator-prey model.

1. Introduction

We consider a quasilinear reaction diffusion system in a bounded domain under coupled
nonlinear boundary conditions. The system of equations is given in the form

∂ui
∂t

− ∇ · (aiDi(ui)∇ui) + bi · (Di(ui)∇ui) = fi(t, x,u) (t > 0, x ∈ Ω),

Di(ui)
∂ui
∂ν

= gi(t, x,u) (t > 0, x ∈ ∂Ω),

ui(0, x) = ψi(x)(x ∈ Ω), i = 1, . . . ,N,

(1.1)

where u ≡ (u1, . . . , uN), Ω is a bounded domain in R
n with boundary ∂Ω, ∂/∂ν denotes

the outward normal derivative on ∂Ω. It is assumed that the boundary ∂Ω is of class C1+α.
It is also assumed that, for each i = 1, . . . ,N, the functions ai ≡ ai(t, x), bi ≡ bi(t, x) ≡
(b(1)i , . . . , b

(n)
i ), fi(t, x, ·) and gi(t, x, ·) are Hölder continuous in [0,∞) × Ω. The density-

dependent diffusion coefficient Di(ui) may have the property Di(0) = 0, which means that
the elliptic operators are degenerate.
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The quasilinear reaction diffusion system has been investigated extensively in the
literature [1–3]. Recently by use of upper and lower solutions and its associated monotone
iterations, [4, 5] deal with the scalar equation and the system endowed with the nonlinear
Neumann-Robin boundary conditions, respectively. The paper in [6] is concerned with the
existence, uniqueness, and asymptotic behavior for the quasilinear parabolic systemswith the
Dirichlet boundary condition. However, the requirement of the reaction functions in [4–6] are
monotone nondecreasing. This paper relaxed the condition to mixed quasimonotone reaction
functions, which leads to the difficult point that the ordered upper and lower solutions do not
exist. To overcome it, we construct the coupled upper and lower solutions.

The purpose of this paper is to study the existence for the system (1.1) by the Schauder
fixed point theorem. The rest of this paper is organized as follows. In Section 2 we show the
existence by the method of upper and lower solutions and the Schauder fixed point theorem.
An application is given in Section 3 to the Lotka-Volterra predator-prey model. The paper
ends with Section 4 for some discussions.

2. Existence of Solutions

To the simplicity, throughout this paper, we denote

Q = (0, T] ×Ω, S = (0, T] × ∂Ω, Q = [0, T] ×Ω, (2.1)

and let Cm(Q) and Cα(Q) be the respective space of m-times differentiable and Hölder
continuous functions inQ, where Q represents a domain or a section between two functions.
For vector functions withN-components we denote the above function space by Cm(Q) and
Cα(Q), respectively.

In this paper, we make the following hypothesis.
(H) For each i = 1, . . . ,N, the following conditions hold:

(i) ai(t, x), b
(l)
i (t, x)(l = 1, . . . , n) and fi(t, x, ·) are in Cα/2,α(Q) with ai ≥ a∗i > 0,

gi(t, x, ·) ∈ C1+α/2,2+α(Q);

(ii) Di(ui) ∈ C1+α/2,1+α(Λi) and Di(ui) > 0 for ui > 0 and Di(0) ≥ 0;

(iii) f(·,u),g(·,u) are mixed quasimonotone C1-functions in Λ.

In the above hypothesis, Λ and Λi are the sectors between a pair of coupled
upper and lower solutions given by (2.8) below. It is allowed that Di(0) = 0 for some
i and Di(0) > 0 for a different i. Particularly, if Di(u) is a positive constant for all i
then system (1.1) becomes the standard coupled system of semilinear parabolic equations.
Recall that a vector function f(·,u) is said to be mixed quasimonotone in Λ if for
each i = 1, . . . ,N, there exist nonnegative integers ai and bi with ai + bi = N − 1
such that the function fi(·,u) ≡ fi(·, ui, [u]ai , [u]bi) is nondecreasing with respect to all
component [u]ai and is nonincreasing with respect to all component [u]bi , where u ≡
(ui, [u]ai , [u]bi) ∈ Λ. Similarly, gi(·,u) ≡ gi(·, ui, [u]ci , [u]di) . Our approach to the existence
problem is by the method of coupled upper and lower solutions which are defined as
follows.
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Definition 2.1. A pair of functions ũ = (ũ1, . . . , ũN), û = (û1, . . . , ûN) ∈ C(Q) ∩ C1,2(Q) are
called coupled upper and lower solutions of (1.1) if ũ ≥ û and if

∂ũi
∂t

− ∇ · (aiDi(ũi)∇ũi) + bi · (Di(ũi)∇ũi) ≥ fi
(·, ũi, [ũ]ai , [û]bi

)

in Q,

∂ûi
∂t

− ∇ · (aiDi(ûi)∇ûi) + bi · (Di(ûi)∇ûi) ≤ fi
(·, ûi, [û]ai , [ũ]bi

)

in Q,

Di(ũi)
∂ũi
∂ν

≥ gi
(·, ũi, [ũ]ci , [û]di

)

on S,

Di(ûi)
∂ûi
∂ν

≤ gi
(·, ûi, [û]ci , [ũ]di

)

on S,

ũi(0, x) ≥ ψi(x), ûi(0, x) ≤ ψi(x) in Ω, i = 1, . . . ,N.

(2.2)

Define

wi = Ii(ui) =
∫ui

0
Di(s)ds forui ≥ 0, i = 1, . . . ,N, (2.3)

it follows from the following Hypothesis (H) that

I ′i(ui) =
dIi
dui

= Di(ui) > 0, (2.4)

then the inverse ui ≡ qi(wi) exists and is an increasing function of wi > 0. In view of

∂wi

∂t
= Di(ui)

∂ui
∂t

, ∇wi = Di(ui)∇ui, ∂wi

∂ν
= Di(ui)

∂ui
∂ν

(2.5)

we may write (1.1) in the equivalent form

(Di(ui))−1
∂wi

∂t
− ∇ · (ai∇wi) + bi · ∇wi = fi

(

t, x, ui, [u]ai , [u]bi
)

in Q,

∂wi

∂ν
= gi

(

t, x, ui, [u]ci , [u]di
)

on S,

wi(0, x) = ηi(x) in Ω,
ui = qi(wi) i = 1, . . . ,N in Ω,

(2.6)
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where ηi(x) = Ii(ψi(x)). Thus the pair (ũ, w̃) and (û, ŵ), where w̃i = Ii(ũi) and ŵi = I(ûi),
satisfy the inequalities

(Di(ũi))
−1 ∂w̃i

∂t
− ∇ · (ai∇w̃i) + bi · (∇w̃i) ≥ fi

(·, ũi, [ũ]ai , [û]bi
)

in Q,

(Di(ûi))
−1 ∂ŵi

∂t
− ∇ · (ai∇ŵi) + bi · (∇ŵi) ≤ fi

(·, ûi, [û]ai , [ũ]bi
)

in Q,

∂w̃i

∂ν
≥ gi

(·, ũi, [ũ]ci , [û]di
)

on S,

∂ŵi

∂ν
≤ gi

(·, ûi, [û]ci , [ũ]di
)

on S,

w̃i(0, x) ≥ ηi(x) ŵi(0, x) ≤ ηi(x) in Ω, i = 1, . . . ,N,

(2.7)

is referred to as coupled upper and lower solutions of (2.6). For a given pair of coupled upper
and lower solutions ũ, û we set

Λi =
{

ui ∈ C
(

Q
)

: ûi ≤ u ≤ ũi
}

, Λ =
{

u ∈ C
(

Q
)

: û ≤ u ≤ ũ
}

,

Λ ×Λ =
{

(u,w) ∈ C
(

Q
)

× C
(

Q
)

: (û, ŵ) ≤ (u,w) ≤ (ũ, w̃)
}

.
(2.8)

In Hypothesis (H)-(ii) we allow Di(0) = 0 which leads to a degenerate diffusion coefficient.
If Di(0) = 0, we set ûi ≥ δi > 0, which ensures that Di(ui) has a positive lower bound. Since
(H)-(iii), there exist smooth nonnegative functions c(l)i ≡ c(l)i (t, x), l = 1, 2, such that

c
(1)
i Di(ui) +

∂fi
∂ui

(·,u) ≥ 0, c
(2)
i Di(ui) +

∂gi
∂ui

(·,u) ≥ 0 foru ∈ Λ. (2.9)

In fact, it suffices to choose any c(1) ≡ (c(1)1 , . . . , c
(1)
N ), c(2) ≡ (c(2)1 , . . . , c

(2)
N ) satisfying

c
(1)
i (t, x) ≥ max

{

−∂fi/∂ui(t, x,u)
Di(ui)

: u ∈ Λ
}

,

c
(2)
i (t, x) ≥ max

{

−∂gi/∂ui(t, x,u)
Di(ui)

: u ∈ Λ
}

.

(2.10)

Define for each i = 1, . . . ,N,

Fi(t, x,u) = c
(1)
i (t, x)Ii(ui) + fi(t, x,u), Gi(t, x,u) = c

(2)
i (t, x)Ii(ui) + gi(t, x,u),

Liwi = ∇ · (ai∇wi) − bi∇ ·wi − c(1)i (t, x)wi, Biwi =
∂wi

∂ν
+ c(2)i (t, x)wi.

(2.11)

Since (2.9), (H) and I ′i(ui) = Di(ui), Fi(·,u) and Gi(·,u) possess the property

Fi
(·, vi, [v]ai , [u]bi

) ≤ Fi
(·, ui, [u]ai , [v]bi

)

Gi

(·, vi, [v]ci , [u]di
) ≤ Gi

(·, ui, [u]ci , [v]di
)

, whenever û ≤ v ≤ u ≤ ũ.
(2.12)
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Moreover, (2.6) is equivalent to

(Di(ui))−1
∂wi

∂t
− Liwi = Fi

(·, ui, [u]ai , [u]bi
)

in Q,

Biwi = Gi

(·, ui, [u]ci , [u]di
)

on S,

wi(0, x) = ηi(x) in Ω,

ui = qi(wi), i = 1, . . . ,N, in Ω.

(2.13)

Thus the pair (ũ, w̃) and (û, ŵ), where w̃i = Ii(ũi) and ŵi = Ii(ûi), satisfies the inequalities

(Di(ũi))
−1 ∂w̃i

∂t
− Liw̃i ≥ Fi

(·, ũi, [ũ]ai , [û]bi
)

in Q,

(Di(ûi))
−1 ∂ŵi

∂t
− Liŵi ≤ Fi

(·, ûi, [ũ]ai , [û]bi
)

in Q,

Biw̃i ≥ Gi

(·, ũi, [ũ]ci , [û]di
)

on S,

Biŵi ≤ Gi

(·, ûi, [û]ci , [ũ]di
)

on S,

w̃i(0, x) ≥ ηi(x) ŵi(0, x) ≤ ηi(x) in Ω,

(2.14)

are referred to coupled upper and lower solutions of (2.13).
The property (2.12) is quite useful for the construction of monotone convergent

sequences. To ensure the existence of the sequence to be constructed in the iteration process
(2.16) below we assume that either Di(0) > 0 or Di(0) = 0 for ûi ≥ δi > 0. Define a modified
function Di(ui) by

Di(ui) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Di(ui) + (ui − ũi) if ui > ũi,

Di(ui) if ûi ≤ ui ≤ ũi,

Di(ui) + (ûi − ui) if ui < ûi.

(2.15)

Then by the above assumption, there exists d0 > 0 such that Di(u) ≥ d0 for all u ∈ R.
By using u(0) = û and u(0) = ũ as the initial iteration we can construct sequences

{u(m),w(m)} and {u(m),w(m)} from the nonlinear iteration process

(

Di

(

u
(m)
i

))−1 ∂w(m)
i

∂t
− Liw(m)

i = Fi
(

·, u(m−1)
i ,

[

u(m−1)]

ai
,
[

u(m−1)]
bi

)

in Q,

(

Di

(

u
(m)
i

))−1 ∂w(m)
i

∂t
− Liw(m)

i = Fi
(

·, u(m−1)
i ,

[

u(m−1)]
ai
,
[

u(m−1)]

bi

)

in Q,

Biw
(m)
i = Gi

(

·, u(m−1)
i ,

[

u(m−1)]

ci
,
[

u(m−1)]
di

)

on S,

Biw
(m)
i = Gi

(

·, u(m−1)
i ,

[

u(m−1)]
ci
,
[

u(m−1)]

di

)

on S,

w
(m)
i (0, x) = ηi(x), w

(m)
i (0, x) = ηi(x) in Ω.

(2.16)
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The sequences {u(m),w(m)} and {u(m),w(m)} are well defined by the existence theorem of [1].
The following lemma gives the monotone property of these sequences.

Lemma 2.2. The sequences {u(m),w(m)}, {u(m),w(m)} governed by (2.16) possess the monotone
property

(û, ŵ) ≤
(

u(m),w(m)
)

≤
(

u(m+1),w(m+1)
)

≤
(

u(m+1),w(m+1)
)

≤
(

u(m),w(m)
)

≤ (ũ, w̃) for m = 1, 2, . . . .
(2.17)

Moreover, for eachm = 1, 2, . . . , u(m) and u(m) are coupled upper and lower solutions of (1.1).

Proof. Let z(1)i = w(1)
i −w(0)

i , i = 1, . . . ,N. Then by (2.14) and (2.16), z(1)i satisfies

(

Di

(

u
(1)
i

))−1 ∂z(1)i
∂t

− Liz(1)i = Fi
(

·, u(0)i ,
[

u(0)
]

ai
,
[

u(0)
]

bi

)

−
[

(

Di

(

u
(1)
i

))−1 ∂w(0)
i

∂t
− Liw(0)

i

]

= Fi
(

·, u(0)i ,
[

u(0)
]

ai
,
[

u(0)
]

bi

)

−
[

(

Di

(

u
(0)
i

))−1 ∂w
(0)
i

∂t − Liw(0)
i

]

−
[

(

Di

(

u
(1)
i

))−1 −
(

Di

(

u
(0)
i

))−1]∂w(0)
i

∂t

≥ −
[

(

Di

(

u
(1)
i

))−1 −
(

Di

(

u
(0)
i

))−1]∂w(0)
i

∂t
.

(2.18)

Since by the mean value theorem,

(

Di

(

u
(1)
i

))−1 −
(

Di

(

u
(0)
i

))−1
= −

⎡

⎢

⎣

D′
i

(

ξ(0)
)

(

Di

(

ξ(0)
)

)2

⎤

⎥

⎦

(

u
(1)
i − u(0)i

)

= −

⎡

⎢

⎣

D′
i

(

ξ(0)
)

(

Di

(

ξ(0)
)

)3

⎤

⎥

⎦

(

w
(1)
i −w(0)

i

)

,

(2.19)

for some intermediate value ξ(0) ≡ ξ(0)(t, x) between u(0)i and u(1)i , we have

(

Di

(

u
(1)
i

))−1 ∂z(1)i
∂t

− Liz(1)i + γ (0)z(1)i ≥ 0, (2.20)
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where

γ (0) = −

⎡

⎢

⎣

D′
i

(

ξ(0)
)

(

Di

(

ξ(0)
)

)3

⎤

⎥

⎦

∂w
(0)
i

∂t
. (2.21)

Since (2.14), the boundary and initial inequalities

Biz
(1)
i = Gi

(

·, u(0)i ,
[

u(0)
]

ci
,
[

u(0)
]

di

)

− Biŵi ≥ 0 on S,

z
(1)
i (0, x) = ηi(x) − ηi(x) = 0 in Ω.

(2.22)

In view of the definition ofDi in (2.15), the functionDi(u
(1)
i )γ (0) of (2.20) is bounded. From the

weak maximum principle, it follows z(1)i ≥ 0 onQ. This givesw(1)
i ≥ w(0)

i and thus u(1)i ≥ u(0)i .
A similar argument yields w(1)

i ≤ w(0)
i and u(1)i ≤ u(0)i .

Moreover, letting z
(1)
i = w

(1)
i − w

(1)
i , by (2.12), (2.16), and after the similar above

argument

(

Di

(

u
(1)
i

))−1 ∂z(1)i
∂t

− Liz(1)i + γ (0)i z
(1)
i = Fi

(

·, u(0)i ,
[

u(0)
]

ai
,
[

u(0)]

bi

)

−Fi
(

·, u(0)i ,
[

u(0)]

ai
,
[

u(0)
]

bi

)

≥ 0 in Q,

Biz
(1)
i = Gi

(

·, u(0)i ,
[

u(0)
]

ci
,
[

u(0)]

di

)

−Gi

(

·, u(0)i ,
[

u(0)]

ci
,
[

u(0)
]

di

)

≥ 0 on S,

z
(1)
i (0, x) = ηi(x) − ηi(x) = 0 in Ω,

(2.23)

where

γ
(0)
i = −

⎡

⎢

⎣

D′
i

(

ξ
(0)
i

)

(

Di

(

ξ
(0)
i

))3

⎤

⎥

⎦

∂w
(0)
i

∂t
, (2.24)

for some intermediate value ξ(0)i ≡ ξ
(0)
i (t, x) between u(0)i and u

(1)
i . It follows again from the

weak maximum principle that w(1) ≥ w(1) and thus u(1) ≥ u(1). The above conclusions show
that

(

u(0),w(0)
)

≤
(

u(1),w(1)
)

≤
(

u(1),w(1)
)

≤
(

u(0),w(0)
)

. (2.25)
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Now we show that u(1) and u(1) are coupled upper and lower solutions of (1.1). Since
(2.25), Di(u

(1)
i ) = Di(u

(1)
i ) for i = 1, . . . ,N. It suffices to show that u(1) and u(1) satisfy (2.14).

Since (2.12) and (2.16), we have

(

Di

(

u
(1)
i

))−1 ∂w(1)
i

∂t
− Liw(1)

i = Fi
(

·, u(0)i ,
[

u(0)
]

ai
,
[

u(0)]

bi

)

≥ Fi
(

·, u(1)i ,
[

u(1)
]

ai
,
[

u(1)]

bi

)

,

(

Di

(

u
(1)
i

))−1 ∂w(1)
i

∂t
− Liw(1)

i = Fi
(

·, u(0)i ,
[

u(0)]

ai
,
[

u(0)
]

bi

)

≤ Fi
(

·, u(1)i ,
[

u(1)]

ai
,
[

u(1)
]

bi

)

,

Biu
(1)
i = Gi

(

·, u(0)i ,
[

u(0)
]

ci
,
[

u(0)]

di

)

≥ Gi

(

·, u(1)i ,
[

u(1)
]

ci
,
[

u(1)]

di

)

,

Biu
(1)
i = Gi

(

·, u(0)i ,
[

u(0)]

ci
,
[

u(0)
]

di

)

≤ Gi

(

·, u(1)i ,
[

u(1)]

ci
,
[

u(1)
]

di

)

,

u
(1)
i (0, x) = ηi(x) u

(1)
i (0, x) = ηi(x).

(2.26)

Next we use an induction method. We assume that u(m) and u(m) are coupled upper
and lower solutions of (1.1) and satisfying the following relation:

(û, ŵ) ≤ (u(m),w(m)) ≤
(

u(m),w(m)
)

≤ (ũ, w̃). (2.27)

Then by choosing u(m) and u(m) as the coupled upper and lower solutions ũ and û, after the
similar above argument, we have

(

u(m),w(m)
)

≤
(

u(m+1),w(m+1)
)

≤
(

u(m+1),w(m+1)
)

≤
(

u(m),w(m)
)

, (2.28)

u(m+1) and u(m+1) are coupled upper and lower solutions of (1.1). The conclusion of the lemma
follows from the induction principle.

Theorem 2.3. Let ũ, û be a pair of coupled upper and lower solutions of (1.1), and let hypothesis (H)
hold. Assume that either Di(0) > 0 for some i or ûi ≥ δi > 0. Then the problem (1.1) has at least one
solution u ∈ Λ.

Proof. We first consider the problem (2.13), where Di is replaced by Di. For each i = 1, . . . ,N,
we define operators Li : Di × Di → Ri and L : D × D → R by

Li(ui,wi) =
(

Di(ui)
)−1 ∂wi

∂t
− Liwi (i = 1, . . . ,N),

L(u,w) = (L1(u1, w1), . . . ,LN(uN,wN)),
(2.29)

where

Di =
{

ui ∈ C1+α/2,2+α(Q); ui(0, x) = ψi(x) in Ω
}

,

Ri =
{

ui ∈ Cα/2,α(Q)
}

,

D = D1 × . . . × DN, R = R1 × . . . × RN.

(2.30)
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Define also

F(u) =
(

F1
(·, u1, [u]ai , [u]bi

)

, . . . , FN
(·, uN, [u]ai , [u]bi

))

. (2.31)

Then the system (2.13), in which Di is replaced by Di, may be written in the form

L(u,w) = F(u), B(w) = G(u),
(

(u,w) ∈ D × D
)

, (2.32)

where B = (B1, . . . , BN) and G = (G1, . . . , GN) are given in (2.11). Given any v ∈ Λ and any
i = 1, . . . ,N, we consider the scalar problem

Li(ui,wi) = Fi(v) in Q, Biwi = Gi(v) on S, ui(0, x) = ψi(x) in Ω. (2.33)

It follows from the existence theorem of [1] (Chapter V, Section 7) that (2.33) has a unique
solution (u∗i , w

∗
i ) ∈ Di × Di. In fact, the inverse L−1

i : Ri → Di × Di exists and is a positive
compact operator on Ri. This implies that the equation

L(u,w) = F(v) B(w) = G(v), (2.34)

has a unique solution (u,w) = L−1[F(v)],w = B−1G(v). Let χ be the closed bounded convex
sunset given by

χ =
{

(u,w) ∈ R × R : û ≤ u ≤ ũ, ŵ ≤ w ≤ w̃
}

. (2.35)

By the compact property on L−1 and the hypothesis on f the operator L−1F is compact on χ.
We show that L−1F maps χ to itself.

Let (v, z) ∈ χ be given, and (u,w) = L−1[F(v)]. After the similar argument of the
proof of Lemma 2.2, we conclude û ≤ u ≤ ũ, therefore L−1F maps χ to itself. It follows
from the Schauder fixed point theorem that (2.13) with Di being replaced by Di has at least
one solution u ∈ χ. Since û ≤ u ≤ ũ, it follows from (2.15) that Di(ui) = Di(ui) for i =
1, . . . ,N. Thus u is also the solution of (2.13). Therefore the existence of the solution to (1.1)
is proved.
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3. Applications

As an application of the results obtained in the previous section we consider a Lotka-Volterra
predator model. This model involves two species u1 and u2 that are governed by the system

∂u1
∂t

− ∇ · (D1(u1)∇u1) = u1(a1 − b11u1 − b12u2) (t > 0, x ∈ Ω)

∂u2
∂t

− ∇ · (D2(u2)∇u2) = u2(a2 + b21u1 − b22u2) (t > 0, x ∈ Ω),

∂u1
∂ν

+ β1u1 = 0,
∂u2
∂ν

+ β2u2 = 0 (t > 0, x ∈ ∂Ω),

ui(0, x) = ψi(x) i = 1, 2, (x ∈ Ω),

(3.1)

where ai, bij are positive constants βi ≡ βi(x) ≥ 0 ∈ ∂Ω, the initial functions ψi(x) for i = 1, 2
have a positive lower bound. The density-dependent diffusion coefficientsD1(0) = D2(0) = 0.

It is easy to verify that if (ũ1, ũ2) and (û1, û2) satisfy (ũ1, ũ2) ≥ (û1, û2) and the following
inequalities:

∂ũ1
∂t

− ∇ · (D1(ũ1)∇ũ1) ≥ ũ1(a1 − b11ũ1 − b12û2),

∂ũ2
∂t

− ∇ · (D2(ũ2)∇ũ2) ≥ ũ2(a2 + b21ũ1 − b22ũ2),

∂û1
∂t

− ∇ · (D1(û1)∇û1) ≤ û1(a1 − b11û1 − b12ũ2),

∂û2
∂t

− ∇ · (D2(û2)∇û2) ≤ û2(a2 + b21û1 − b22û2),

∂ũ1
∂ν

+ β1ũ1 ≥ 0,
∂ũ2
∂ν

+ β2ũ2 ≥ 0,

∂û1
∂ν

+ β1û1 ≤ 0,
∂û2
∂ν

+ β2û2 ≤ 0,

ûi(0, x) ≤ ψi(x) ≤ ũi(0, x), i = 1, 2,

(3.2)

then the pair (ũ1, ũ2), (û1, û2) are coupled upper and lower solutions of (3.1).
To guarantee (3.2), we seek such a pair in the form

(ũ1, ũ2) = (M1,M2), (û1, û2) =
(

q1
(

δ1φ1
)

, q2
(

δ2φ2
))

, (3.3)

where for each i = 1, 2, Mi and δi are positive constants to be chosen, qi is the inverse of (2.3),
and φi is the (normalized) positive eigenfunction corresponding to the smallest eigenvalue
of the eigenvalue problem

∇2φi + λiφ = 0 in Ω,
∂φi
∂ν

+ γiφi = 0 on ∂Ω (i = 1, 2). (3.4)
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The constant γi > 0 will be determined in the following discussion. If we set

M1 =
a1
b11

M2 =
(a2 + b21M1)

b22
, (3.5)

then the first and second inequalities of (3.2) are satisfied. The third and fourth inequalities
become

−∇2(δ1φ1
) ≤ q1

(

δ1φ1
)(

a1 − b11q1
(

δ1φ1
) − b12M2

)

,

−∇2(δ2φ2
) ≤ q2

(

δ2φ2
)(

a2 + b21q1
(

δ1φ1
) − b22q2

(

δ2φ2
))

.
(3.6)

By (3.4) and qi(δiφi) > 0, the above inequalities are satisfied by some sufficiently small δi > 0
if

λ1 <

(

q1
(

δ1φ1
)

δ1φ1

)

(a1 − b12M2) ,

λ2 <

(

q2
(

δ2φ2
)

δ2φ2

)

a2.

(3.7)

Since Di(0) = 0, by L’Hopital’s rule,

lim
w→ 0+

[

qi(w)
w

]

= lim
w→ 0+

q′i(w) = lim
z→ 0+

1
Di(z)

= ∞, (3.8)

we see that there exists δ∗i > 0 such that the inequalities in (3.7) are satisfied by every δi ≤ δ∗i
if we impose the condition

M2 <
a1
b12

. (3.9)

By (3.3), the fifth inequalities of (3.2) are trivially satisfied, and the sixth inequalities of (3.2)
become

D1
(

q1
(

δ1φ1
))

∂q1

(

δ1φ1
)

∂ν
+ β1D1

(

q1
(

δ1φ1
))

q1
(

δ1φ1
) ≤ 0,

D2
(

q2
(

δ2φ2
))

∂q2

(

δ2φ2
)

∂ν
+ β2D2

(

q2
(

δ2φ2
))

q2
(

δ2φ2
) ≤ 0,

(3.10)

Substituting (3.4) into (3.10) yields

−γ1
(

δ1φ1
) ≤ −β1D1

(

q1
(

δ1φ1
))

q1
(

δ1φ1
)

,

−γ2
(

δ2φ2
) ≤ −β2D2

(

q2
(

δ2φ2
))

q2
(

δ2φ2
)

,
(3.11)
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It is obvious that the above relations hold for any γi ≥ 0 if βi(x) ≡ 0. In the general case
βi(x)/≡ 0 the relations δ1φ1 = I1(û1) and δ2φ2 = I2(û2), where Ii is defined in (2.3), implies that
(3.11) is satisfied if

γ1 ≥
β1û1D1(û1)
I1(û1)

, γ2 ≥
β2û2D2(û2)
I2(û2)

. (3.12)

Since I ′i(z) = Di(z),

lim
z→ 0+

[

zDi(z)
Ii(z)

]

= lim
z→ 0+

[

Di(z) + zD′
i(z)

Di(z)

]

= 1 + lim
z→ 0+

[

zD′
i(z)

Di(z)

]

. (3.13)

If we impose the condition

lim
z→ 0+

zD′
i(z)

Di(z)
= ρi, (3.14)

then by setting

γi > βi
(

1 + ρi
)

, (3.15)

(3.12) is satisfied. If the below (3.16) holds, then (3.5) and (3.9) are satisfied. Thus all
inequalities of (3.2) are satisfied. Directly applying Theorem 2.3, we have the following
theorem.

Theorem 3.1. Suppose the initial functions ψi(x) ≤Mi in (2.8) for i = 1, 2. Let

a1
a2

>
b11b12

b11b22 − b12b21
, (3.16)

and let βi(x) ≥ 0 and D1(u1), D2(u2) satisfy (H)-(ii) with D1(0) = D2(0) = 0. Assume that either
βi(x) ≡ 0 or

lim
z→ 0+

[

zD′
i(z)

Di(z)

]

= ρi, i = 1, 2, (3.17)

for some constants ρi. Then the system (3.1) admits at least one positive solution.

Remark 3.2. Pao and Ruan [5] have considered a Lotka-Volterra competition model with
density-dependent diffusion, where the coefficient b21 of the system (3.1) is negative. The
difference between them is that our method does not require that the reaction functions
possess the monotone nondecreasing property. The condition for the existence for the
solutions of the competition model is b12/b22 < a1/a2 < b11/b21, while the condition for
the existence for the solutions of the predator model is a1/a2 > b11b12/(b11b22 − b12b21) .
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Remark 3.3. In a special case D1(u1) = (m − 1)um−1
1 , D2(u2) = (m − 1)um−1

2 for m > 1, (3.1)
becomes

∂u1
∂t

− ∇2um1 = u1(a1 − b11u1 − b12u2) (t > 0, x ∈ Ω),

∂u2
∂t

− ∇2um2 = v(a2 + b21u1 − b22u2) (t > 0, x ∈ Ω),

∂u1
∂ν

+ β1u1 = 0,
∂u2
∂ν

+ β2u2 = 0 (t > 0, x ∈ ∂Ω).

(3.18)

Then the condition (3.17) is trivially satisfied. The conclusions in Theorem 3.1 hold true
for (3.18). In fact, if D1(u1) = D2(u2) = d, the condition (3.17) is also trivial true,
hence Theorem 2.3 is also valid. After the similar proof as Theorem 3.1, we conclude that
Theorem 3.1 holds true for semilinear parabolic system.

4. Discussions

The intension of the present paper is to demonstrate the existence of solutions for the
degenerate diffusion reaction system with nonlinear boundary condition. Our method is to
look for the positive solution by constructing the coupled upper and lower solutions. The
virtue of the technique is that it helps to extend the results for the scalar equation to the
coupled system. Our existence theorem of Theorem 2.3 in this paper is applicable to various
Lotka-Volterra models, such as competition, predator-prey, or mutualism model, while the
method in [6] is not applicable to predator-prey model.

Since Levin and Segel illuminated the important role of the diffusion on the patterns in
[7], a number of Lotka-Volterra models with constant diffusion have been investigated in the
past three decades. In fact the concern of the density-dependent diffusion is also reasonable
in animal disperse model (see [8] for a review). Our study is a starting attempt to consider
the role of the density-dependent diffusion on Lotka-Volterra model. In biological terms, the
results of Theorems 3.1 imply that if the rate of intraspecific competition of the predator is
large, the two species are coexistent. The results also have applicability to 3 species model.
Note that for Lotka-Volterra predator-prey model with constant diffusion, when the rate
of intraspecific competition of the prey is large, the two species are both extinct. When the
density-dependent diffusion is taken into account, it is an open problem whether there exist
the extinct phenomena.
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