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This paper is concerned with the existence of integral solutions for nondensely defined fractional
functional differential equations with impulse effects. Some errors in the existing paper concerned
with nondensely defined fractional differential equations are pointed out, and correct formula of
integral solutions is established by using integrated semigroup and some probability densities.
Sufficient conditions for the existence are obtained by applying the Banach contraction mapping
principle. An example is also given to illustrate our results.

1. Introduction

The aim in this paper is to study the existence of the integral solutions for the fractional
semilinear differential equations of the form

Dqy(t) = Ay(t) + f
(
t, yt
)
, t ∈ J := [0, b], t /= tk, k = 1, . . . , m,

Δy
∣∣
t=tk

= Ik
(
y
(
t−k
))
, k = 1, . . . , m,

y(t) = φ(t), t ∈ [−τ, 0],

(1.1)

where 0 < q < 1, Dq is the Caputo fractional derivative. f : J × D → E is a given function,
D = {ψ : [−τ, 0] → E, ψ is continuous everywhere except for a finite number of points s at
which ψ(s−), ψ(s+) exist and ψ(s−) = ψ(s)}, and E is a real Banach space with the norm | · |.
Denoting the domain of A by D(A), A : D(A) ⊂ E → E is nondensely closed linear operator
on E, φ ∈ D. Ik : E → E, 0 = t0 < t1 < · · · < tm < tm+1 = b, y(t+

k
) and y(t−

k
) represent the right
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and left limits at tk of y(t) as usual; we assume y(t−k) = y(tk).Δy|t=tk = y(t+k)−y(t−k) represents
the jump in the state y at time tk. Moreover, for any t ∈ J , the histories yt belong to D defined
by yt(ς) = y(t + ς), ς ∈ [−τ, 0].

In the past decades, the theory of fractional differential equations has become an
important area of investigation because of its wide applicability in many branches of physics,
economics, and technical sciences [1–10]. In recent years, many authors were devoted to mild
solutions to fractional evolution equations, and there have been a lot of interesting works. For
instance, in [11], El-Borai discussed the following equation in Banach space X:

Dqu(t) = Au(t) + B(t)u(t),

u(0) = u0,
(1.2)

where A generates an analytic semigroup, and the solution was given in terms of some
probability densities. In [12], Zhou and Jiao concerned the existence and uniqueness of mild
solutions for fractional evolution equations by some fixed point theorems. Cao et al. [13]
studied the α-mild solutions for a class of fractional evolution equations and optimal controls
in fractional powder space. For more information on this subject, the readers may refer to
[14–16] and the references therein.

Research on integer order differential evolution equations including a nondensely
defined operator was initialed by Da Prato and Sinestrari [17] and has been extensively
investigated by many authors [18–25]. The main methods used in their work are based on
integrated semigroup theory. Recently, existence results for integral solutions of nondensely
defined fractional evolution equations were established in some papers [9, 26]. But there are
some errors in transforming integral solution into an available form. For example, definition
of integral solution [9] is given by

x(t) = S(t)
(
x0 − g(x)

)
+ lim
λ→∞

1
Γ
(
q
)
∫ t

0
(t − s)q−1S(t − s)B(λ,A)f(s, x(s))ds, t ≥ 0. (1.3)

HereD(A) ⊂ E andD(A)/=E. B(λ,A) := λ(λI −A)−1 will be introduced in next section. If we
let f take values in D(A), then (1.3) becomes

x(t) = S(t)
(
x0 − g(x)

)
+

1
Γ
(
q
)
∫ t

0
(t − s)q−1S(t − s)f(s, x(s))ds. (1.4)

According to [19], integral solution should be mild solution in this case. But as pointed in
[14], (1.4) is not the mild solution.

Motivated by these papers and the fact that impulse effects exist widely in the realistic
situations, we give the definition of integral solution and prove the existence results for
impulsive semilinear fractional differential equations with nondensely defined operators.
The rest of the paper will be organized as follows. In Section 2, we will recall some basic
definitions and preliminary facts from integrated semigroups and fractional derivation and
integration which would be used later. Section 3 is devoted to the existence of integral
solutions of problem (1.1). We present an example to illustrate our results in Section 4. At
last, we end the paper with a conclusion.
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2. Preliminaries

In this section, we introduce notations, definitions, and preliminary results which would be
used in the rest of the paper.

We denote by C([0, b];E) the Banach space of all continuous functions from [0, b] into
E with the norm

‖x‖∞ = sup
{∣∣y(t)

∣
∣ : t ∈ [0, b]

}
. (2.1)

For φ ∈ D the norm of φ is defined by

∥
∥φ
∥
∥
D = sup

{∣∣φ(ς)
∣
∣ : ς ∈ [−τ, 0]}. (2.2)

B(E) denotes the Banach space of bounded linear operators from E into E, with the norm

‖N‖ = sup
{∣∣N

(
y
)∣∣ :
∣∣y
∣∣ = 1

}
, (2.3)

where N ∈ B(E) and y ∈ E. Let Lp([0, b];E) be the space of E-valued Bochner function on
[0, b]with the norm

‖x‖Lp =
(∫b

0

∣∣y(s)
∣∣pds

)1/p

, 1 ≤ p <∞. (2.4)

In order to define an integral solution of problem (1.1), we will introduce the set of functions

PC =
{
y : J −→ D(A), is continuous except for t = tk, k = 1, 2, . . . , m,

there exist y
(
t−k
)
and y

(
t+k
)
such that y

(
t−k
)
= y(tk)

}
.

(2.5)

Endowed with the norm ‖y‖PC = supt∈J |y(t)|, (PC, ‖ · ‖PC) is a Banach space.
Seting

Ω =
{
y : [−τ, b] −→ D(A) : y ∈ D ∩ PC

}
, (2.6)

then Ω is a Banach space with the norm
∥∥y
∥∥
Ω = max

{∥∥y
∥∥
D,
∥∥y
∥∥
PC

}
. (2.7)

Definition 2.1 (see [27]). Letting E be a Banach space, an integrated semigroup is a family of
operators (S(t))t≥0 of bounded linear operators S(t) on E with the following properties:

(i) S(0) = 0;

(ii) t → S(t) is strongly continuous;

(iii) S(s)S(t) =
∫s
0 (S(t + r) − S(r))dr for all t, s ≥ 0.
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Definition 2.2 (see [28]). An operator A is called a generator of an integrated semigroup,
if there exists ω ∈ R such that (ω,+∞) ⊂ ρ(A), and there exists a strongly continuous
exponentially bounded family (S(t))t≥0 of linear bounded operators such that S(0) = 0 and
(λI −A)−1 = λ

∫∞
0 e−λtS(t)dt for all λ > ω.

Proposition 2.3 (see [27]). LetA be the generator of an integrated semigroup (S(t))t≥0. Then for all
x ∈ E and t ≥ 0,

∫ t

0
S(s)xds ∈ D(A), S(t)x = A

∫ t

0
S(s)xds + tx. (2.8)

Definition 2.4 (see [29]). We say that a linear operatorA satisfies the Hille-Yosida condition if
there existsM ≥ 0 and ω ∈ R such that (ω,+∞) ⊂ ρ(A) and

sup
{
(λ −ω)n∥∥(λI −A)−n

∥
∥, n ∈ N, λ > ω

} ≤M. (2.9)

Here and hereafter, we assume that A satisfies the Hille-Yosida condition. Let us
introduce the part A0 of A in D(A) : A0 = A on D(A0) = {x ∈ D(A);Ax ∈ D(A)}.
Let (S(t))t≥0 be the integrated semigroup generated by A. We note that (S′(t))t≥0 is a C0-
semigroup on D(A) generated by A0 and ‖S′(t)‖ ≤ Meωt, t ≥ 0, where M and ω are the
constants considered in the Hille-Yosida condition [28, 30].

Let B(λ,A) := λ(λI −A)−1; then for all x ∈ D(A), B(λ,A)x → x as λ → ∞. Also from
the Hille-Yosida condition it is easy to see that limλ→∞|B(λ,A)x| ≤M|x|.

For more properties on integral semigroup theory the interested reader may refer to
[18, 30].

Definition 2.5 (see [3]). The Riemann-Liouville fractional integral of order q ∈ R+ of a function
h : (0, b] → E is defined by

I
q

0h(t) =
1

Γ
(
q
)
∫ t

0
(t − s)q−1h(s)ds, (2.10)

provided the right-hand side is pointwise defined on (0, b] and where Γ is the gamma
function.

Remark 2.6. According to [10], Iq0 I
β

0 = Iq+β0 holds for all q, β ≥ 0.

Definition 2.7 (see [3]). The Caputo fractional derivative of order 0 < q < 1 of a function
f ∈ C1([0,∞), E) is defined by

Dqf(t) =
1

Γ
(
1 − q)

∫ t

0
(t − s)−qf ′(s)ds, t > 0. (2.11)

3. Main Results

In this section we will establish the existence and uniqueness of integral solution for problem
(1.1).
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Definition 3.1. A function y ∈ Ω is said to be an integral solutions of (1.1) if

(i)
∫ t
tk
(t − s)q−1y(s)ds ∈ D(A) for t ∈ (tk, tk+1], k = 0, 1, . . . , m,

(ii) y(t) = φ(t), t ∈ [−τ, 0],
(iii)

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(0) +
1

Γ
(
q
)A
∫ t

0
(t − s)q−1y(s)ds + 1

Γ
(
q
)
∫ t

0
(t − s)q−1f(s, ys

)
ds, t ∈ (0, t1],

y
(
t−1
)
+ I1
(
y
(
t−1
))

+
1

Γ
(
q
)A
∫ t

t1

(t − s)q−1y(s)ds

+
1

Γ
(
q
)
∫ t

t1

(t − s)q−1f(s, ys
)
ds, t ∈ (t1, t2],

...

y(t−m) + Im
(
y(t−m)

)
+

1
Γ
(
q
)A
∫ t

tm

(t − s)q−1y(s)ds

+
1

Γ
(
q
)
∫ t

tm

(t − s)q−1f(s, ys
)
ds, t ∈ (tm, b].

(3.1)

Lemma 3.2. If y is an integral solution of (1.1), then for all t ∈ [0, b], y(t) ∈ D(A). In particular,
φ(0), y(t−1 ) + I1(y(t

−
1 )),. . .,y(t

−
m) + I1(y(t

−
m)) belong to D(A).

Proof. Using Remark 2.6, for each t ∈ (tk, tk+1], I1tky(t) = I
1−q
tk

I
q
tk
y(t) ∈ D(A) since Iqtky(t) ∈

D(A). Consequently, for h > 0 such that t + h ∈ (tk, tk+1], (1/h)
∫ t+h
t y(s)ds ∈ D(A) because

I1tky(t) =
∫ t
tk
y(s)ds ∈ D(A). Hence, we deduce that y(t) = limh→ 0(1/h)

∫ t+h
t y(s)ds ∈ D(A).

The proof is completed.

Lemma 3.3 (see [31]). Let Ψq(θ) = (1/π)
∑∞

n=1(−1)n−1θ−qn−1(Γ(nq + 1)/n!) sin(nπq), θ ∈ R+;
then Ψq(θ) is a one-sided stable probability density function, and its Laplace transform is given by

∫∞

0
e−pθΨq(θ)dθ = e−p

q

, q ∈ (0, 1), p > 0. (3.2)

Lemma 3.4. For t ∈ (0, b], the integral solution in Definition 3.1 is given by

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t)φ(0) + lim
λ→∞

∫ t

0
(t − s)q−1T(t − s)B(λ,A)f

(
s, ys

)
ds, t ∈ (0, t1],

S(t − t1)
(
y
(
t−1
)
+ I1
(
y
(
t−1
)))

+ lim
λ→∞

∫ t

t1

(t − s)q−1T(t − s)B(λ,A)f
(
s, ys

)
ds, t ∈ (t1, t2],

...

S(t − tm)
(
y(t−m) + Im

(
y(t−m)

))

+ lim
λ→∞

∫ t

tm

(t − s)q−1T(t − s)B(λ,A)f
(
s, ys

)
ds, t ∈ (tm, b],

(3.3)
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where

S(t) =
∫∞

0
hq(θ)S′(tqθ)dθ, T(t) = q

∫∞

0
θhq(θ)S′(tqθ)dθ, (3.4)

where hq(θ) = (1/q)θ−1−1/qΨq(θ−1/q) is the probability density function defined on R+.

Proof. From the definition, for t ∈ (0, t1] we have

y(t) = φ(0) +
1

Γ
(
q
)A
∫ t

0
(t − s)q−1y(s)ds + 1

Γ
(
q
)
∫ t

0
(t − s)q−1f(s, ys

)
ds, t ∈ [0, b]. (3.5)

Consider the Laplace transform

v
(
p
)
=
∫∞

0
e−ptB(λ,A)y(t)dt, w

(
p
)
=
∫∞

0
e−ptB(λ,A)f

(
t, yt
)
dt, p > 0. (3.6)

Note that for each 0 < t ≤ t1, Bλy(t), B(λ,A)f(t, yt) ∈ D(A), then we have v(p), w(p) ∈ D(A).
Applying (3.6) to (3.5) yields

v
(
p
)
=

1
p
B(λ,A)φ(0) +

1
pq
Av
(
p
)
+

1
pq
w
(
p
)

= pq−1
(
pqI −A)−1B(λ,A)φ(0) +

(
pqI −A)−1w(p)

= pq−1
∫∞

0
e−p

qsS′(s)B(λ,A)φ(0)ds +
∫∞

0
e−p

qsS′(s)w
(
p
)
ds,

(3.7)

where I is the identity operator defined on E.
From (3.2), we get

pq−1
∫∞

0
e−p

qsS′(s)B(λ,A)φ(0)ds

=
∫∞

0
pq−1e−(pt)

q

S′(tq)B(λ,A)φ(0)qtq−1dt

=
∫∞

0
−1
p

d

dt

(
e−(pt)

q
)
S′(tq)B(λ,A)φ(0)dt

=
∫∫∞

0

(
θΨq(θ)e−ptθS′(tq)B(λ,A)φ(0)

)
dθ dt

=
∫∫∞

0

(
Ψq(θ)e−psS′

((
s

θ

)q)
B(λ,A)φ(0)

)
dθ ds

=
∫∞

0
e−pt
(∫∞

0
Ψq(θ)S′

((
t

θ

)q)
B(λ,A)φ(0)dθ

)
dt,
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∫∞

0
e−p

qsS′(s)w
(
p
)
ds

=
∫∫∞

0
e−p

qse−ptS′(s)B(λ,A)f
(
t, yt
)
dt ds

=
∫∫∞

0
qsq−1e−(ps)

q

e−ptS′(sq)B(λ,A)f
(
t, yt
)
dt ds

=
∫∫∫∞

0
qΨq(θ)e−psθe−ptS′(sq)B(λ,A)f

(
t, yt
)
dθ dt ds

=
∫∫∫∞

0
qΨq(θ)e−p(s+t)

sq−1

θq
S′
((

s

θ

)q)
B(λ,A)f

(
t, yt
)
dθ dt ds

=
∫∞

0
e−psq

∫s

0

∫∞

0
Ψq(θ)

(s − t)q−1
θq

S′
(
(s − t)q
θq

)
B(λ,A)f

(
t, yt
)
dθ dt ds

=
∫∞

0
e−ptq

∫ t

0

∫∞

0
Ψq(θ)

(t − s)q−1
θq

S′
(
(t − s)q
θq

)
B(λ,A)f

(
s, ys

)
dθ dsdt.

(3.8)

According to (3.7) and (3.8), we have

v
(
p
)
=
∫∞

0
e−pt
(∫∞

0
Ψq(θ)S′

((
t

θ

)q)
B(λ,A)φ(0)dθ

)
dt

+
∫∞

0
e−ptq

∫ t

0

∫∞

0
Ψq(θ)

(t − s)q−1
θq

S′
(
(t − s)q
θq

)
B(λ,A)f

(
s, ys

)
dθ dsdt.

(3.9)

Inverting the last Laplace transform, we obtain

B(λ,A)y(t) =
∫∞

0
Ψq(θ)S′

((
t

θ

)q)
B(λ,A)φ(0)dθ

+ q
∫ t

0

∫∞

0
Ψq(θ)

(t − s)q−1
θq

S′
(
(t − s)q
θq

)
B(λ,A)f

(
s, ys

)
dθ ds

=
∫∞

0
hq(θ)S′(tqθ)B(λ,A)φ(0)dθ

+ q
∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ)B(λ,A)f

(
s, ys

)
dθ ds.

(3.10)
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In view of limλ→∞B(λ,A)x = x for x ∈ D(A) and Lemma 3.2, we have

y(t) =
∫∞

0
hq(θ)S′(tqθ)φ(0)dθ + lim

λ→∞
q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ)B(λ,A)

× f(s, ys
)
dθ ds

= S(t)φ(0) + lim
λ→∞

∫ t

0
(t − s)q−1T(t − s)B(λ,A)f

(
s, ys

)
ds.

(3.11)

For t ∈ (tk, tk+1], k = 1, 2, . . . , m, we can prove the results by the similar methods used
previously. The proof is completed.

Remark 3.5. According to [31], one can easily check that

∫∞

0
θhq(θ)dθ =

∫∞

0

1
θq

Ψq(θ)dθ =
1

Γ
(
1 + q

) . (3.12)

We are now in a position to state and prove our main results for the existence and
uniqueness of solutions of problem (1.1).

Let us list the following hypotheses.

(H1) A satisfies the Hille-Yosida condition, and assume that M := sup{‖S′(t)‖ : t ∈
[0,+∞]} <∞.

(H2) For u ∈ D, f(·, u) : [0, b] → E is strongly measurable.

(H3) There exists a constant q1 ∈ (0, q) and l ∈ L1/q1 ([0, b];R+) such that

∣∣f(t, u)
∣∣ ≤ l(t), a.e. t ∈ J, and each u ∈ D. (3.13)

(H4) There exists ρ > 0 such that

|Ik(u) − Ik(v)| ≤ ρ|u − v| ∀u, v ∈ E, k = 1, . . . , m. (3.14)

(H5) There exists a constant κ such that

∣∣f(t, u) − f(t, v)∣∣ ≤ κ‖u − v‖D, for t ∈ J and every u, v ∈ D. (3.15)

Theorem 3.6. Assuming that hypotheses (H1)–(H5) hold, then problem (1.1) has a unique integral
solution y ∈ Ω provided thatM(1 + ρ) + (MMκbq/Γ(1 + q)) < 1.

Proof. Define Q : Ω → Ω by

(
Qy
)
(t) = φ(t), t ∈ [−τ, 0], (3.16)
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and for t ∈ J ,

(
Qy
)
(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t)φ(0) + lim
λ→∞

∫ t

0
(t − s)q−1T(t − s) × B(λ,A)f

(
s, ys

)
ds, t ∈ (0, t1],

S(t − t1)
(
y
(
t−1
)
+ I1
(
y
(
t−1
)))

+ lim
λ→∞

∫ t

t1

(t − s)q−1T(t − s)B(λ,A)f
(
s, ys

)
ds, t ∈ (t1, t2],

...
S(t − tm)

(
y(t−m) + Im

(
y(t−m)

))

+ lim
λ→∞

∫ t

tm

(t − s)q−1T(t − s)B(λ,A)f
(
s, ys

)
ds, t ∈ (tm, b].

(3.17)

Firstly we check that Q is well defined on Ω.
For each y ∈ Ω, take t ∈ (0, t1]. It is obvious that S(t)φ(0) is well defined. Direct

calculation shows that (t − s)q−1 ∈ L(1/(1−q1))[0, t], for t ∈ [0, t1] and q1 ∈ (0, q). Let

a =
q − 1
1 − q1 ∈ (−1, 0), M1 = ‖l‖L1/q1 [0,b]. (3.18)

Then for t ∈ [0, t1], we have

∫ t

0

∣∣∣(t − s)q−1f(s, ys
)∣∣∣ds ≤

(∫ t

0
(t − s)((q−1)/(1−q1))ds

)1−q1
‖l‖L1/q1 [0,t]

≤ M1

(1 + a)1−q1
b(1+a)(1−q1).

(3.19)

From (H1), (3.12), (3.19), and the fact that ‖B(λ,A)‖ ≤M, we get

∫ t

0

∣
∣∣∣

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ)B(λ,A)f

(
s, ys

)
dθ

∣∣∣∣ds

≤MM

∫ t

0

∫∞

0
θhq(θ)

∣∣∣(t − s)q−1f(s, ys
)∣∣∣dθ ds

≤ MM0

Γ
(
1 + q

)
∫ t

0

∣∣∣(t − s)q−1f(s, ys
)∣∣∣ds

≤ MM0M1

Γ
(
1 + q

)
(1 + a)1−q1

b(1+a)(1−q1), for t ∈ [0, t1].

(3.20)

It means that | ∫∞0 θ(t − s)q−1hq(θ)S′((t − s)qθ)B(λ,A)f(s, ys)dθ| is Lebesgue integrable with
respect to s ∈ [0, t] for all t ∈ [0, t1]. Therefore

∫∞
0 θ(t−s)q−1hq(θ)S′((t−s)qθ)B(λ,A)f(s, ys)dθ

is Bochner integrable with respect to s ∈ [0, t] for all t ∈ [0, t1].
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From [19], we know limλ→∞
∫ t
0(t − s)q−1S′((t − s)qθ)B(λ,A)f(s, ys)ds exists; then

lim
λ→∞

∫ t

0
(t − s)q−1T(t − s)B(λ,A)f

(
s, ys

)
ds

= lim
λ→∞

q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ)B(λ,A)f

(
s, ys

)
dθ ds

= lim
λ→∞

q

∫∞

0
θhq(θ)

∫ t

0
(t − s)q−1S′((t − s)qθ)B(λ,A)f

(
s, ys

)
dsdθ

= q
∫∞

0
θhq(θ) lim

λ→∞

∫ t

0
(t − s)q−1S′((t − s)qθ)B(λ,A)f

(
s, ys

)
dsdθ

(3.21)

exists. Therefore we get (Qy)(·)which is well defined on [0, t1].
For t ∈ (tk, tk+1], k = 1, 2, . . . , m, similar discussion could obtain (Qy)(·) is well

defined. Hence, Q is well defined on Ω.
Secondly, we will prove operator Q is a contraction.
For t ∈ (0, t1] and y, z ∈ Ω, by the hypotheses and ‖B(λ,A)‖ ≤M, we get

∣∣(Qy
)
(t) − (Qz)(t)

∣∣

=

∣∣∣∣∣
lim
λ→∞

∫ t

0
(t − s)q−1T(t − s)B(λ,A)

(
f
(
s, ys

) − f(s, zs)
)
ds

∣∣∣∣∣

=

∣∣∣∣∣
lim
λ→∞

q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ)B(λ,A)

(
f
(
s, ys

) − f(s, zs)
)
dθ ds

∣∣∣∣∣

≤ MM

Γ
(
1 + q

)
∫ t

0
q(t − s)q−1∣∣f(s, ys

) − f(s, zs)
∣∣ds

≤ MMκ

Γ
(
1 + q

)
∫ t

0
q(t − s)q−1∥∥ys − zs

∥∥
Dds

≤ MMκbq

Γ
(
1 + q

)
∥∥y − z∥∥Ω.

(3.22)

Now take t ∈ (tk, tk+1], k = 1, 2, . . . , m and y, z ∈ Ω:

∣∣(Qy
)
(t) − (Qz)(t)

∣∣

≤ ∣∣S(t − tk)
[
y
(
t−k
)
+ Ik
(
y
(
t−k
)) − z(t−k

) − Ik
(
z
(
t−k
))]∣∣

+

∣∣∣∣∣
lim
λ→∞

∫ t

tk

(t − s)q−1T(t − s)B(λ,A)
(
f
(
s, ys

) − f(s, zs)
)
ds

∣∣∣∣∣
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≤M(1 + ρ)∥∥y − z∥∥Ω +
MMκbq

Γ
(
1 + q

)
∥
∥y − z∥∥Ω

≤
(

M
(
1 + ρ

)
+
MMκbq

Γ
(
1 + q

)

)
∥
∥y − z∥∥Ω.

(3.23)

In view ofM(1+ρ)+(MMκbq/Γ(1+q)) < 1, we have that the operatorQ is a contraction. By
the Banach contraction principle we have that Q has a unique fixed point y ∈ Ω, which gives
rise to a unique integral solution to the problem (1.1). The proof is finished.

Remark 3.7. For impulsive Caputo fractional differential equations, its integral solutions (or
mild solutions; see [14]) can be expressed only by using piecewise functions. Thus Definition
2.3 given in [15] is unsuitable.

4. An Example

As an application of our results we consider the following fractional differential equations of
the form

Dqu(t, z) =
∂2

∂z2
u(t, z) + F(t, ut(ς, z)), z ∈ [0, π], t ∈ [0, 1] \

{
1
2

}
,

u

(
1
2

+

, z

)
− u
(
1
2

−
, z

)
= ρu

(
1
2

−
, z

)
, z ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, 1],

u(ς, z) = φ(ς, z), ς ∈ [−1, 0], z ∈ [0, π].

(4.1)

Consider E = C([0, π];R) endowed with the supnorm and the operator A : D(A) ⊂
E → E defined by

D(A) =
{
u ∈ C2([0, π];R) : u(t, 0) = u(t, π) = 0

}
, Au =

∂2

∂z2
u(t, z). (4.2)

Now, we have D(A) = {u ∈ E : u(t, 0) = u(t, π) = 0}/=E. As we know from [17] that A
satisfies the Hille-Yosida condition with (0,+∞) ⊆ ρ(A) and λ > 0, |R(λ,A)| ≤ 1/λ. Hence,
operator A satisfies (H1) andM =M = 1/2.

Then the system (4.1) can be reformulated as

Dqy(t) = Ay(t) + f
(
t, yt
)
, t ∈ J := [0, b], t /=

1
2
,

Δy
∣∣
t=1/2 = I

(
y

(
1
2

−))
, k = 1, . . . , m,

y(t) = φ(t), t ∈ [−τ, 0],

(4.3)

where y(t)(z) = u(t, z), f(t, yt)(z) = F(t, ut(ς, z)), I(x) = ρx, φ(t)(z) = φ(t, z).
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If we take q = 1/3, ρ = 1/10, f(t, yt) = (1/(t + 1)(t + 2)) sinyt. We easily get that

∣
∣f(t, u) − t(t, v)∣∣ ≤ 1

3
‖u − v‖D, for t ∈ J and every u, v ∈ D. (4.4)

Then all conditions of Theorem 3.6 are satisfied and we deduce (4.1) has a unique integral
solution.

5. Conclusions

An essence error of the formula of solutions which appeared in the recent work on the
nondensely defined fractional evolution differential equations is reported in this work. A
correct formula of integral solutions for nondensely defined fractional evolution equations
could be obtained from the results in this paper.

In view of the complicated definitions for integral or mild solutions for impulsive
fractional evolution equations, many fixed point theorems related to completely continuous
operators are hard to be used to establish the existence results. As far as we know, only [14]
applied Leray Schauder Alternative theorem to the existence of mild solutions of impulsive
fractional differential equations. But there is amistake in proving that Γ(Br) is equicontinuous
(page 2009, Step 3). How to overcome this difficulty is our next work.
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